第二章 完全信息静态博弈的基本理论
- 格式:doc
- 大小:187.00 KB
- 文档页数:11
第二章完全信息静态博弈的基本理论第二章完全信息静态博弈的基本理论0.完全信息(complete information)博弈与不完全信息(incomplete information)博弈完全信息博弈是指每个参与人的支付函数都是该博弈的公共知识;只要有一个参与人的支付函数不是该博弈的公共知识,就意味着该博弈是不完全信息博弈。
特别提示:如果该博弈是完全信息博弈,这意味着参与人不仅知道自己是什么类型的人,也知道对手们是什么类型的人。
一.求解方法之一:剔除严格劣策略1.占优策略与劣策略。
严格占优策略与严格劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于b策略,则称a策略是相对于b 策略的严格占优策略(strictly dominating strategy),b策略是相对于a策略的严格劣策略(strictly dominated strategy)。
弱占优策略与弱劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付不低于b策略,且至少有一种情况下的支付会严格大于b策略,则称b策略是相对于a策略的弱劣策略(weakly dominated strategy );a策略则是相对于b策略的弱占优策略(weakly dominating strategy)。
占优策略就是我们平时所说的上策,劣策略就是我们平时所说的下策。
特别提示:本文对占优策略的理解与其他教材不同,本文可以将以上述方式定义出来的占优策略称为局部占优策略;如果不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于其他所有策略,则称a策略是全局严格占优策略。
类似地,可以定义局部劣策略与全局劣策略。
理性的人在博弈时绝对不会选择严格劣策略。
通过剔除严格劣策略所获得的博弈解就称之为占优策略均衡。
2.案例案例1乙坦白不坦白甲坦白-6-6-10不坦白-10-1-1案例2乙不作广告作广告甲不作广告 8810 2作广告 21044在上面的两个例子中,通过剔除严格劣策略,可以获得一个占优策略均衡(坦白,坦白),(作广告,作广告)。
完全信息静态博弈论模型引言:博弈论是研究决策制定者在不同利益冲突场景下的行为和策略选择的数学模型。
在博弈论中,静态博弈是指参与者在同一时间点做出决策的情况。
完全信息表示每个参与者对于其他参与者的行为和策略选择都有完全的了解。
本文将介绍完全信息静态博弈论模型的基本概念、解决方法以及应用领域。
一、基本概念1.1 参与者完全信息静态博弈中,有两个或多个参与者,每个参与者可以是个体、团体或国家等。
参与者通过制定决策来追求自身的利益。
1.2 策略每个参与者在博弈中可以选择的行动方案称为策略。
策略可以是纯策略,即只选择一个确定的行动;也可以是混合策略,即以一定概率选择不同的行动。
1.3 支付函数支付函数是衡量参与者在不同策略组合下所获得效用或利益的函数。
支付函数可以表示为参与者的收益、成本或效用。
1.4 纳什均衡纳什均衡是指在博弈中,每个参与者选择的策略组合使得没有参与者有动机改变自己的策略。
换言之,每个参与者都在给定其他参与者的策略下做出最优的决策。
二、解决方法2.1 支付矩阵为了描述参与者之间的策略选择和支付函数之间的关系,可以使用支付矩阵。
支付矩阵是一个二维矩阵,行表示一个参与者的策略选择,列表示其他参与者的策略选择,每个元素表示对应策略组合下的支付函数。
2.2 最优响应最优响应是指在其他参与者的策略下,参与者能够选择的最优策略。
通过计算每个参与者的最优响应,可以找到纳什均衡。
2.3 前瞻性在完全信息静态博弈中,参与者可以通过推断其他参与者的策略和支付函数来做出决策。
前瞻性是指参与者能够预测其他参与者的行为并做出相应的反应。
三、应用领域完全信息静态博弈论模型广泛应用于经济学、政治学、生物学等领域。
3.1 经济学博弈论在经济学中有广泛应用,如市场竞争、定价策略、拍卖等。
完全信息静态博弈模型可以帮助分析参与者的决策行为,预测市场的走势和结果。
3.2 政治学在政治学中,博弈论可以用于分析选举、政策制定和国际关系等问题。
第二章完全信息静态博弈的基本理论0.完全信息(complete information)博弈与不完全信息(incomplete information)博弈完全信息博弈是指每个参与人的支付函数都是该博弈的公共知识;只要有一个参与人的支付函数不是该博弈的公共知识,就意味着该博弈是不完全信息博弈。
特别提示:如果该博弈是完全信息博弈,这意味着参与人不仅知道自己是什么类型的人,也知道对手们是什么类型的人。
一.求解方法之一:剔除严格劣策略1.占优策略与劣策略。
严格占优策略与严格劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于b策略,则称a策略是相对于b策略的严格占优策略(strictly dominating strategy),b策略是相对于a策略的严格劣策略(strictly dominated strategy)。
弱占优策略与弱劣策略:不管对手采取什么策略,如果参与人采取a策略所获得的支付不低于b策略,且至少有一种情况下的支付会严格大于b策略,则称b策略是相对于a策略的弱劣策略(weakly dominated strategy );a策略则是相对于b策略的弱占优策略(weakly dominating strategy)。
占优策略就是我们平时所说的上策,劣策略就是我们平时所说的下策。
特别提示:本文对占优策略的理解与其他教材不同,本文可以将以上述方式定义出来的占优策略称为局部占优策略;如果不管对手采取什么策略,如果参与人采取a策略所获得的支付严格大于其他所有策略,则称a策略是全局严格占优策略。
类似地,可以定义局部劣策略与全局劣策略。
理性的人在博弈时绝对不会选择严格劣策略。
通过剔除严格劣策略所获得的博弈解就称之为占优策略均衡。
2.案例案例1乙甲坦白不坦白案例2乙不作广告甲 不作广告作广告在上面的两个例子中,通过剔除严格劣策略,可以获得一个占优策略均衡(坦白,坦白),(作广告,作广告)。
3.请思考下面这个例子是否存在占优策略均衡?甲在上与下之间作选择,乙在左中右之间作选择经过重复剔除严格劣策略,可以获得一个占优策略均衡(上,中),这就是求解方法之一——严格劣策略的迭代剔除方法。
思考:占优策略均衡(上,中)是通过不断剔除严格劣策略而获得的,为了成功地进行剔除,需要什么样的前提条件?由此可以理解公共知识的重要性。
4.思考:下面这个博弈是否存在占优策略均衡?假设甲乙两个参与人分别在上中下,左中右之间作选择:剔除严格劣策略并不适合于求解所有的博弈,许多博弈是不存在占优策略均衡的。
5.社会(或集体)困境(dilemma )、合作与非合作博弈、占优策略均衡 (1)案例案例1:霍布斯博弈假设鲁滨逊与星期五生活在一个自然状态之中。
为了生存,他们各自有两个选择:自己生产财富或掠夺对方的财富。
博弈情形如下:乙甲生产掠夺思考:面对囚徒困境、广告博弈、霍布斯博弈,请思考如何解决社会困境?(答案略;最低价格承诺实际上就是为解决寡头之间的串谋困境提供了有效的解决机制)案例2:1964年以前,美国香烟的电视广告非常普遍,1964年卫生总监的报告宣布以后,美国四大烟草公司经过协商与联邦政府达成协议,决定不再做电视广告,协议于1971年生效。
各大烟草公司的利润得以大幅增加。
(2)合作博弈与非合作博弈A合作博弈:参与人直接事先达成具有约束力的协议,以集体协商的方式选择策略,故又可称之为联盟博弈。
由此形成的策略选择与支付被称为博弈的合作解,通常以帕累托最优作为度量标准。
合作博弈其实就是指参与人在行动前能够实现进行沟通、交流,且沟通交流达成的协议是有约束力的。
B非合作博弈:又称策略博弈,参与人以独立的方式选择策略。
由此形成的策略选择与支付被称为博弈的非合作解。
C一般所说的博弈论是指非合作博弈理论。
(3)社会(或集体)困境与占优策略均衡A所谓社会(或集体)困境就是指博弈的不合作解与合作解相悖。
B凡是存在社会(或集体)困境问题的场合必定存在占优策略均衡,即社会(或集体)困境问题是存在占优策略均衡的重要博弈类型。
C注意:不要认为占优策略均衡都一定意味着社会(或集体)困境。
以下面的政治博弈为例:甲乙作为竞选的对手,分别有三种立场可以选择:左中右;选民的分布是对称的;甲乙均追求选票最大化;具体的选票情况如下:思考:该博弈存在占优策略均衡吗?该博弈存在社会困境吗?从这个博弈可以看出,只有中间立场在政治上被充分表达,绝大多数的非中间立场的选民的立场被严重忽视。
(4)占优策略均衡在制度设计中有着广泛的应用价值。
二.求解方法之二:最优反应法——符合理性人性质的方法,博弈论最重要的求解方法1.最优反应策略:给定其他所有参与人策略选择的情况下,能够给某参与人带来最大收益的策略,其思维过程为:如果对手采用……,某参与人就应该采用……。
这是一种相对优势策略。
通过最优反应方法所获得的博弈解称之为纳什均衡。
2.如何寻找纳什均衡?划线法(仅适合二人有限策略博弈)案例1 竞选博弈假设甲乙两个参与人分别在上中下,左中右之间作选择:思考(下,右)这个策略组合具有什么特点?互相构成对对手策略选择的最优反应。
案例2 选址博弈甲乙两家百货公司考虑开店,可供选择的地址有四个:市郊、市中心、城市东部、城市西部。
具体支付情况如下:思考(市中心市中心)这个策略组合具有什么特点?3.纳什均衡:它是由全部参与人所选择的策略构成的这样一个组合,在这个组合中,每个参与人的策略都是针对其他参与人人策略选择的最优反应。
特别注意,均衡是针对策略组合的,而不是支付组合的,即在上面的博弈中,(下,右)才是均衡,(6 6)是这个博弈的均衡结果,不要把均衡与均衡结果混淆,这显然与微观经济学不同,在微观经济学中均衡是针对结果而言的。
4.关于纳什均衡的体会:纳什均衡具有策略稳定性,在均衡状态之下没有人愿意单方面改变自己的策略选择,因此,纳什均衡具有自我实施特征。
特别说明:策略稳定性不同于均衡稳定性。
5.纳什均衡与占优策略均衡(1)占优策略均衡肯定也是纳什均衡,但是纳什均衡不一定是占优策略均衡。
(2)纳什均衡与占优策略均衡都是博弈的非合作解。
6.多重纳什均衡问题(1)寻找下列博弈的纳什均衡案例1 节目选择博弈甲乙两个电台各有三种节目形式可供选择,分别是摇滚乐、乡村音乐以及谈话节目案例2 夫妻博弈妻足球芭蕾夫足球芭蕾上述两个例子的共同特点就是存在多个纳什均衡,这是纳什均衡的最大缺陷,降低了纳什均衡解的预测能力,因为一旦参与人的预期不一致,就可能出现极为糟糕的结局。
(2)多重纳什均衡的精炼(refine)所谓精炼就是通过附加另外的合理的标准,使得某些不合理的纳什均衡被剔除掉,以减少纳什均衡的个数,提高理论分析对现实的预测能力(因为纳什均衡只是涵盖了理性的一个方面:最优反应)。
精炼方法之一:寻找支付帕累托占优均衡乙推不推甲推不推通过比较发现,精炼方法之二:寻找风险占优均衡通过比较发现,在上面的博弈中,(不推,不推)在风险上优于(推推)精炼方法之三:寻找焦点(focus)或谢林点(schelling point)所谓焦点就是指那些依据某种线索或信号(如:历史、习俗、惯例、经验、自然或社会标志物)能够成为所有博弈参与人共识的纳什均衡。
特别说明:一方面,习俗和惯例能够为多重纳什均衡提供解,另一方面,习俗和惯例的稳定性正在于它们是纳什均衡。
虽然依据某些线索或信号,某个纳什均衡更有可能发生,成为博弈的焦点,但是并不是所有存在多重纳什均衡的博弈都有焦点。
三.求解方法之三:最大最小(maxmin)方法,一种非常保守稳健的方法1.最大最小策略:首先确定参与人在每一个策略下所能够获得的最小支付,在所有的最小支付中最大那个支付所对应的策略就是最大最小策略。
由所有参与人的最大最小策略所构成的策略组合就是博弈的最大最小解,2.案例案例1:抢答博弈乙按不按甲按不按案例2:开车博弈乙等待前行甲等待前行3.最大最小解与纳什均衡的关系(1)零和博弈与非零和博弈;常数和博弈与非常数和博弈零和博弈:在任何博弈策略组合下所有参与人的支付总和均为零。
非零和博弈:在任何博弈策略组合下所有参与人的支付总和并不都是零。
常数和博弈:在任何博弈策略组合下所有参与人的支付总和为一个常数,其实任何常数和博弈均可以转化为零和博弈。
非常数和博弈:在任何博弈策略组合下所有参与人的支付总和不是一个常数。
(2)在常数和博弈中,最大最小解与纳什均衡解是一致的。
在非常数和博弈中,最大最小解与纳什均衡解可能不一致。
采用最大最小方法的逻辑在于无论我选择什么策略,对手的最佳反应是采取使我支付最低的策略,故这个方法特别适合于零和博弈。
特别注意:最大最小方法并不适用于求解所有的零和博弈,如配硬币博弈就是一个例子。
案例:配硬币博弈乙正面反面甲正面反面(3)当最大最小解与纳什均衡解不一致时,采用哪种方法更加合理?一般来说,纳什均衡解更加合理,但是一旦存在多重纳什均衡且无法进行精炼,博弈存在极大的不确定性时,采用最大最小方法更加合理。
思考:配硬币博弈是否存在纳什均衡?乙正面反面甲正面反面四.混合策略纳什均衡1.在配硬币博弈以及儿童常玩的“石头、剪刀、布”一类的游戏中,按照我们前面给出的寻找纳什均衡的方法,不存在纳什均衡。
对这类游戏,人们的一个经验就是避免行为的规律性,随机地选择自己的策略,使得对手摸不着北,然后看能否凭运气击败对手,即使自己的策略选择具有不可预测性。
2.混合策略(mixed strategy)与纯策略(pure strategy)(1)混合策略:参与人策略集上的概率分布,即参与人以随机方式选择策略。
假设参与人拥有两个策略,则混合策略可以写成(p,1-p);假设参与人拥有三个策略,则混合策略可以写成(p,r,1-p-r)(2)纯策略:参与人以非随机的方式选择策略,其实,纯策略是一种特殊的混合策略。
纯策略其实就是指博弈矩阵旁边标示的策略,或者说参与人策略集中所包括的策略。
3.参与人的期望支付(1)一旦参与人采取混合策略,参与人的支付就必须用期望支付来表示。
(2)一个实例:计算甲乙参加配硬币博弈的期望支付乙正面反面甲 正面反面假设甲选择正面的概率为p ;假设乙选择正面的概率为q 。
EU 甲=(11(1))p q q -∙+∙-+(1)(1(1)(1))p q q -∙+-∙-=(21)(12)q p -- EU 乙=(21)(21)q p --(3)二人博弈中计算期望支付的一般公式1mi EU ==∑甲1ni j ij j p q a =∑1mi EU ==∑乙1ni j ij j p q b =∑依据:当对手正在进行随机选择时,他一定会选择这样的概率组合,使得我选择任意纯策略的期望收益均相等,从而使我无从下手,所以我也将进行随机选择,而且我选的概率组合也会使得对手无所适从。