matlab 代数方程求解
- 格式:ppt
- 大小:241.00 KB
- 文档页数:7
文章主题:探索数学求解软件Matlab在微分代数方程求解中的应用1. 引言微分代数方程(DAE)是描述物理系统中的相互依赖性和复杂性的数学模型。
解决这类方程对于现代科学和工程领域至关重要。
Matlab作为一种强大的数学计算软件,在微分代数方程求解中具有独特的优势。
本文将从简单到复杂的方式,探讨Matlab在DAE求解中的应用,并共享个人见解。
2. DAE的基本概念微分代数方程是描述包含未知函数及其导数或导数与未知函数的组合的方程。
通常的形式为F(x, x', t) = 0,其中x为未知函数,x'为其导数,t为自变量。
在实际应用中,这些方程往往伴随着初始条件和边界条件。
3. Matlab在解常微分方程(ODE)中的应用Matlab拥有丰富的ODE求解函数,如ode45、ode23等,可用于求解各种常微分方程。
这些函数可以自动选择适当的数值积分方法,并提供了方便的接口和参数设置,极大地简化了求解过程。
4. DAE求解方法的挑战与ODE相比,DAE的求解更具挑战性。
由于包含了代数变量和微分变量,常规的数值积分方法难以直接应用。
而且,方程的初始条件和边界条件也增加了求解的复杂性。
5. Matlab在DAE求解中的工具Matlab提供了一系列专门用于DAE求解的函数和工具包,如dare和ddesd等。
这些工具在模型建立、数值解法选择、收敛性分析等方面都具有独特的优势。
6. 案例分析:用Matlab求解电路模型的DAE以电路模型的DAE为例,通过Matlab可以快速建立系统的数学模型,并进行数值求解。
通过对参数的调节和模型的分析,可以更好地理解电路的动态特性,帮助优化设计和故障诊断。
7. 总结与展望通过本文的探讨,我们更深入地了解了Matlab在微分代数方程求解中的重要性和应用。
在未来,随着科学技术的发展,Matlab在此领域的功能和性能将得到进一步的提升,为工程科学领域提供更强大的支持。
个人观点:Matlab作为一种综合性的科学计算软件,对微分代数方程的求解起着至关重要的作用。
第10讲 线性方程组和代数方程数值求解 (第8章 MATLAB 方程数值求解)目的:一、 掌握矩阵的分解与线性方程组的解 二、 代数方程数值求解的方法。
—————————————————————————————————————— 一、掌握线性方程组和代数方程数值求解的方法。
(一)矩阵的分解 1、化简矩阵的计算工作量当方程组AX b =的系数矩阵为方阵且可逆时,方程组有唯一解。
1X A b −=,求1A −或者1A b −的方法是将()()1,~,rA E E A−或者()()1,~,rA b E A b −这两个方法都需要经过将矩阵A 化为单位矩阵E 这一过程,而将矩阵A 化为单位矩阵E 通常采用高斯消元法。
假设110a ≠利用11a 将红框内的元素化为0,在计算化简的过程中,蓝框内的元素也要一起同步计算。
重复这一过程,可以将A 从上往下化简为上三角矩阵:可以继续将这个矩阵从下往上化简为对角矩阵,在往上化简时,比如用nn b 化简红框元素,由于主对角线下元素是零,此时蓝框内的元素不会一起同步计算。
112233000000000000nn a b b b,(2)对比从上往下,和从下往上化简的过程可知,化简一般矩阵为单位矩阵的计算工作量远远大于将三角矩阵化简为单位矩阵的计算工作量。
2、方阵的LU 分解与方程组n A X b =的求解矩阵的LU 分解是指将矩阵A 分解为下三角矩阵L 与上三角矩阵U 的乘积,即A L U =⋅,方程组AX b =等同于LUX b =,解得11X U L b −−=,由于,L U 是三角矩阵,求逆时运算量比较小。
所以如果,L U 已知,用11X U L b −−=求解比用1X A b −=更加有效。
但如果,L U 未知,用11X U L b −−=求解方程组,还需要将A 分解为,L U ,如果求出的,L U 只用于求解一个方程组AX b =,显然并不比用1A −求解更有效。
第三讲 Matlab 求解代数方程组理论介绍:直接法+迭代法,简单介绍相关知识和应用条件及注意事项 软件求解:各种求解程序讨论如下表示含有n 个未知数、由n 个方程构成的线性方程组:11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1)一、直接法 1.高斯消元法:高斯消元法的基本原理: 在(1)中设110,a ≠将第一行乘以111,k a a -加到第(2,3,,),k k n = 得: (1)(1)(1)(1)11112211(2)(1)(2)22112(2)(2)(2)22n n n n n nn n n a x a x a x b a x a x b a x a x b ⎧+++=⎪++=⎪⎨⎪⎪++=⎩(2)其中(1)(1)1111,.k k aa b b ==再设(2)220,a ≠将(2)式的第二行乘以(2)2(2)22,(3,,)k a k n a -= 加到第k 行,如此进行下去最终得到:(1)(1)(1)(1)11112211(2)(1)(2)22112(1)(1)(1)1,111,1()()n n n n n n n n n n n n n n n n nn n n a x a x a x b a x a x b a x a x b a x b --------⎧+++=⎪++=⎪⎪⎨⎪+=⎪⎪=⎩(3) 从(3)式最后一个方程解出n x ,代入它上面的一个方程解出1n x -,并如此进行下去,即可依次将121,,,,n n x x x x - 全部解出,这样在()0(1,2,,)k kk a k n ≠= 的假设下,由上而下的消元由下而上的回代,构成了方程组的高斯消元法. 高斯消元法的矩阵表示:若记11(),(,,),(,,)T T ij n n n n A a x x x b b b ⨯=== ,则(1)式可表为.Ax b =于是高斯消元法的过程可用矩阵表示为:121121.n n M M M Ax M M M b --=其中:(1)21(1)111(1)1(1)11111n a a M a a ⎛⎫ ⎪ ⎪- ⎪=⎪ ⎪ ⎪ ⎪- ⎪⎝⎭ (2)32(2)222(2)2(2)221111n a a M a a ⎛⎫⎪⎪ ⎪-⎪=⎪ ⎪ ⎪⎪- ⎪⎝⎭高斯消元法的Matlab 程序: %顺序gauss 消去法,gauss 函数 function[A,u]=gauss(a,n) for k=1:n-1%消去过程 for i=k+1:n for j=k+1:n+1%如果a(k,k)=0,则不能削去 if abs(a(k,k))>1e-6 %计算第k 步的增广矩阵 a(i,j)=a(i,j)-a(i,k)/a(k,k)*a(k,j); else%a(k,k)=0,顺序gauss 消去失败 disp (‘顺序gauss 消去失败‘); pause; exit; end end end end%回代过程 x(n)=a(n,n+1)/a(n,n); for i=n-1:-1:1 s=0; for j=i+1:n s=s+a(i,j)*x(j); endx(i)=(a(i,n+1)-s)/a(i,i); end%返回gauss 消去后的增广矩阵 A=triu(a); %返回方程组的解 u=x ;练习和分析与思考: 用高斯消元法解方程组:12345124512345124512452471523814476192536x x x x x x x x x x x x x x x x x x x x x x ++++=⎧⎪+++=⎪⎪++++=⎨⎪+++=⎪+++=⎪⎩2.列主元素消元法在高斯消元法中进行到第k 步时,不论()k ik a 是否为0,都按列选择()||(,,)k ik a i k n = 中最大的一个,称为列主元,将列主元所在行与第k 行交换再按高斯消元法进行下去称为列主元素消元法。
matlab 微积分基本运算§1 解方程和方程组解1. 线性方程组求解对于方程 AX = B ,其中 A 是( m ×n )的矩阵有三种情形:1)当n=m 且A 非奇异时,此方程为“恰定”方程组。
2)当 n > m 时,此方程为“超定”方程组。
3)当n<m 时,此方程为“欠定”方程组。
下面就三种情形的求解分别作一说明:(1) MATLAB 解恰定方程 A* X = B 的方法1)采用求逆运算解方程x=inv(A)*B2)采用左除运算解方程x=A\B例1 “求逆”法和“左除”法求下列方程组的解⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x xx x x x x x x 在Matlab 编辑器中建立M 文件fanex1.m :A=[5 6 0 0 01 5 6 0 00 1 5 6 00 0 1 5 60 0 0 1 5];B=[1 0 0 0 1]';R_A=rank(A) %求秩X1=A\B %用"左除"法解恰定方程所得的解X2=inv(A)*B %用"求逆"法解恰定方程所得的解运行后结果如下R_A =5X1 =2.2662-1.72181.0571-0.59400.3188X2 =2.2662-1.72181.0571-0.59400.3188两种方法所求方程组的解相同。
(2)MATLAB 解超定方程AX=B 的方法对于方程 AX = B ,其中 A 是( m ×n )的矩阵, n > m ,如果A 列满秩,则此方程是没有精确解的。
然而在实际工程应用中,求得其最小二乘解也是有意义的。
基本解法有:1)采用求伪逆运算解方程x=pinv(A)*B说明:此解为最小二乘解x=inv(A ’*A)*A*B,这里pinv(A) =inv(A ’*A)*A.2)采用左除运算解方程x=A\B例2 “求伪逆”法和“左除”法求下列方程组的解⎪⎩⎪⎨⎧=+=+=+12214212212121x x x x x x命令如下:>> a=[1 2;2 4;2 2];>> b=[1,1,1]';>> xc=a\b %用左除运算解方程运行得结果:xc =0.40000.1000>> xd=pinv(a)*b %用求伪逆运算解方程运行得结果:xd =0.40000.1000>> a*xc-b %xc 是否满足方程ax=b运行得结果:ans =-0.40000.20000.0000可见xc 并不是方程的精确解。
在MATLAB中,你可以使用`syms`来定义符号变量,并使用`solve`函数来解代数方程组。
以下是一个基本的示例:
```matlab
导入符号计算工具箱
syms x y;
定义方程组
eq1 = x^2 + y^2 - 1; x^2 + y^2 = 1
eq2 = x*y - 2; x*y = 2
解方程组
sol = solve([eq1, eq2], [x, y], dict);
显示解
disp(sol);
```
在这个示例中,我们定义了一个包含两个变量的符号系统,然后定义了两个方程。
我们使用`solve`函数来找到满足这两个方程的`x`和`y`的值。
结果将以字典的形式返回。
注意,你的方程组可能包含更多的变量或者更复杂的方程,但是基本的步骤是相同的。
你只需要将你的方程放入`solve`函数的输入中,并指定你希望得到的变量。
一般的代数方程函数solve用于求解一般代数方程的根,假定S为符号表达式,命令solve (S)求解表达式等于0的根,也可以再输入一个参数指定未知数。
例:syms a b c xS=a*x^2+b*x+c;solve(S)ans=[ 1/2/a*(-b+(b^2-4*a*c)^(1/2))][ 1/2/a*(-b-(b^2-4*a*c)^(1/2))]b=solve(S,b)b =-(a*x^2+c)/x线性方程组线性方程组的求解问题可以表述为:给定两个矩阵A和B,求解满足方程AX=B或XA=B的矩阵X。
方程AX=B的解用X=A\B或X=inv (A)*B表示;方程XA=B 的解用X=B/A或X=B*inv (A)表示。
不过斜杠和反斜杠运算符计算更准确,占用内存更小,算得更快。
线性微分方程函数dsolve用于线性常微分方程(组)的符号求解。
在方程中用大写字母D表示一次微分,D2,D3分别表示二阶、三阶微分,符号D2y相当于y关于t的二阶导数。
函数dsolve的输出方式格式说明y=dsolve(‘Dyt=y0*y’) 一个方程,一个输出参数[u,v]=dsolve(‘Du=v’,’Dv=u’) 两个方程,两个输出参数S=dsolve(‘Df=g’,’Dg=h’,’Dh=-2*f ‘)方程组的解以S.fS.g S.h结构数组的形式输出例1 求 21u dtdu += 的通解.解 输入命令:dsolve('Du=1+u^2','t')结果:u = tg(t-c)例2 求微分方程的特解.ïîïíì===++15)0(',0)0(029422y y y dxdydx y d 解输入命令: y=dsolve('D2y+4*Dy+29*y=0','y(0)=0,Dy(0)=15','x')结果为: y =3e -2x sin (5x )例3 求微分方程组的通解.ïïïîïïïíì+-=+-=+-=z y x dtdz zy x dtdyz y x dt dx244354332解输入命令:[x,y,z]=dsolve('Dx=2*x-3*y+3*z','Dy=4*x-5*y+3*z','Dz=4*x-4*y+2*z', 't');x=simple(x) % 将x 化简y=simple(y)z=simple(z)结果为:x = (c 1-c 2+c 3+c 2e -3t -c 3e -3t )e 2ty = -c 1e -4t +c 2e -4t +c 2e -3t -c 3e -3t +(c 1-c 2+c 3)e 2t z = (-c 1e -4t +c 2e -4t +c 1-c 2+c 3)e 2t非线性微分方程注意:1、在解n个未知函数的方程组时,x0和x均为n维向量,m-文件中的待解方程组应以x的分量形式写成.2、使用Matlab软件求数值解时,高阶微分方程必须等价地变换成一阶微分方程组.例4 ïîïíì===---0)0(';2)0(0)1(1000222x x x dtdx x dt x d 解: 令y 1=x ,y 2=y 1’则微分方程变为一阶微分方程组:ïîïíì==--==0)0(,2)0()1(1000''211221221y y y y y y y y 1、建立m-文件vdp1000.m 如下:function dy=vdp1000(t,y)dy=zeros(2,1);dy(1)=y(2);dy(2)=1000*(1-y(1)^2)*y(2)-y(1);2、取t 0=0,t f =3000,输入命令:[T,Y]=ode15s('vdp1000',[0 3000],[2 0]); plot(T,Y(:,1),'-')3、结果如图50010001500200025003000-2.5-2-1.5-1-0.500.511.52例5 解微分方程组.ïïîïïíì===-=-==1)0(,1)0(,0)0(51.0'''321213312321y y y y y y y y y y y y 解1、建立m-文件rigid.m 如下:function dy=rigid(t,y)dy=zeros(3,1);dy(1)=y(2)*y(3);dy(2)=-y(1)*y(3);dy(3)=-0.51*y(1)*y(2);2、取t 0=0,t f =12,输入命令:[T,Y]=ode45('rigid',[0 12],[0 1 1]);plot(T,Y(:,1),'-',T,Y(:,2),'*',T,Y(:,3),'+')3、结果如图24681012-1-0.8-0.6-0.4-0.200.20.40.60.81图中,y 1的图形为实线,y 2的图形为“*”线,y 3的图形为“+”线.例6 Lorenz 模型的状态ïîïíì-+-=+-=+-=)()()()()()()()()()()()(322133223221t x t x t x t x t xt x t x t xt x t x t x t x r s s b &&& 若令3/8,28,10===b r s 且初值为e ===)0(,0)0()0(321x x x ,e 为一个小常数,假设1010-=e。
线性代数方程组数值解法及MATLAB 实现综述廖淑芳 20122090 数计学院 12计算机科学与技术1班(职教本科) 一、分析课题随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。
其数值计算中线性代数方程的求解问题就广泛应用于各种工程技术方面。
因此在各种数据处理中,线性代数方程组的求解是最常见的问题之一。
关于线性代数方程组的数值解法一般分为两大类:直接法和迭代法。
直接法就是经过有限步算术运算,可求的线性方程组精确解的方法(若计算过程没有舍入误差),但实际犹如舍入误差的存在和影响,这种方法也只能求得近似解,这类方法是解低阶稠密矩阵方程组级某些大型稀疏矩阵方程组的有效方法。
直接法包括高斯消元法,矩阵三角分解法、追赶法、平方根法。
迭代法就是利用某种极限过程去逐步逼近线性方程组精确解的方法。
迭代法具有需要计算机的存储单元少,程序设计简单,原始系数矩阵在计算过程始终不变等优点,但存在收敛性级收敛速度问题。
迭代法是解大型稀疏矩阵方程组(尤其是微分方程离散后得到的大型方程组)的重要方法。
迭代法包括Jacobi 法SOR 法、SSOR 法等多种方法。
二、研究课题-线性代数方程组数值解法 一、 直接法 1、 Gauss 消元法通过一系列的加减消元运算,也就是代数中的加减消去法,以使A 对角线以下的元素化为零,将方程组化为上三角矩阵;然后,再逐一回代求解出x 向量。
1.1消元过程1. 高斯消元法(加减消元):首先将A 化为上三角阵,再回代求解。
11121121222212n n n n nn n a a a b a a a b a a a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭L L M M O M M L (1)(1)(1)(1)(1)11121311(2)(2)(2)(2)222322(3)(3)(3)3333()()000000nn n n n nn n a a a a b a a a b a a b a b ⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭L L L M M M OM M L 步骤如下:第一步:1111,2,,i a i i n a -⨯+=L 第行第行 11121121222212n nn n nn n a a a b a a a b a a a b ⎛⎫⎪ ⎪ ⎪⎪⎝⎭L L M M O M M L111211(2)(2)(2)2222(2)(2)(2)200n nn nn n a a a b a a b a a b ⎛⎫⎪⎪ ⎪ ⎪⎝⎭LL M M O M M L第二步:(2)2(2)222,3,,i a i i n a -⨯+=L 第行第行111211(2)(2)(2)2222(2)(2)(2)200nnn nn n a a a b a a b a a b ⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭L L M M O M M L11121311(2)(2)(2)(2)222322(3)(3)(3)3333(3)(3)(3)300000n n nn nn n a a a a b a a a b a a b a a b ⎛⎫⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭LL LM M M O M M L 类似的做下去,我们有:第k 步:()()k ,1,,k ikk kka i i k n a -⨯+=+L 第行第行。
一、背景介绍在数学和工程学中,我们经常会面对线性代数方程组的求解问题。
其中,当我们遇到方程组的解空间非常庞大或是无穷多解时,我们就需要找到方程的基础解系来描述解空间的性质。
在实际应用中,Matlab 是一个非常强大的数学计算软件,它提供了丰富的工具和函数来进行线性代数方程组的求解和分析。
二、什么是基础解系基础解系是指线性代数方程组Ax=0的解空间中的一组基。
它的性质决定了解空间的维数和特征,对于理解和求解方程组的特解和通解非常重要。
在Matlab中,我们可以通过一系列的操作和函数来求解方程组的基础解系。
三、如何在Matlab中计算基础解系1. 定义矩阵A我们需要在Matlab中定义一个矩阵A,表示线性代数方程组Ax=0中的系数矩阵。
2. 调用null函数接下来,我们可以使用Matlab中的null函数来求解方程组的基础解系。
null函数可以计算出矩阵A的零空间,也就是方程组的解空间。
3. 判断解的维数通过null函数求解出的基础解系矩阵,我们可以判断解空间的维数。
在Matlab中,我们可以通过rank函数来计算矩阵的秩,从而确定解空间的维数。
4. 整理基础解系我们可以对求解出的基础解系矩阵进行整理和分析,得到方程组解空间的特征和性质。
四、实例分析让我们通过一个简单的实例来演示在Matlab中计算基础解系的过程。
假设我们有一个3x3的系数矩阵A:A = [1 2 3; 4 5 6; 7 8 9]我们可以通过Matlab中的null函数来求解方程组Ax=0的基础解系:null(A)通过该函数我们可以得到一个基础解系矩阵B:B = [1 -2 1; 0 0 0]通过观察B矩阵,我们可以判断方程组Ax=0的解空间的维数为1。
这意味着方程组存在一个基础解系,解空间由一维向量张成。
五、总结在Matlab中计算线性代数方程组Ax=0的基础解系是一个非常重要且常见的问题。
通过使用Matlab提供的null函数、rank函数等工具,我们可以轻松地求解出方程组的解空间特征和性质。
实验五 数值微积分与方程数值求解一、实验目的1. 掌握求数值导数和数值积分的方法。
2. 掌握代数方程数值求解的方法。
3. 掌握常微分方程数值求解的方法。
二、实验内容要求:命令手工 ( )输入1. 求函数在指定点的数值导数。
232()123,1,2,3026x x x f x x x x x==2. 用数值方法求定积分。
(1) 210I π=⎰的近似值。
(2) 2220ln(1)1x I dt xπ+=+⎰3. 分别用三种不同的数值方法解线性方程组。
6525494133422139211x y z u x y z u x y z u x y u +-+=-⎧⎪-+-=⎪⎨++-=⎪⎪-+=⎩4. 求非齐次线性方程组的通解。
1234123412342736352249472x x x x x x x x x x x x +++=⎧⎪+++=⎨⎪+++=⎩解:先建立M 函数文件,然后命令窗口中写命令。
121/119/112/115/111/1110/11100010X k k --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中12,k k 为任意常数。
5. 求代数方程的数值解。
(1) 3x +sin x -e x =0在x 0=1.5附近的根。
(2) 在给定的初值x 0=1,y 0=1,z 0=1下,求方程组的数值解。
23sin ln 70321050y x y z x z x y z ⎧++-=⎪+-+=⎨⎪++-=⎩ans =1289/6826. 求函数在指定区间的极值。
(1) 3cos log ()xx x x x f x e ++=在(0,1)内的最小值。
(2) 33212112122(,)2410f x x x x x x x x =+-+在[0,0]附近的最小值点和最小值。
(以下选作题,是微分方程的数值解)7. 求微分方程的数值解。
x 在[1.0e-9,20]2250(0)0'(0)0xd y dy y dx dx y y ⎧-+=⎪⎪⎪=⎨⎪=⎪⎪⎩解:M 文件:运行结果:8. 求微分方程组的数值解,并绘制解的曲线。
Matlab方程的求解Matlab是一个广泛使用的数学编程环境,它提供了许多强大的数值计算功能,包括求解各种数学方程。
以下是一些关于如何在Matlab中求解方程的基本步骤。
步骤1:启动Matlab首先,你需要打开Matlab。
你可以在Windows、macOS或Linux等操作系统上安装和使用Matlab。
步骤2:创建方程在Matlab中求解方程的第一步是创建方程。
例如,如果你想求解以下线性方程:2x + 3y = 104x - y = 14你可以在Matlab中输入这些方程如下:eq1 = 2x + 3y == 10;eq2 = 4*x - y == 14;步骤3:使用solve函数求解方程接下来,你可以使用Matlab中的solve函数来求解这些方程。
solve函数可以找到使方程为零的变量值。
你可以输入以下命令来求解上述方程:sol = solve([eq1, eq2], [x, y]);在这个例子中,sol是一个包含解的对象,x和y是未知数,eq1和eq2是包含已知数的方程列表。
这个命令会找到满足这两个方程的x和y的值。
步骤4:显示解你可以使用以下命令来查看解:disp(sol)这将显示包含解的对象sol的属性。
例如,它可能会显示以下内容:x = 1.0000 + 2.0000i y = 3.0000 + 2.0000i这表明x的值为1+2i,y的值为3+2i。
如果你需要的是实数解,可以通过以下方法获得:x_real = real(sol.x); y_real = real(sol.y);disp([x_real, y_real])以上就是在Matlab中求解方程的基本步骤。
需要注意的是,对于一些更复杂的方程或者非线性方程,可能需要使用其他的Matlab函数或者额外的工具箱来求解。
在处理复杂的数学问题时,Matlab的文档和帮助功能可以提供更多的信息和帮助。