选址模型及应用(参考)汇总素材
- 格式:ppt
- 大小:1.57 MB
- 文档页数:73
城市轨道交通规划与设计轨道交通站点选址模型学院:公路学院专业:交通运输工程******学号:**********指导教师:***完成时间:2015年3月24日二〇一五年三月轨道交通站点选址模型1 研究背景随着世界经济的迅猛发展,城市化进程的不断加快,大量的人口向城市聚集,因此,不可避免的带来了城市交通拥堵不堪、汽车尾气污染、噪音污染、能源浪费等一系列难以解决的难题。
而轨道交通作为一种能够有效疏散客流量、运量大、方便快捷、乘坐舒适、安全准时、环境污染少等优点的交通运输体系,现已为国内外许多城市所认同,而且有利于解决交通拥堵、优化交通结构,所以发展城市轨道交通系统已经成为解决我国很多大中城市出行难问题的必经之路。
城市轨道交通作为大城市公共客运体系的骨干,既能解决我国大城市交通问题,又能促进大城市发展、引导大城市布局调整。
而发挥其客流集散功能首先是通过站点实现的。
绝大多数出行者是把到达轨道交通站点的方便性作为选择轨道交通出行的首要因素。
也就是说,轨道交通站点的布设方案将会对乘客的吸引范围、服务水平、系统的运营效率甚至城市的形态布局、路网结构等产生影响。
虽然我国城市轨道交通建设正处于蒸蒸日上的高潮时期,并且取得了一些成绩,掌握了一些技术水平。
但从总体上看还没有形成与轨道交通建设相配套的规划设计、科研开发、运营管理、人才培养等一系列体系。
具体来说,存在以下几点不足:1、对轨道交通线网规划重视程度不够、认识不足。
有些城市把线路规划放在线网规划之前,这忽略了轨道交通与城市布局、土地利用的适配关系,不利于处理轨道交通与其他方式间的关系。
2、对轨道交通线网规划理论体系、规划方法等缺乏深入研究。
通常轨道交通的线网规划主要采用了“四阶段法”,而此方法主要用于道路交通规划,因此并未形成一套适合自身的体系。
3、对轨道交通线网规划的一些研究并不到位,且大多数时候采用定性分析居多,而忽略了定量分析的重要性。
一些参数标定如:吸引区域、站点选址、站间距合理范围、线路比选等缺乏理论支撑,大多受人为因素影响较深。
选址问题数学模型摘要本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。
通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。
对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题针对问题1:0-1规划的穷举法模型。
该模型首先采用改善的Floyd-Warshall算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。
针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。
最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。
最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W 区,Q区,其各自管辖区域路线图如图8-1。
针对问题3:建立了双目标最优化模型。
首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。