定积分的第二换元法
- 格式:ppt
- 大小:356.50 KB
- 文档页数:9
§ 4.2 换元积分法(第二类)I 授课题目(章节):§ 4.2 换元积分法(第二类换元积分法)n 教学目的与要求:1.了解第二类换元法的基本思想2.掌握几种典型题的第二类换元积分法解法川教学重点与难点:重点:第二换元法中的三角代换及根式代换难点:积分后的结果进行反代换IV 讲授内容:第一类换元积分法的思想是:在求积分g(x)dx时如果函数g(x)可以化为f[ (x)] (x)的形式那么g(x)dx f[ (x)] (x)dx f[ (x)]d (x)u (x) f(u)duF(u) C F[ (x)] C所以第一换元积分法体现了“凑”的思想•把被积函数凑出形如f[ (x)] (x)函数来.对于某些函数第一换元积分法无能为力,例如a2x2 dx.对于这样的无理函数的积分我们就得用今天要学习的第二类换元积分法。
第二类换元的基本思想是选择适当的变量代换x (t)将无理函数f (x)的积分f (x)dx化为有理式f[ (t)] (t)的积分f[ (t)] (t)dt。
即f(x)dx f[ (t)] (t)dt若上面的等式右端的被积函数f[ (t)] (t)有原函数(t),则f[ (t)] (t)dt (t) C ,然后再把(t)中的t还原成1 (x),所以需要一开始的变量代换x (t)有反函数。
定理2设x (t)是单调、可导的函数,且(t) 0,又设f[ (t)] (t)有原函数(t),则1f(x)dx f[ (t)] (t)dt (t) C [ (x)] C分析要证明f(x)dx [ 1(x)] C,只要证明[1(x)]的导数为f(x),d 「1,、■, d dt dt[(x)] , ?dx dt dx dx可将原积分化作三角有理函数的积分x2例2求 . 2 dx4 x,),则 ' 4 x2 24sin 2t2costdt =2cost2cost,dx 2costdt(2 2cos2t)dt 2t si n2t C2 2证明x (t)单调、可导,x (t)存在反函数t-(x),且字dx1dxdt1It)Q —dx-J -JI A[1(x)]頁匸f[ (t)]⑴飞f(x)1 (x)]是f (x)是一个原函数f (x)dx [-(x)]第二换元法,常用于如下基本类型类型1 :被积函数中含有..a2x2( a 0) ,可令x asint (并约定例1求a2x2dx (a 0)解令x asint acost dx acostdt.a2x2dx a costa costdt a2 (21-cos2t)dt2at22 a sin 2t42at22a sin tcost2a2x x —C arcs in a2 a 2把sin t,cost用x表示.借助下面的辅助三角形2t 2sin tcost解令x 2sint,4—^dt2C 2arcsi n ——44x2 C2 2类型2 :被积函数中含有,a2x2(a 0)可令x ata nt 并约定t ( ,),则2 2asect ;dx 2a sec tdt ;可将原积分化为三角有理函数的积分dx(a 0)解令x atant,t ( , ),^V .”.:x a2 22asect, dx a sec tdtsectdt In sect tant C例4求解令xdxx 2 \ 42ta ntdxx2.4 x21 cost ,,2 dt4 sin t-^^dsi nt sint.4 x2 21 sect4 2dtant1 1 cC1dt414 sin t,),则2 22sec t24tan t 2sectdx(x2 9)2(分母是二次质因式的平方23sec tdt2dx 2 sec tdt1萼dtsin2tcos t4 x2Cdx 3sec21 工 127cos2 tdt(x29) 2481sec1 t 1 t—(1 cos2t)dt ——cos 2tdt —54 54 54 54t 1 t 1—sin 2t —一sin t cost C54 2 54 54 54解令x 3tant,贝U x2 9 9sec21, dx12 54cos2td2t3x(第二换兀积分法分)(x 2x 5)1x 1 arcta n —2 2解(x 2x 5)2 2 2[2 (x 1)],令x 1 2ta ntt (i ,2)则dx 2 2(x 2x 5)笄壬水1 (12 sec t 16cOs2t)dt1sin t cost C161 x 1 arcta n — 16 21 x 1 8 x 22x 类型3 被积分函数中含有(a 0),当 x a 时,可令x asect ,并约定I 2 2t (0,—),贝U x a ata nt , 将原积分化为三角有理函数的积分。
定积分是微积分中的重要概念,通过定积分我们可以求解曲线与坐标轴之间的面积、体积以及质心等问题。
在求解定积分时,换元法是一种常用且有效的方法。
换元法分为第一类换元法和第二类换元法,它们在不同类型的积分计算中发挥着重要作用。
下面我们将分别介绍这两种换元法的原理和应用。
一、第一类换元法1.1 换元法简介第一类换元法,又称代换法或变量代换法,是对定积分中被积函数中的变量进行替换,将原来的积分变为更容易求解的积分。
其基本思想是通过引入适当的新变量,将被积函数中的复杂部分转化为简单的形式,从而便于积分计算。
1.2 换元法的步骤(1)寻找合适的变量替换:根据被积函数的形式和特点,选择适当的新变量代替原来的变量。
(2)计算新变量的微分:对新变量进行微分,求出新变量的微分表达式。
(3)将被积函数用新变量表示:将原来的积分中的被积函数用新变量表示出来,得到新的积分形式。
(4)进行积分计算:对新的积分形式进行计算,得出最终结果。
1.3 换元法的应用第一类换元法常用于代换型积分,如含有根式、三角函数等形式的积分。
通过合适的变量替换,可以将原积分化为简单的形式,从而便于求解。
二、第二类换元法2.1 换元法简介第二类换元法,又称参数代换法或极坐标代换法,是通过引入参数来替换被积函数中的自变量,从而实现对原积分的简化。
这种换元法常用于解决平面曲线和曲面的面积、弧长以及质心等问题。
2.2 换元法的步骤(1)引入参数:选择适当的参数替换自变量,通常选择直角坐标系下的参数形式或极坐标系下的参数形式。
(2)表达被积函数:将原来的被积函数用参数表示出来,并求出新的被积函数。
(3)进行积分计算:对新的被积函数进行积分计算,得出最终结果。
2.3 换元法的应用第二类换元法常用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。
通过引入参数替换自变量,可以将原积分化为简单的形式,从而便于求解。
三、第一类换元法和第二类换元法的比较3.1 适用范围(1)第一类换元法适用于一般的代换型积分,如含有根式、三角函数等形式的积分;(2)第二类换元法适用于参数型积分,如平面曲线、曲面以及柱面体的面积、弧长和质心的计算。
第二换元积分法第二换元积分法是一种求解复杂积分计算的有效方法,它将复杂的定积分表示成由多个简单的积分相加或相减而得出。
它可以简化复杂的积分计算,并且具有良好的计算结果。
第二换元法最初由德国数学家冯诺依曼(Friedrich Wilhelm von Nuemann)提出。
第二换元法的基本原理是把一个复杂的定积分改写成多个简单积分的和,或者说改变积分的自变量,从而得到一个更简单的积分。
例如,当在实际应用中发现存在积分难以求解时,可以通过第二换元积分法将该积分改写为两个或更多简单积分的和,从而轻松求解。
举例来说,考虑定积分:∫xdx如果然后使用第二换元积分法,可以将其转换为:∫udu +∫v dv其中:u = x,v = x。
现在,求解此积分的容易方法是将它写成两个简单定积分:∫udu = 1/2u2 + c1∫vdv = 1/2v2 + c2最后,第二换元积分法的结果将是:∫xdx = 1/2(u2 + v2) + c1 + c2同样,可以将任何复杂的定积分改写为多个简单定积分,从而使求解变得更加容易。
第二换元积分法也可以用于不同类型的积分,包括权函数积分、综合积分和反向积分等。
例如,如果要解决一个权函数积分,那么可以用第二换元积分法将它改写为多个简单的权函数积分之和,从而得到最终的结果。
此外,第二换元积分法还可用于积分变换,如果一个较复杂的积分改变到比较简单的形式,那么就可以使用第二换元积分法求解该积分从而把复杂的积分转换成比较简单的形式,以便求解。
综上所述,第二换元积分法是一种有效的求解复杂积分计算的方法,能够简化复杂的积分计算,并且具有良好的计算结果。
它可以用于求解各种不同类型的积分,以及积分变换,从而使积分求解变得更加容易。
由此可见,第二换元积分法在计算复杂积分计算中具有重要的作用,在求解数学问题时具有重要意义。