参数估计习题课
- 格式:doc
- 大小:310.00 KB
- 文档页数:12
参数估计练习题一、选择题1. 在统计学中,参数估计通常指的是:A. 估计总体参数的值B. 估计样本的均值C. 估计样本的方差D. 估计样本的中位数2. 下列哪项不是点估计的特点?A. 唯一性B. 精确性C. 随机性D. 简洁性3. 区间估计与点估计的主要区别在于:A. 区间估计提供了一个范围B. 点估计提供了一个范围C. 点估计比区间估计更精确D. 区间估计比点估计更精确4. 以下哪个分布的参数估计通常使用最大似然估计法?A. 正态分布B. 均匀分布C. 二项分布D. 泊松分布5. 以下哪个统计量是正态分布的参数估计?A. 方差B. 均值C. 标准差D. 所有上述选项二、填空题6. 点估计的误差可以通过________来衡量。
7. 区间估计的置信水平为95%,表示我们有95%的把握认为总体参数位于________内。
8. 样本均值的抽样分布服从________分布,当样本量足够大时。
9. 样本方差的抽样分布服从________分布,当样本量足够大时。
10. 正态分布的参数估计中,均值μ的估计量是________。
三、简答题11. 简述点估计与区间估计的区别。
12. 描述最大似然估计法的基本原理。
13. 解释为什么在样本量较大时,样本均值的分布会接近正态分布。
14. 说明在进行区间估计时,置信水平和置信区间宽度之间的关系。
15. 描述如何使用样本数据来估计总体比例。
四、计算题16. 假设有一个样本数据集{2, 4, 6, 8, 10},请计算样本均值和样本方差。
17. 假设你有一个正态分布的样本,样本均值为50,样本标准差为10,样本量为100。
请计算总体均值的95%置信区间。
18. 假设你有一个二项分布的样本,样本量为200,样本比例为0.4。
请使用最大似然估计法估计总体比例。
19. 假设你有一个泊松分布的样本,样本量为100,总观察值为200。
请估计泊松分布的参数λ。
20. 假设你有一个均匀分布的样本,样本最小值为1,样本最大值为10。
1.某加油站64位顾客所组成的样本资料显示,每个人平均加油量是13.6加仑。
若总体标准差是3.0加仑,则总体每个人平均加油量95.45%置信区间估计值是多少?2.在由一所大学的90名学生所组成的样本中,显示有27名学生会以及格与不及格作为选课的依据。
(1)以及格与不及格作为选课依据的同学占全体同学比率的点估计为多少?(2)以及格与不及格作为选课依据的同学占全体同学比率的90%置信区间估计值为多少?3.在500个抽样产品中,有95%的一级品。
试测定抽样平均误差,并用0.9545的概率估计全部产品非一级品率的范围。
4.某农场从种植的2000亩水稻中平均亩产量为380公斤,亩产量的 (1)计算平均亩产量的平 (2)试以99%的置信概率 (3)如果要求抽样极限误25公斤,问概率为0.99时,应抽5.某大型企业进行工资调查,从其资料如下表所示。
试以95%的可 (1)全厂平均工资范围; (2)全厂职工中工资在 ━━━━━━━━━━┯━ 工资水平(元) │ ──────────┼─ 300以下 │ 300-400 │ 400-500 │ 500-600 │ 600以上 │ ━━━━━━━━━━┷━水稻中随机抽取200亩进行产量调查,测得产量的标准差为25公斤,要求:量的平均抽样误差信概率推断全场水稻总产量的所在范围极限误差不超过5公斤,亩产量的标准差仍为,应抽取多少亩进行调查?查,从全厂职工中随机抽取100名职工,得5%的可靠性估计:范围;资在400元以上人数比重的区间范围.━┯━━━━━━━━━━━━━━━│ 职工人数(人)─┼───────────────│ 15│ 20│ 50│ 10│ 5━┷━━━━━━━━━━━━━。
统计学复习笔记第七章 参数估计一、 思考题1. 解释估计量和估计值在参数估计中,用来估计总体参数的统计量称为估计量。
估计量也是随机变量。
如样本均值,样本比例、样本方差等。
根据一个具体的样本计算出来的估计量的数值称为估计值。
2. 简述评价估计量好坏的标准(1)无偏性:是指估计量抽样分布的期望值等于被估计的总体参数。
(2)有效性:是指估计量的方差尽可能小。
对同一总体参数的两个无偏估计量,有更小方差的估计量更有效。
(3)一致性:是指随着样本量的增大,点估计量的值越来越接近被估总体的参数。
3. 怎样理解置信区间在区间估计中,由样本统计量所构造的总体参数的估计区间称为置信区间。
置信区间的论述是由区间和置信度两部分组成。
有些新闻媒体报道一些调查结果只给出百分比和误差(即置信区间),并不说明置信度,也不给出被调查的人数,这是不负责的表现。
因为降低置信度可以使置信区间变窄(显得“精确”),有误导读者之嫌。
在公布调查结果时给出被调查人数是负责任的表现。
这样则可以由此推算出置信度(由后面给出的公式),反之亦然。
4. 解释95%的置信区间的含义是什么置信区间95%仅仅描述用来构造该区间上下界的统计量(是随机的)覆盖总体参数的概率。
也就是说,无穷次重复抽样所得到的所有区间中有95%(的区间)包含参数。
不要认为由某一样本数据得到总体参数的某一个95%置信区间,就以为该区间以0.95的概率覆盖总体参数。
5. 简述样本量与置信水平、总体方差、估计误差的关系。
1. 估计总体均值时样本量n 为2. 样本量n 与置信水平1-α、总体方差、估计误差E 之间的关系为 其中: 2222α2222)(E z n σα=n z E σα2=▪ 与置信水平成正比,在其他条件不变的情况下,置信水平越大,所需要的样本量越大;▪ 与总体方差成正比,总体的差异越大,所要求的样本量也越大;▪ 与与总体方差成正比,样本量与估计误差的平方成反比,即可以接受的估计误差的平方越大,所需的样本量越小。
第21讲 参数估计习题课教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。
教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。
教学难点:矩估计,最大似然估计,正态总体参数的区间估计。
教学时数:2学时。
教学过程:一、知识要点回顾1. 矩估计 )用各阶样本原点矩n ki i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =。
若有参数2g(,(),,)k EX E X E X θ=()(),则参数θ的矩估计为n n n 2i=1i=1i=1111ˆ(,,,)ki i i X X X n n n θ=∑∑∑。
2. 最大似然估计似然函数1()(;)ni i L f x θθ==∏,取对数ln[()]L θ,从ln()d d θθ=0中解得θ的最大似然估计θˆ。
3. 无偏性,有效性当θθ=ˆE 时,称θˆ为θ的无偏估计。
当21ˆD ˆD θθ<时,称估计量1ˆθ比2ˆθ有效。
二 、典型例题解析1.设,0()0, 0x e x f x x θθ-⎧>=⎨≤⎩,求θ的矩估计。
解 ,0dx xe EX x ⎰+∞-=θθ设du dx u x x u θθθ1,1,===则000111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞⎡⎤⎡⎤==-+=+-⎣⎦⎢⎥⎣⎦⎰⎰=θ1)故1EXθ=,所以x 1ˆ=θ。
2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。
解 由均匀分布的数学期望和方差知1()()2E X a b =+ (1)21()()12D X b a =- (2)由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=,整理得2)(31a EX DX -=,解得()()a E X b E X ⎧=-⎪⎨=⎪⎩ 故得b a ,的矩估计为ˆˆa x b x ⎧=-⎪⎨=+⎪⎩其中∑=-=ni i x x n 122)(1ˆσ。
第二章 参数估计课后习题参考答案2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。
解:()()()p Np X D Np X E -==1,令()⎪⎩⎪⎨⎧-==p Np S Np X 12解上述关于N 、p 的方程得:2.2 对容量为n 的子样,对密度函数22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩其中参数α的矩法估计。
解:122()()a E x xx dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n=+++为n 个样本的观察值。
2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。
⎪⎪⎩⎪⎪⎨⎧-=-==X S p S X X p X N 2221ˆˆˆ解:()()()∑∑====-====ni i ni i S X X n X D X X n X E 12210255.014025.23212.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1,<<=βββx f 的总体,试用矩法估计总体均值、总体方差及参数β。
解:()()()()4.22ˆ2,1,407.012.1101221========-===⎰⎰∑∑==X Xdx xdx x xf X E x f XX n S X n X ni i ni i ββββββββ参数:总体方差:总体均值:2.5 设n X X X ,,,21 为()1N ,μ的一个字样,求参数μ的MLE ;又若总体为()21N σ,的MLE 。
统计学习题(抽样分布、参数估计)练习题第1章绪论(略)第2章统计数据的描述2.1某家商场为了解前来该商场购物的顾客的学历分布情况,随机抽取了100名顾客。
其学历表示为:1.初中;2.高中/中专;3.大专;4.本科及以上学历。
调查结果如下:4222434414 2244432422 3121441424 2332134344 3312424324 2322212244 2123333334 2343313232 4313434214 2242334121(1)制作一张频数分布表。
(2)绘制一张条形图,反映学历分布。
2.2为了解某电信客户对该电信公司的服务的满意度情况,某调查公司分别对两个地区的电信用户在以下五个方面对受访用户的满意情况进行了问卷调查得到的数据如下(表中数据为平均满意度打分,从1分到10分满意度依次递增):地区企业形象客户期望质量感知价值感知客户总体满意度A 8.269504 7.51773 9.2624117.9148948.411348B 7.447368 8.3684218.9736848.1052637.394737试用条形图反映将两地区的满意度情况。
2.3下面是一个班50个学生的经济学考试成绩:88569179699088718279 988534744810075956092 83646569996445766369 6874948167818453912484628183698429667594(1)对这50名学生的经济学考试成绩进行分组并将其整理成频数分布表,绘制直方图。
(2)用茎叶图将原始数据表现出来。
2.4如下数据反映的是某大学近视度数的情况,共120名受访同学,男女同学各60名。
男149 161761821310 80 951081414 0 144145151515161681882121 0 21211052121211116817521 0 356462121212121312121 0 2121212121375375383838 8 45566065120 30120 7521女120 3334537437538700 90700 60141516212121211517170 0 0 0 0 0 0 0 5 521 0 1752121214043451217517 8 181818518519195196202021 0 21212121212121333335 0 3636363840474865055(1)按近视度数分别对男女学生进行分组。
第8章参数估计1.什么是统计推断?统计推断的两类问题是什么?答:统计推断就是根据样本的信息,对总体的特征作出推断,它包括参数估计和假设检验,其中参数估计可分为点估计和区间估计两大类。
2.什么是点估计?什么是区间估计?两者各有什么优缺点?答:点估计是根据样本数据计算的一个估计值,其优点在于它通过样本资料就能够明确地估计总体参数。
不足之处是,一般点估计值不会等于总体参数的真值,并且无法给出它与真值的误差以及估计可靠性程度。
区间估计是通过样本来估计总体参数可能位于的区间。
优点是指出了未知参数所在区间的上下限,同时指出该区间包含真值的可靠度(置信度),弥补了点估计的不足。
3.评判一个估计量好坏的标准有哪些?答:评判一个估计量的好坏有以下三个标准:(1)无偏性如果样本统计量的期望值等于该统计量所估计的总体参数,则这个估计量叫做无偏估计量。
这是一个好的估计量的一个重要条件。
(2)一致性当样本容量n增大时,如果估计量越来越接近总体参数的真值时,就称这个估计量为一致估计量。
估计量的一致性是从极限意义上讲的,它适用于大样本的情况。
(3)有效性有效性是指估计量的离散程度。
如果两个估计量都是无偏的,其中方差较小的(对给定的样本容量而言)就可认为相对来说是更有效的。
4.确定样本容量大小的因素有哪些? 答:决定样本容量大小的因素有以下三点: (1)受总体方差σ2数值大小的影响总体方差大,抽样误差大,则应多抽一些样本容量,反之,则可少抽一些。
当然,总体方差为0时,那么只需抽出其中一个就能代表总体。
但实际工作中,我们往往不知道总体方差,因而必须做试验性调查,或以过去的历史资料做参考。
(2)可靠性程度的高低要求可靠性越高,所必需的样本容量就越大。
也就是说,为获得所需精度而指定的概率越大,所需要的样本容量就越大。
(3)允许误差的大小这主要由研究的目的而定。
若要求推断比较精确,允许误差应该低一些,随之抽取的样本容量也要求多一些;反之,若允许误差可以大一些,样本容量也可以少一些。
第七章 参数估计1. 解 )1()(,)(),,(~p np X D np X E p n B X -==∴⎩⎨⎧=-=⎩⎨⎧==22)1(,)()(B p np X np B X D X X E 即由解之,得n,p 的矩估计量为XB p B X X n 2221,-=⎥⎥⎦⎤⎢⎢⎣⎡-=∧∧注:“[ ]”表示取整。
2. 解 因为:220)(22)(1)1()(1)()(λλθλλθλθλθλ++=⋅=+=⋅==⎰⎰⎰∞+--∞+--∞+∞-dx e x x E dx e x dx x xf x E x x所以,由矩估计法得方程组: ⎪⎩⎪⎨⎧++=+=2221)1(1λλθλθA X 解得λθ,的矩估计量为 ⎪⎩⎪⎨⎧=-=∧∧221B B X λθ3. 解 (1) 由于 222)]([)()(X E X E X D -==σ令 ∑===n i iX n A X E 12221)( 又已知 μ=)(X E故 2σ的矩估计值为 ∑∑==∧-=-=-=n i i n i i X n X n A 12122222)(11μμμσ(2) μ已知时,似然函数为:⎭⎬⎫⎩⎨⎧--⋅=∑=-ni in x L 122222)(21exp )2()(μσπσσ因此∑=---=ni ixn L 12222)(21)2ln(2)(ln μσπσσ令 0)(2112)(ln 124222=-+-=∑=ni ixn L d dμσσσσ解得2σ的极大似然估计为: ∑=∧-=n i i X n 122)(1μσ4. 解 矩估计:λλ=∴=)()(X E X E 令X X E =)(故X =∧λ为所求矩估计量。
注意到 λ=)(X D 若令 2)(B X D =, 可得: 2B =∧λ似然估计:因为λλ-==e k k X P k!)(所以,λ的似然函数为∏=-=ni i xe x L i1!)(λλλ取对数λλλn x x L ni i ni i --=∑∑==11)!ln(ln )(ln令ln 1=-=∑=n xd d ni iλλλ, 解得∑=∧=ni ix n 11λ故,λ极大似然估计量为 X =∧λ5. 解 矩估计:21)1()()(11++=+==⎰⎰+∞+∞-θθθθdx x dx x xf X E令 X X E =)(, 即 X=++21θθ; 解之X X --=∧112θ 似然估计: 似然函数为⎪⎩⎪⎨⎧<<+=⎪⎩⎪⎨⎧<<+=∏∏==其它其它,010,)()1(,010,)1()(11i ni i ni n i i x x x x L θθθθθ 只需求10,)()1()(11<<+=∏=i ni i nx x L θθθ的驻点即可.又∑=++=ni ix n L 11ln )1ln()(ln θθθ令∑=++=ni ix n L d d 11ln 1)(ln θθθ; 解之∑=∧--=ni ixn1ln 1θ6. 解:似然函数为∑===---=-=---∏∏ni i i xn i i n ni x i ex ex L 12222)(l n 21112212)(l n 12)()2(21),(μσσμπσσπσμ取对数得 ∑----===∏n i ini i x x n L 122122)(l n 21)l n ()2l n (2),(ln μσπσσμ由 0)(l n 2112),(ln 0)1()(ln 221),(ln 124222122=∑-+⋅-=∂∂=∑-⋅--=∂∂==n i i n i i x n L x L μσσσμσμσσμμ联立解之,2,σμ的极大似然估计值为 ∑∑-=∑===∧=∧n i n i i in i i x n x n x n 12121)ln 1(ln 1,ln 1σμ7. 解:似然函数为 n i x x e ax L i i n i x a i ai ,,2,1;0,00,)(11 =⎪⎩⎪⎨⎧≤>=∏=--λλλ只需求∑⋅===--==--∏∏ni ai ai x a n i n n ni x a i ex a eax L 111111)()(λλλλλ的最值点。
第7章参数估计1.随机地取8只活塞环,测得它们的直径为(以mm计)试求总体均值及方差的矩估计值,并求样本方差.解:由已知得总体均值及总体方差的矩估计值分别为样本方差.2.设为总体的一个样本,为一相应的样本值,求下列各总体的概率密度或分布律中的未知参数的矩估计量和矩估计值:(1),其中c>0为已知,为未知参数;(2),其中为未知参数;(3)其中为未知参数.解:(1)由已知得令,即,则的矩估计量为,矩估计值为.(2)由已知得令,即,则的矩估计量和矩估计值分别为(3)因,令,即,则的矩估计量和矩估计值分别为3.求上题中各未知参数的最大似然估计值和估计量.解:(1)由题意知,似然函数为对似然函数两边同时取对数得令得的最大似然估计值为的最大似然估计量为(2)由题意知,似然函数为对似然函数两边同时取对数得令得的最大似然估计值为得的最大似然估计量为(3)由已知得似然函数为对似然函数两边同时取对数得令得p的最大似然估计值为,其中p的最大似然估计量为4.(1)设总体X具有分布律其中为未知参数,已知取得了样本值;试求的矩估计值和最大似然估计值.(2)设是来自参数为的泊松分布总体的一个样本,试求的最大似然估计量及矩估计量.(3)设随机变量X服从以r,p为参数的负二项分布,其分布律为其中r已知,p未知;设有样本值,试求p的最大似然估计值.解:(1)①由已知得令,即,解得,故得的矩估计值为.今,故的矩估计值为.②由给定的样本值,得似然函数为对似然函数两边同时取对数得令,得的最大似然估计值为.(2)①设是相应于样本的样本值,则似然函数为对似然函数两边取对数得令,得的最大似然估计值为,最大似然估计量为.②因,故的矩估计量也是(3)由题意知似然函数为对似然函数两边同时取对数得,C为常数令,得p的最大似然估计值为.5.设某种电子器件的寿命(以h计)T服从双参数的指数分布,其概率密度为其中c为未知参数,自一批这种器件中随机地取n件进行寿命试验.设它们的失效时间依次为.(1)求与C的最大似然估计值.(2)求与C的矩估计量.解:(1)由题意知似然函数为由题设,故相当于,因而上式相当于。
第6章 参数估计一、点估计的概念与无偏性1.设x 1,x 2,x 3是取自某总体的容量为3的样本,试证下列统计量都是该总体均值μ的无偏估计,在方差存在时指出哪一个估计的有效性最差?(1)1123111=236x x x μ∧++(2)2123111=333x x x μ∧++(3)3123112=663x x x μ∧++解:先求三个统计量的数学期望,1123111111()=()()()236222E E x E x E x μμμμμ∧++=++=2123111111()=()()()333333E E x E x E x μμμμμ∧++=++=3123112112()=()()()663663E E x E x E x μμμμμ∧++=++=这说明它们都是总体均值μ的无偏估计,下面求它们的方差,不妨设总体的方差为σ2,则222211231111117()=()()()4936493618Var Var x Var x Var x μσσσσ∧++=++=222221231111111()=()()()9999993Var Var x Var x Var x μσσσσ∧++=++=222231231141141()=()()()36369363692Var Var x Var x Var x μσσσσ∧++=++=不难看出,从而的有效性最差.123()<()<()Var Var Var μμμ∧∧∧3μ∧由此可推测。
当用样本的凸组合估计总体均值时,样本均值是最有效的。
1ni ii a x =∑x 2.x 1,x 2,…,x n 是来自Exp(λ)的样本,已知为1/λ的无偏估计,试说明1/是x x 否为λ的无偏估计.解:因为x 1,x 2,…,x n 服从Exp(λ),所以y =~Ga (n ,λ),相应的密度函数1ni i x =∑为1()exp()y 0()n n p y n y y n λλλ-=->Γ,,,于是20(1/)e y ()n n y E y yn λλ∞--=Γ⎰d所以,.即不是λ的无偏估计,但它是λ的渐近无偏估计,经修偏,是λ的无偏估计.3.设是参数θ的无偏估计,且有,试证不是θ2的无偏估计.证:由方差的定义可知,由于是参数θ的无偏估计,即.因而所以不是θ2的无偏估计.4.设总体,是来自该总体的一个样本.试确定常数c 使为σ2的无偏估计.解:由于总体,这给出,于是若要使为σ2的无偏估计,即,这给出5.设总体为,为样本,证明样本均值和样本中程都是θ的无偏估计,并比较它们的有效性.解:由总体,得,,因而,这首先说明样本均值是θ的无偏估计,且为求样本中程的均值与方差,注意到,令则由于,故,从而这就证明了样本中程是θ的无偏估计.又注意到(参见第五章5.3节习题33)所以从而于是在n>2时,,这说明作为0的无偏估计,在n>2时,样本中程比样本均值有效.6.设x 1,x2,x3服从均匀分布,试证及都是θ的无偏估计量,哪个更有效?证:由可知x(1),x(3)的密度函数分别为从而故,由知两者均为θ的无偏估计.又可算得,从而故,即更有效.事实上,这里x(3)是充分统计量,这个结果与充分性原则是一致的.7.设从均值为μ,方差为的总体中,分别抽取容量为n1和n2的两独立样本,和分别是这两个样本的均值.试证,对于任意常数a,b(a+b=1),都是μ的无偏估计,并确定常数a,b使Var(Y)达到最小.证:由于和是容量分别为n1和n2的两独立样本的均值,故,,,因而这证明了是μ的无偏估计.又由a+b=1知,,从而由求导知,当时,Var(Y)达到最小,此时这个结果表明,来自同一总体的两个容量为n1和n2的样本的合样本(样本量为n1+n2)的均值是线性无偏估计类中方差最小的.8.设总体X的均值为μ,方差为σ2,是来自该总体的一个样本,为μ的任一凸线性无偏估计量.证明:与T的相关系数为.证:由于为μ的线性无偏估计量,故,其中,于是而,故有,从而9.设有k台仪器,已知用第i台仪器测量时,测定值总体的标准差为σi(i=1,2,…,k).用这些仪器独立地对某一物理量θ各观察一次,分别得到设仪器都没有系统误差.问应取何值,方能使成为θ的无偏估计,且方差达到最小?解:若要使为θ的无偏估计,即则必须有,此时,。
第六章参数估计6.1 点估计问题概述习题1总体X在区间[0,θ]上均匀分布,X1,X2,⋯,Xn是它的样本,则下列估计量θ是θ的一致估计是().(A)θ=Xn;(B)θ=2Xn;(C)θ=X¯=1n∑i=1nXi;(D)θ=Max{X1,X2,⋯,Xn}。
解答:应选(D).由一致估计的定义,对任意ɛ>0,P(∣Max{X1,X2,⋯,Xn}—θ∣〈ɛ)=P(-ɛ+θ〈Max{X1,X2,⋯,Xn}<ɛ+θ)=F(ɛ+θ)—F(-ɛ+θ).因为FX(x)={0,x〈0xθ,0≤x≤θ1,x〉θ,及F(x)=FMax{X1,X2,⋯,Xn}(x)=FX1(x)FX2(x)⋯FXn(x),所以F(ɛ+θ)=1,F(-ɛ+θ)=P(Max{X1,X2,⋯,Xn}〈—ɛ+θ)=(1—xθ)n,故P(∣Max{X1,X2,⋯,Xn}-θ∣〈ɛ)=1-(1-xθ)n→1(n→+∞).习题2设σ是总体X的标准差,X1,X2,⋯,Xn是它的样本,则样本标准差S是总体标准差σ的()。
(A)矩估计量;(B)最大似然估计量;(C)无偏估计量; (D)相合估计量。
解答:应选(D).因为,总体标准差σ的矩估计量和最大似然估计量都是未修正的样本标准差;样本方差是总体方差的无偏估计,但是样本标准差不是总体标准差的无偏估计.可见,样本标准差S是总体标准差σ的相合估计量.习题3设总体X的数学期望为μ,X1,X2,⋯,Xn是来自X的样本,a1,a2,⋯,an是任意常数,验证(∑i=1naiXi)/∑i=1nai(∑i=1nai≠0)是μ的无偏估计量。
解答:E(X)=μ,E(∑i=1naiXi∑i=1nai)=1∑i=1nai⋅∑i=1naiE(Xi) (E(Xi)=E(X)=μ)=μ∑i=1nai∑i=1n=μ,综上所证,可知∑i=1naiXi∑i=1nai是μ的无偏估计量。
习题4设θ是参数θ的无偏估计,且有D(θ)〉0, 试证θ2=(θ)2不是θ2的无偏估计.解答:因为D(θ)=E(θ2)-[E(θ)]2,所以E(θ2)=D(θ)+[E(θ)]2=θ2+D(θ)〉θ2,故(θ)2不是θ2的无偏估计。
第21讲 参数估计习题课教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。
教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。
教学难点:矩估计,最大似然估计,正态总体参数的区间估计。
教学时数:2学时。
教学过程:一、知识要点回顾1. 矩估计用各阶样本原点矩n ki i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =L 。
若有参数2g(,(),,)k EX E X E X θ=L ()(),则参数θ的矩估计为 n n n 2i=1i=1i=1111ˆ(,,,)ki i i X X X n n n θ=∑∑∑L 。
2. 最大似然估计似然函数1()(;)ni i L f x θθ==∏,取对数ln[()]L θ,从ln()d d θθ=0中解得θ的最大似然估计θˆ。
3. 无偏性,有效性当θθ=ˆE 时,称θˆ为θ的无偏估计。
当21ˆD ˆD θθ<时,称估计量1ˆθ比2ˆθ有效。
二 、典型例题解析1.设,0()0, 0x e x f x x θθ-⎧>=⎨≤⎩,求θ的矩估计。
解 ,0dx xe EX x ⎰+∞-=θθ设du dx u x x u θθθ1,1,===则00111()0()uuu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞⎡⎤⎡⎤==-+=+-⎣⎦⎢⎥⎣⎦⎰⎰=θ1故1EXθ=,所以x 1ˆ=θ。
2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。
解 由均匀分布的数学期望和方差知1()()2E X a b =+ (1)21()()12D X b a =- (2)由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=,整理得2)(31a EX DX -=,解得()()a E X b E X ⎧=-⎪⎨=⎪⎩ 故得b a ,的矩估计为ˆˆa x b x ⎧=-⎪⎨=+⎪⎩其中∑=-=ni i x x n 122)(1ˆσ。
3.设总体X 的密度函数为(;)!x e f x x θθθ-=,求θ的最大似然估计。
解 设)!)...(!)(!(),()(2111nn x ni i x x x e x f L ni iθθθθ-=∑===∏,则11ln ()()ln ln(!)n ni i i i L x n x θθθ===--∑∑11ln ()11ˆ0, n ni i i i d L x n x x d n θθθθ===-===∑∑ 4. 设总体X 的密度函数1(,)()(aa x f x a x e a θθθ--=已知),求参数θ的最大似然估计。
解 11121()(,)(...)nai i n x n n a i n i L f x a x x x eθθθθ=--=∑==∏11ln ()ln ln (1)ln nna i i i i L n n a a x x θθθ===++--∑∑1ln ()0n ai i d L n x d θθθ==-=∑ 解得 ∑==n i ai x n 11θ。
5. 设1ˆθ和2ˆθ为参数θ的两个独立的无偏估计量,且假定21ˆ2ˆθθD D =,求常数c 和d ,使21ˆˆˆθθθd c +=为θ的无偏估计,并使方差θˆD 最小。
解 由于θθθθθθ)(ˆˆ)ˆˆ(ˆ2121d c dE cE d c E E +=+=+=,且知θθ=ˆE ,故得c+d=1。
又由于2222222221221ˆ)2(ˆˆ2ˆˆ)ˆˆ(ˆθθθθθθθθD d c D d D c D d D c d c D D +=+=+=+= 并使其最小,即使222d c f +=,满足条件c+d=1的最小值。
令d=1-c ,代入得22)1(2c c f -+=,'42(1)0, 620c f c c c =--=-=解得321,31=-==c d c 。
7. 设某电子元件的寿命服从正态分布),(2σμN ,抽样检查10个元件,得样本均值)(1200h x =,样本标准差)(14h s =。
求(1) 总体均值μ置信水平为%99的置信区间;(2) 用x 作为μ的估计值,求绝对误差值不大于10(h )的概率。
解 (1)由于σ未知,s=14(h ),根据求置信区间的公式得 ))1(),1((22-+--n t n s x n t n s x αα ))9(10141200),9(10141200(005.0005.0t t +-查表得25.3)9(005.0=t ,故总体均值μ置信水平为%99的置信区间为(120014.388, 120014.388)(1185.612, 1214.388)-+=(2))141010)1(()10()10(<-=<-=<-n t P ns n x P x P μμ=-=<≈<=α21))9()9(()2588.2)9((025.0t t P t P 1-0.05=0.958. 设n X X X ,...,,21为正态总体),(2σμN 的一个样本,确定常数c 的值,使2111)(∑-=+-=n i i i x x c Q 为2σ的无偏估计。
解])()()(2)([])())((2)[()]()[()(21112121112121112111μμμμμμμμμμ-+----=-+----=---=-=∑∑∑∑-=++-=++-=+-=+i n i i i i i n i i i i n i i i n i i i x E x E x E x E c x x x x E c x x E c x x c EQ由于0)(=-=-=-μμμμi i Ex x E ,所以有2112111)1(2)2(]0[σσ-==+-=∑∑-=-=+n c c Dx Dx c EQ n i n i i i由2σ=EQ (无偏性),故有1)1(2=-n c ,所以)1(21-=n c 。
二、计算题1.某工厂生产滚珠.从某日生产的产品中随机抽取9个,测得直解. 设滚珠的直径为X , 平均直径为μ,均方差为σ.径(单位:mm)如下:14.6 14.7 15.114.9 15.0 14.8 15.115.2 14.8用矩估计法估计该日生产的滚珠的平均直径和均方差.由矩估计法可知,而,∴ .,而=0.03654,∴.2.设总体X的密度函数为,其中(θ>0), 求θ的极大似然估计量. 解. 设(X1,X2,…, X n)是来自X的一样本.由极大似然估计原理,参数θ的似然函数为:,上式两边取对数,似然方程为,解似然方程得θ的极大似然估计量是.3.设总体X的密度函数为,求α的极大似然估计量和矩估计量. 解.设(X1, X2,…, X n)是来自X的样本.(1)由矩估计法,∴.即参数α的矩估计量是.(2) 由极大似然估计原理, 参数α的似然函数为,上式两边取对数, 似然方程为, 解似然方程得到参数α的极大似然估计量是.1.设,0()0, 0x e x f x x θθ-⎧>=⎨≤⎩,求θ的矩估计。
解 ,0dx xe EX x ⎰+∞-=θθ设du dx u x x u θθθ1,1,===则000111()0()u uu EX ue du ue e du e θθθθ+∞+∞--+∞--+∞⎡⎤⎡⎤==-+=+-⎣⎦⎢⎥⎣⎦⎰⎰=θ1故1EXθ=,所以x 1ˆ=θ。
3. 一地质学家研究密歇根湖湖地区的岩石成分,随机地自该地区取100个样品,每个样品有10块石子,记录了每个样品中属石灰石的石子数。
假设这100次观察相互独立,并由过去经验知,它们都服从参数为n=10,P 的二项分布。
P 是该地区一块石子是石灰石的概率。
求p 的极大似然估计值,该地质学家所得的数据如下解:λ的极大似然估计值为λˆ=X =0.4994. 设X 1,X 1,…,X n 为总体的样本,求各未知参数的极大似然估计值和估计量(1)⎩⎨⎧>=+-其它,0,)()1(c x x c θx f θθ 其中c >0为已知,θ>1,θ为未知参数。
(2)⎪⎩⎪⎨⎧≤≤=-.,010,)(1其它x x θx f θ 其中θ>0,θ为未知参数。
解(1)似然函数 1211)()()(+-===∏θn θn n n i ix x x c θx f θL Λ0ln ln )(ln ,ln )1(ln )ln()(ln 11=-+=-++=∑∑==n i i n i i x c n n θθd θL d x θc θn θn θL∑=-=n i i cn xnθ1ln ln ˆ (解唯一故为极大似然估计量) (2)∑∏=--=-+-===n i i θn n n i ix θθn θL x x x θx f θL 112121ln )1()ln(2)(ln ,)()()(Λ ∑∑====+⋅-=n i i n i i x n θx θθn θd θL d 121)ln (ˆ,0ln 2112)(ln 。
(解唯一)故为极大似然估计量。
6. 设样本12,,n X X X L 来自总体~(,0.25)X N u ,如果要以99.7%的概率保证0.1X u -<,试问样本容量n 应取多大?解:~(0,1)N 。
现要求n,使{0.1}210.997P X u P φ-<=<=-≥即0.9985φ≥,查表得, 2.96≥,所以n=219,即样本容量为219。
8. 设总体X 具有分布律其中θ(0<θ<1)为未知参数。
已知取得了样本值x1=1,x2=2,x3=1,试求θ的矩估计值和最大似然估计值。
解:(1)求θ的矩估计值θθθθθθθθθX E 23)]1()][1(3[)1(3)1(221)(22-=-+-+=-+-⋅+⨯=X θX E =-=23)(令 则得到θ的矩估计值为6523121323ˆ=++-=-=X θ (2)求θ的最大似然估计值似然函数}1{}2{}1{}{)(32131======∏=X P X P X P x XP θL i i i)1(2)1(2522θθθθθθ-=⋅-⋅= ln L (θ )=ln2+5ln θ+ln(1-θ)求导 0115)(ln =--=θθθθd L d 得到唯一解为65ˆ=θ。