第 20 课时
直角三角形与勾股定理
考点聚焦
考点一 直角三角形的概念、性质与判定 定义 有一个角是① 直角 的三角形叫做直角三角形
(1)直角三角形的两个锐角② 互余 (2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的 性质 ③ 一半 (3)在直角三角形中,斜边上的中线等于斜边的④ 一半 (1)两个内角⑤ 互余 的三角形是直角三角形 判定 (2)一边上的中线等于这条边的一半的三角形是直角三角形
CD= ������������2-������������2= 52-32=4,所以 BC=5+4=9. 当 BC 边上的高 AD 在△ABC 的外部时,如图②所示,同理 BD=5,CD=4,所以 BC=5-4=1.
考向一 直角三角形的性质
例1 [2019·株洲]如图20-5所示,在Rt△ABC
勾股定理 的逆定理 勾股数
如果三角形的三边长分别为a,b,c,且a2+b2=c2,那么这个三角形是 ⑦ 直角 三角形
满足关系式a2+b2=c2的3个正整数a,b,c称为勾股数
考点三 互逆命题及互逆定理 在两个命题中,如果第一个命题的⑧ 条件 是第二个命题的结论,而第一
互逆 个命题的⑨ 结论 又是第二个命题的条件,那么这两个命题叫做互逆命题.
正方形 ABCD 的面积为 ( B )
A. 3 C. 5
B.3 D.5
图20-1
3.[八上 P90 复习题第 1 题改编]下列四
组线段中,可以构成直角三角形的是
() A.4,5,6 C.2,3,4
B.15,17,8 D.1, 2,3
[答案] B [解析] ∵152+82=289,172=289, ∴152+82=172,∴15,17,8能组成直角 三角形,故选B.