解方程,得 m1=-2,m2=3(不符合题意,舍去) ∴m=-2
典型例题——二次函数与方程、不等式的关系
9. (2021•泸州)直线 l 过点(0,4)且与 y 轴垂直,若二次函数 y=(x﹣a)2+(x﹣2a)2+
(x﹣3a)2﹣2a2+a(其中 x 是自变量)的图象与直线 l 有两个不同的交点,且其对称轴
解方程,得 m1= 41-1 ,m2= - 41+1 (不符合题意,舍去)
4
4
∴m= 41-1 , 4
1 - m>3,即 m<-3,当 x=3 时,y=6.∴9来自6m+2m2-m=6,
解方程,得 m1=-1,m2= - 3 (均不符合题意,舍去). 2
综上所述,m=-2 或 m=
41-1
.
4
2 1<- m≤3,即-3≤m<-1,当 x=-m 时,y=6. ∴m2-m=6
bx+c=0有 两个不相等的 实数根;
②如果抛物线y=ax2+bx+c(a≠0)与x轴 只有一个 交点,则一元二次方
程ax2+bx+c=0有两个 相等 的实数根;
③如果抛物线y=ax2+bx+c(a≠0)与x轴没有交点,则一元二次方程ax2+bx
+c=0 没有 实数根.
知识点梳理——知识点4:二次函数与一元二次方程及不等式的关系
A(1,0),B(m,0)(-2<m<-1),下列结论①2b+c>0;②2a+c<0;
③a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等实数根,
A 则4ac-b2<4a;其中正确结论的个数是(
)
A.4
B.3
C.2
D.1
典型例题——二次函数与方程、不等式的关系