高频实验报告
- 格式:doc
- 大小:18.91 MB
- 文档页数:3
预习报告一、实验目的1掌握调频发射机电路的设计与调试方法2高频电路的调试中常见故障的分析与排除二、实验内容调频发射机的设计与实现,要求如下:(1)载波频率:6MHz ;(2)功率放大器:发射功率P O≥10mW(在50欧假负载电阻上测量),效率≥25% ;(3)在50欧假负载电阻上测量,输出无明显失真调频信号。
三、实验原理频率调制电路如下:其中主要芯片MC1648的内部结构如下:BB910变容二极管特性曲线如下:低通滤波器如下:功率放大器如下:功率放大器根据放大器电流导通角的范围,可以分为甲类、乙类、丙类和丁类等功率放大器。
甲类放大器的效率最高为50%,丙类放大器的效率最高为76.8%高频匹配电路如下:有如下两种电路形式可供选择:四、实验电路调试调试步骤:调试频率调制电路和低通滤波器,在不输入调制信号时,调节滑动变阻器RP2,使输出载波频率为6MHz,输出波形无明显失真;使用高频信号源加入调制信号,观看调频信号;调试功率放大器,要求采用丙类功率放大器,测试效率;系统联调。
单级调谐,可以采用扫频仪,也可以采用输入容抗小的示波器探头(×10档),或者在探头上串联一个pF级小电容(根据工作频率和示波器输入电容考虑);多级调谐,如变压器结构调谐,先调后级,再调前级。
实验报告一、实验数据记录电源电压:5.0V ; 仪器:DW2011直流稳压电源 载波频率:6.000756MHz ; 仪器:YZ -4345示波器信号源电压峰峰值:0.8V ; 仪器:YZ -4345示波器输出信号电压峰峰值:5.4V ; 仪器:YZ -4345示波器电源输入直流电流为:52.0mV; 仪器:VC9807A 电压表二、实验数据分析电源供给的输入直流功率为WW V I P 26.0052.00.5CC C0=⨯=== W R V R I I V P 0729.021212102C1m 02Clm Clm Clm o =⋅===其中0R 为50欧姆,则集电极效率如下 %03.28CCC0L 2L C ====V I R V P P η 整机调试(不加调制信号)电源输出直流电流为66.2mV电源供给的输入直流功率为W W V I P 331.00662.00.5CC C0=⨯===集电极效率为%02.22CCC0L 2L C ====V I R V P P η 由于输入级与输出级相互影响,整机联调后系统效率减小,这是在实验设计所分析出来的,效率的大小和功率放大模块输入阻抗变化有关,整体上实验数据基本满足要求,发射功率P O =0.0729W≥10mW (在50欧假负载电阻上测量),效率η=28.03%≥25% 。
实验一正弦波振荡器一、实验目的1了解三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计算。
2通过实验掌握晶体管静态工作点、反馈系数、负载变化对起振和振荡幅度的影响。
3研究外界条件(温度、电源电压、负载变化)对角振荡器频率稳定度的影响。
4测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。
二、实验设备TKGPZ-1型高频电子线路综合实验箱;双踪示波器;频率计繁用表。
三、实验内容1熟悉振荡器模块各元件及其作用;2进行LC振荡器波段工作研究;3研究LC振荡器中静态工作点、反馈系数以及负载对振荡器的影响;4测试LC振荡器的频率稳定度。
三、基本原理将开关S2的1拨上2拨下,S1全部断开,由晶体管Q3和C13、C20、C10、CCI、L2构成电容三点式反馈振荡器的改进型振荡器——西勒振荡器,电容CCI可用来改变振荡器频率。
f=振荡器频率约为4.5MHZ振荡电路反馈系数:1320560.12 470CFC==≈振荡器输出通过耦合电容C3加到由Q2组成的射极跟随器的输入端,因C3容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。
四、实验步骤1研究振荡器静态工作点对振荡幅度的影响。
2将开关S2的1拨上,构成LC振荡器。
3改变上偏置电位器RA1,并用示波器测量对应点的振荡幅度Vp-p,记下停振时的静态工作点电流值。
五、实验结果1、组成LC西勒振荡器:短接K1011-2、K1021-2、K103 1-2、K1041-2,并在C107处插入1000p的电容器,这样就组成了LC西勒振荡器电路。
用示波器(探头衰减10)在测试点TP102观测LC振荡器的输出波形,再用频率计测量其输出频率。
2、调整静态工作点:短接K104 2-3(即短接电感L102),使振荡器停振,并测量三极管BG101的发射极电压Ueq;然后调整电阻R101的值,使Ueq=0.5V,并计算出电流Ieq(=0.5V/1K=0.5mA)。
一、实验目的1. 理解高频调制的基本原理和过程。
2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。
3. 学习使用实验仪器进行高频信号的调制和解调。
4. 分析调制信号的频谱特性,验证调制和解调效果。
二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。
本实验主要研究振幅调制(AM)。
1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。
AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。
2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。
常见的解调方法有包络检波法和同步检波法。
三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。
(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。
(3)将载波信号和信息信号输入调制器,进行振幅调制。
(4)观察调制器的输出波形,验证调制效果。
2. 解调过程(1)将调制信号输入解调器,进行振幅解调。
(2)观察解调器的输出波形,验证解调效果。
3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。
(2)观察调制信号的频谱特性,验证调制效果。
4. 性能测试(1)测试调制信号的调制指数 \( m \)。
(2)测试解调信号的解调指数 \( D \)。
五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。
调制信号的波形如图1所示。
图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。
解调信号的波形如图2所示。
设计报告学院电子与信息学院课程名称高频实验设计题目专业电子信息工程班级12电本2班姓名刘炽明学号2012044243101指导教师陈俊时间学院:电子与信息学院专业:电子信息工程班级:12电本2班姓名:刘炽明学号:2012044243101实验一调谐放大器一、实验目的1.熟悉电子元器件和高频电路实验箱2.熟悉谐振回路的幅频特性分析—通频带与选择性3.熟悉信号源内阻及负载对谐振回路的影响,从而了角频带扩展4.熟悉和了解放大器的动态范围及其测试方法二、实验主要仪器1.L Y—GP2高频电路实验箱2.双踪示波器3.扫频仪4.高频信号发生器5.毫伏表6.万用表7.实验板G1三、实验原理小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。
其实验单元电路如图1—1所示。
该电路由晶体管V、选频回路CL二部分组成。
它不仅对高频小信号放大,而且还有一定的选频作用。
本实验中输入信号的频率f S=8.5MHz。
R1、R2各射极电阻决定晶体管的静态工作点改变回路并联电阻R,即改变回路Q值,从而改变放大器的增益和通频带。
改变射极电阻Re,从而改变放大器的增益。
四、实验内容及步骤(一)单调回路谐振放大器(二)1.实验电路见图1—1(1)按图1—1连接电路(注意接线前先测量+12V电源电压,无误后,关断电源再接线)。
(2)接线后仔细检查,确认无误后接通电源。
2.静态测量实验电路中选Re=1K测量各静态工作点,计算并下表实例实测计算根据Vce判断V是否工作在放大区原因V B V E Ic Vce 是否B>E 1.936V 1.235V 1.175mA 10.6V √Vce导通*VB、VE是三极管的基极和发射极对地电压。
3.动态研究(1)测放大器的动态范围Vi~V o(在谐振点)选R=10K,Re=1K。
高频信号发生器接到电路输入端,电路输出接毫伏表,选择正常放大区的输入电压Vi,调节频率f使其为10.7MHz,调节C T使回路谐振,使输出电压幅度为最大,此时调节V1由0.02变到0.8伏,逐点记录V o电压,并填入表1.2。
实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。
2.了解高频小信号的质量指标和谐振放大器的性能。
3.掌握L,C参数对谐振频率的影响。
4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。
二、预习要求1.复习高频小信号放大器的功用。
答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。
由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。
就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。
一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。
2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。
三、实验内容1.参照电路原理图1-1连线。
,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。
图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。
2.观察瞬态分析的波形输出及频谱分析是否合理。
3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。
V2参数CD=12V。
V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。
②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。
、Lntervat为10。
③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。
一、实验目的1. 理解高频脉冲的基本概念和特性。
2. 掌握高频脉冲信号的产生、传输和检测方法。
3. 学习使用相关仪器设备进行高频脉冲实验。
4. 分析高频脉冲信号的波形和参数,验证理论公式。
二、实验原理高频脉冲信号是一种周期性变化的电信号,其频率远高于普通交流信号。
在高频脉冲实验中,我们主要关注以下方面:1. 脉冲产生:通过晶体管、集成电路等电子元件产生高频脉冲信号。
2. 脉冲传输:研究高频脉冲信号在传输线上的传播特性,包括衰减、色散和反射等。
3. 脉冲检测:使用示波器等仪器设备检测和分析高频脉冲信号的波形和参数。
三、实验仪器与设备1. 晶体管或集成电路2. 高频信号发生器3. 高频示波器4. 传输线5. 测试线夹6. 万用表7. 调制解调器(可选)四、实验内容1. 脉冲产生:(1)搭建晶体管或集成电路产生高频脉冲信号的电路。
(2)调整电路参数,观察并记录脉冲信号的波形和参数。
(3)分析脉冲信号的波形和参数,验证理论公式。
2. 脉冲传输:(1)搭建传输线实验电路,将脉冲信号从产生端传输到检测端。
(2)观察并记录传输线上的脉冲信号波形,分析脉冲信号的衰减、色散和反射等特性。
(3)计算传输线上的特性阻抗,验证理论公式。
3. 脉冲检测:(1)使用示波器检测和分析脉冲信号的波形和参数。
(2)调整示波器参数,观察脉冲信号的上升时间、下降时间、占空比等特性。
(3)分析脉冲信号的波形和参数,验证理论公式。
五、实验结果与分析1. 脉冲产生:实验结果表明,晶体管或集成电路可以产生高频脉冲信号。
通过调整电路参数,可以改变脉冲信号的波形和参数。
2. 脉冲传输:实验结果表明,传输线对高频脉冲信号有衰减、色散和反射等特性。
通过计算传输线上的特性阻抗,可以验证理论公式。
3. 脉冲检测:实验结果表明,示波器可以有效地检测和分析高频脉冲信号的波形和参数。
通过调整示波器参数,可以观察到脉冲信号的上升时间、下降时间、占空比等特性。
六、实验结论1. 高频脉冲信号是一种重要的电子信号,在通信、雷达、医疗等领域有着广泛的应用。
高频实验报告总结与反思一、实验目的本次实验的目的是通过高频电路的设计和实验,加深对高频电路原理的理解与掌握,提高动手能力和解决问题的能力。
二、实验内容本次实验的内容主要包括以下几个部分:1. 高频信号发生器的设计与实现;2. 接收功率计的设计与实现;3. 带通滤波器的设计与实现;4. 高频放大电路的设计与实现。
三、实验过程与结果在实验过程中,我们小组成员分工协作,按照实验要求逐步完成了各个部分的设计与实现。
经过仔细调试和测试,我们成功完成了实验,并得到了满意的实验结果。
第一部分的高频信号发生器设计中,我们根据设计要求,选用特定型号的晶体振荡器,以实现稳定、高频率的信号输出。
通过调整部分元件参数,信号频率得以精确控制。
实验结果显示,该设计的高频信号发生器输出稳定可靠,符合预期要求。
第二部分的接收功率计设计中,我们以高频信号发生器的输出信号作为输入,通过一系列放大器、滤波器和检波器等组成的电路,实现对高频信号功率的测量。
通过与次级标准功率计的对比测试,我们发现该接收功率计的测量误差较小,在合理范围内。
第三部分的带通滤波器设计中,我们根据实验要求,采用二阶无源RC 滤波器来实现对指定频段信号的选择性放大。
经过调整电容和电阻的数值,实验测量结果表明,该滤波器对指定频率范围内的信号有较好的放大效果,同时能够滤除其他频率的杂波。
第四部分的高频放大电路设计中,我们选用了常用的BJT三极管,通过合适的偏置和负反馈手段,实现了对输入高频信号的放大。
经过调试和测试,我们得到了满意的放大效果,实验结果与理论分析一致。
四、实验心得与收获通过本次实验,我对高频电路的原理和设计有了更深入的理解。
在实验过程中,我学会了使用示波器、频谱分析仪等测量工具,并且动手实际搭建了高频电路,熟悉了电路连接和元器件的选取。
通过调试和测试,我锻炼了解决问题的能力和动手实践的能力。
通过小组成员之间的合作,我体会到了团队的力量。
每个人都负责自己的部分,互相帮助,共同解决问题,使实验进展顺利。
高频医学实验报告高频医学实验报告近年来,高频医学在医疗领域中得到了广泛的应用和研究。
高频医学是指利用高频电磁辐射进行医学影像诊断和治疗的一种技术。
它通过产生高频电磁波,与人体组织相互作用,从而获得医学图像或者进行治疗。
本文将介绍高频医学实验的原理、方法和应用。
一、高频医学实验的原理高频医学实验的原理主要基于电磁波与人体组织的相互作用。
在高频医学实验中,常用的电磁波包括射频波、微波和激光等。
这些电磁波在与人体组织相互作用时,会发生反射、折射、吸收等现象。
通过对这些现象的观察和分析,可以获得人体组织的信息,从而进行诊断和治疗。
二、高频医学实验的方法高频医学实验的方法主要包括医学影像和治疗两个方面。
在医学影像方面,常用的方法有X射线、CT扫描、MRI等。
这些方法通过产生不同频率的电磁波,与人体组织相互作用,从而获得人体组织的结构和功能信息。
在治疗方面,高频医学实验常用的方法有电磁热疗、射频消融等。
这些方法通过产生高频电磁波,对病灶进行加热或者破坏,达到治疗的效果。
三、高频医学实验的应用高频医学实验在医疗领域中有着广泛的应用。
在医学影像方面,高频医学实验可以用于诊断各种疾病,如肿瘤、心脏病、脑血管病等。
通过对人体组织的成像,医生可以准确地判断病变的位置和性质,为病人提供更好的治疗方案。
在治疗方面,高频医学实验可以用于肿瘤治疗、疼痛管理等。
通过产生高频电磁波,对病灶进行加热或者破坏,可以达到治疗的效果,减轻病人的痛苦。
四、高频医学实验的优势和挑战高频医学实验相比传统的医学方法,具有一定的优势和挑战。
首先,高频医学实验可以提供更准确、更详细的医学信息,有助于医生做出更准确的诊断和治疗方案。
其次,高频医学实验在治疗方面具有独特的优势,可以实现非侵入性治疗,减轻病人的痛苦。
然而,高频医学实验也面临着一些挑战,如辐射对人体健康的影响、设备的成本和维护等。
综上所述,高频医学实验是一种应用广泛的医学技术,通过电磁波与人体组织的相互作用,获得医学信息进行诊断和治疗。
一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。
2. 熟悉高频电子线路中常用元件的性能和特点。
3. 培养实验操作技能,提高分析问题和解决问题的能力。
三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。
本实验主要研究高频放大器、振荡器和调制解调器等基本电路。
四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。
(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。
(3)测量放大器的输入输出阻抗,分析匹配网络的设计。
2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。
(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。
(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。
3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。
(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。
(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。
六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。
(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。
(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。
2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。
(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。
(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。
一、实验报告
1、实验目的
1.掌握小信号调谐放大器的基本工作原理。
2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。
3.了解高频小信号放大器动态范围的测试方法。
2、实验内容
1. 熟悉示波器的使用,用示波器观察校准信号。
2. 利用信号源输出正弦波、方波或三角波中的一种以及调频、调幅波的信号,并用示波器观察相应信号。
3. 熟悉高频实验箱各实验模块,并用示波器测量实验箱的输出信号。
3、实验仪器
1.高频实验箱
2.双踪示波器
3. 函数信号发生器
4、实验记录
1.正弦波,幅值5v,频率10KHZ
2.调幅波
3.调频波
4.实验箱高频正弦信号
5、实验数据分析
使用信号发生器产生波形时,示波器上显示的波形参数和信号发生器存在一些差距,但差距不大。
6、实验心得体会及其他
1. 示波器上波形显示模糊,此时应检查是否输入信号幅度过低。
2. 产生调幅波时应注意载波信号和调制信号频率的选取,两者最好相差十倍。
3. 产生调频波时同样需要注意频率的选取。
4. 实验箱中高频信号需要耐心调节。