第五章 合作博弈
- 格式:ppt
- 大小:569.00 KB
- 文档页数:39
合作博弈核仁法一、什么是合作博弈核仁法1.1 定义合作博弈核仁法是一种用于分析合作博弈的方法,通过研究博弈中的核和仁的性质来寻找合理的合作方案。
合作博弈是指在博弈中参与者可以通过合作来获得更大利益的一种博弈模式。
1.2 合作博弈和非合作博弈的区别合作博弈和非合作博弈是博弈论中的两种基本概念。
合作博弈强调参与者之间通过合作来达到共同目标,而非合作博弈则是每个参与者都追求自身利益的最大化。
二、合作博弈核的定义和性质2.1 核的定义合作博弈中的核是指一组合作方案,对于这组方案,没有任何一个参与者可以通过单方面退出博弈获得更大的收益。
核是一种稳定的合作方案。
2.2 核的性质核具有以下性质:1.集体理性:核中的每个参与者都选择了在核中达到自身最大利益的策略。
2.消费最佳化:核中分配的资源得到最有效地利用,没有浪费。
3.可行性:核中的分配方案是可行的,即满足各种限制条件。
3.1 Shapley值Shapley值是计算合作博弈核的一种方法,它是由Lloyd Shapley于1953年提出的。
Shapley值的计算考虑了每位参与者对于博弈结果的贡献。
3.2 Shapley值的计算公式Shapley值的计算公式为:ϕi(v)=∑(n−|S|−1)!(|S|)!n!S⊆N\{i}[v(S∪{i})−v(S)]其中,v表示博弈的特征函数,N表示参与者集合。
3.3 Shapley值的应用Shapley值可以用于计算任何合作博弈的核和解决方案。
它通过计算每个参与者的贡献来获得公平的分配方案。
四、合作博弈仁的定义和性质4.1 仁的定义合作博弈中的仁是指在合作博弈中,参与者遵守协议并认为大家都会遵守协议的性质。
仁要求参与者不会违背协议并选择最佳策略。
4.2 仁的性质仁具有以下性质:1.相互信任:合作博弈中的每位参与者都相信其他参与者不会违背协议。
2.遵守协议:仁要求参与者遵守协议,并基于对其他参与者的信任而选择自己的策略。
5.1 经济领域合作博弈核仁法在经济领域有广泛的应用。
合作博弈理论在商业策略和合作伙伴关系的应用正文:第一章:引言在商业世界中,合作和竞争是并存的。
可是在合作中,各方需付出一定代价,同时也希望从合作中获得最大的利益。
这时候就需要使用博弈论中的合作博弈理论来分析商业策略和合作伙伴关系中的合作问题。
第二章:合作博弈理论概述合作博弈理论是博弈论中的一种,它的研究对象是多人合作博弈。
多人合作博弈中,参与者们通过合作来获取收益。
与此同时,他们也要面对参与者之间的冲突,因为他们都想最大限度地获得收益。
合作博弈理论为这种合作问题提供了解决方法。
合作博弈理论中的核心概念是合作稳定标准。
合作稳定标准是一个合作结果,其中所有参与者都认为这个结果对他们来说是最好的,既没有冲突也没有争议。
合作稳定标准是通过各参与方的利益交换来实现的。
第三章:商业策略中的合作博弈理论应用商业竞争环境中,企业之间常采用合作策略来获得更多的利益。
如上文提到的,利益的分配是参与者之间最大的问题,博弈论中的合作博弈理论可以很好地解决这一问题。
合作博弈理论中的均分收益(Nash Bargining Solution)解决方案,让各方都在合作中获得实际收益,从而让合作更加有效。
此外,合作博弈理论还能帮助企业分析合作伙伴筛选。
企业在进行合作时,如果不能判断潜在伙伴价值,将面临失误和损失。
但是合作博弈理论可定量分析每个伙伴的价值,避免企业与不合适的伙伴合作,并从更适合的伙伴中获得更多的利益。
第四章:合作伙伴关系中的合作博弈理论应用合作伙伴关系需要各方共同投入资源,才能实现最大效益。
然而,在收益分配和资源贡献方面,常常存在分歧,影响伙伴关系的质量。
合作博弈理论可以协助伙伴关系维系,避免立场的差异。
通过合作博弈,各方可以坦诚地沟通,采用公正合理的方式分配资源和收益权益,建立情感合理的合作伙伴关系。
对于长期合作的伙伴,特别重要。
此外,合作博弈理论可以解决合作伙伴退出合作的问题。
在合作伙伴关系中,如果一方退出了合作,将对整个关系造成严重影响。
在实际的博弈问题中,如果参与人能够进行协商、谈判,联合选择行动,共同分享利益,这就是合作博弈问题。
成功的合作往往能通过协同效应,发挥各方的所长与优势,共同创造共赢的局面,甚至实现帕累托最优。
但是,由于参与博弈的各方利益间存在着冲突,搭便车的问题可能导致合作受到破坏。
合作首先是一个态度问题,然而,光有态度是不够的,合作能否实施,重要的是方法。
在不同的博弈结构下,有不同类型的合作,因而“共赢”有不同的含义。
在某些博弈情况下,“共赢”意味着参与人“共同避免更糟”;有些情况共赢意味着参与人“共同寻求更好”。
在很多情况下,将一个复杂的现实场景转化成一个严格的非合作博弈模型可能比较困难,而转化为合作博弈框架则可简化对场景细节的描述,突出结果的形成。
一个非合作博弈包括四个构成要素:参与人、博弈规则、博弈结局和博弈效用。
合作博弈将后三个要素抽象为一个部分,这样合作博弈就由两部分构成:一是所有参与人的集合,二是将不同参与人的组合对应其可得集体效用的函数。
联盟博弈是合作博弈的基本表述方式,既是合作博弈,就意味着所有参与人接受与竞争对手共同争取更多收益的指导思想。
在联盟博弈中,合作通过特征函数值的分配来表述。
企业建立联盟是有条件的,这个条件便是:订立协议、建立联盟的联盟值大于单独行动。
如某个市场上两家企业A、B共同开发市场比单个企业开发市场有利,其条件是:V(A,B)≥V(A)+V(B)。
其中,V(A,B)为A、B企业共同开发市场时双方的收益之和,V(A)、V(B)分别为A、B单独开发市场所得到的收益。
提供同种产品的企业相互合作的形式能够有多种。
比如,混乱的企业在行业协会或某个大企业的引导下,统一某些技术标准,大家共同使用这些标准。
这样,或者大家的成本降低,或者市场扩大了。
再如,提供同种产品的不同企业,它们的优势可能不同,若这些不同优势的企业联合起来,共同开发某些产品,其竞争力往往更大。
不同类型的企业相互合作往往更能成功,因为同类型的企业冲突度往往大,不同类型的企业之间往往没有冲突。
合作博弈论pdf
合作博弈论是一种博弈论的分支,与非合作博弈论不同,它着重于探讨参与者之间如何合作,以实现最优结果。
在这种博弈中,参与者可以通过合作获得更好的结果,比如增加收益或减少成本。
同时,博弈的参与者也需要考虑其他参与者的利益,以达成共同的目标。
在合作博弈中,参与者之间的合作可以采用不同的方法,如协商、合作协议或契约。
这些合作机制可以为参与者提供稳定的合作平台,并确保参与者之间的合作是公平和可持续的。
合作博弈论的应用非常广泛。
它在商业领域中被广泛运用,尤其是在国际贸易和投资合作中。
合作博弈还可用于资源共享和环境保护等问题,以及多个企业之间的合作和竞争问题。
总之,合作博弈理论为参与者之间的合作提供了一个框架。
在这种博弈中,参与者需要考虑他们自己的利益,同时也需要考虑其他参与者的利益,从而实现共同的目标。
这种协作方式可以为参与者带来更好的结果,同时还可以确保合作的公平和可持续性。