污水脱氮除磷
- 格式:doc
- 大小:49.00 KB
- 文档页数:5
污水脱氮除磷的原理及其工艺一、污水脱氮原理:污水中的氮主要以无机氮和有机氮两种形式存在,其中无机氮包括氨氮、亚硝酸盐氮和硝酸盐氮,有机氮主要包括蛋白质等有机物。
污水脱氮的主要原理是利用硝化反应和反硝化反应。
硝化反应是将氨氮转化为硝酸盐氮,该过程需利用到氨氧化细菌进行氧化作用,产生的硝酸盐氮可以被水中的反硝化细菌进一步还原为氮气释放到大气中。
这样就实现了对污水中氨氮的脱氮处理。
反硝化反应是将硝酸盐氮还原为氮气。
反硝化作用需要在无氧环境下进行,可通过添加外源电子供体(如甲烷、乙醇等)来提供反硝化细菌进行反硝化作用。
反硝化细菌利用硝酸盐氮作为电子受体进行还原,产生大量的氮气释放到大气中,实现了对污水中硝酸盐氮的脱氮处理。
二、污水除磷原理:污水中的磷主要以无机磷和有机磷两种形式存在,其中无机磷主要包括磷酸盐磷和亚磷酸盐磷,有机磷主要包括有机物中的磷酸酯等。
污水除磷的主要原理是利用化学沉淀法和生物吸附法。
化学沉淀法是通过给污水中添加适量的化学沉淀剂(如氯化铝、聚合氯化铝等)来与磷酸盐磷和亚磷酸盐磷反应生成难溶的沉淀物(如磷酸铝等),从而使磷被固定在沉淀物中,从而实现了对污水中无机磷的除磷处理。
生物吸附法是利用在废水生物处理系统中存在的一些微生物对磷进行吸附作用,这些微生物能将磷从废水中吸附到其细胞表面或胞囊中,从而实现了废水中磷的除磷处理。
三、污水脱氮除磷工艺:污水脱氮除磷工艺主要有一体化生物法、AO法和AB法等多种。
其中,一体化生物法比较常用,其工艺流程为:进水→除砂→调节池→好氧生物反应器(硝化反应)→缺氧生物反应器(反硝化反应)→二沉池(沉淀处理)→出水。
一体化生物法通过将硝化反应和反硝化反应合为一体,利用生物脱氮除磷技术处理污水。
系统中含有好氧区和缺氧区,其中好氧区负责氨氮的硝化反应,缺氧区则利用添加碳源(如甲醇、乙醇等)提供的外源电子供体来进行反硝化反应。
通过控制好氧区和缺氧区的进水比例,可实现对污水中的氮和磷的高效去除。
污水处理脱氮除磷工艺介绍及对比分析污水处理是保护环境、维护人类健康和可持续发展的重要措施之一、污水处理需要对其中的有害物质进行去除,其中包括氮和磷等营养物质。
脱氮除磷是其中一项重要的工艺,下面将对其进行介绍及比较分析。
脱氮工艺主要有生物脱氮工艺和物理化学脱氮工艺两种。
1.生物脱氮工艺:生物脱氮是利用污水处理系统中的微生物来将氨氮转化为氮气释放到大气中的过程。
其中常用的生物脱氮工艺包括硝化-反硝化法和硝化亚硝化法。
-硝化-反硝化法:该方法分为两个阶段,第一步是将氨氮通过硝化菌转化为亚硝酸盐,然后在缺氧条件下使用反硝化菌将亚硝酸盐转化为氮气。
该工艺具有能耗较低和无需额外药剂的优点,同时还可以降低化学消耗物。
-硝化亚硝化法:该方法将硝化菌和亚硝化菌结合在同一反应器中,通过控制氧气浓度和反应温度来实现硝化和亚硝化的联合作用。
该工艺节省了处理污水的时间,同时也减少了系统的占地面积。
2.物理化学脱氮工艺:物理化学脱氮工艺主要包括空气氧化剂法和化学沉淀法。
-空气氧化剂法:该方法是利用氧气或臭氧等氧化剂来氧化污水中的氨氮,使其转化为氮气释放。
该工艺适用于处理高氨氮浓度的废水,并且不需要添加额外的化学品。
-化学沉淀法:该方法通过添加化学药剂来使污水中的氨氮与其结合,形成不溶性的沉淀物进行去除。
常用的药剂包括氢氧化钙、氯化铁和磷酸铁等。
该工艺适用于处理低氨氮浓度的废水,但需要使用额外的化学药剂。
除磷工艺主要有生物除磷工艺和化学除磷工艺两种。
1.生物除磷工艺:生物除磷工艺主要是通过利用污水处理系统中的一些微生物来将废水中的磷元素转化为不溶性的磷酸钙沉淀物进行去除。
该工艺包括聚磷酸盐法、硝化反硝化除磷法和反硝化聚磷酸盐除磷法等。
-聚磷酸盐法:该方法通过添加一定剂量的磷源来诱导有利微生物的适应和繁殖,使其在系统中大量积累。
随后,在缺氧条件下,这些微生物将磷元素从水中去除,形成不溶性的磷酸钙沉淀物。
该工艺操作简单、不需要额外药剂,但容易受到外界环境的影响。
污水处理方法之除磷、脱氮污水处理方法之除磷、脱氮:除磷:城市废水中磷的主要来源是粪便、洗涤剂和某些工业废水,以正磷酸盐、聚磷酸盐和有机磷的形式溶解于水中。
常用的除磷方法有化学法和生物法。
A、化学法除磷:利用磷酸盐与铁盐、石灰、铝盐等反应生成磷酸铁、磷酸钙、磷酸铝等沉淀,将磷从废水中排除。
化学法的特点是磷的去除效率较高,处理结果稳定,污泥在处理和处置过程中不会重新释放磷造成二次污染,但污泥的产量比较大。
B、生物法除磷:生物法除磷是利用微生物在好氧条件下,对废水中溶解性磷酸盐的过量吸收,沉淀分离而除磷。
整个处理过程分为厌氧放磷和好氧吸磷两个阶段。
含有过量磷的废水和含磷活性污泥进人厌氧状态后,活性污泥中的聚磷商在厌氧状态下,将体内积聚的聚磷分解为无机磷释放回废水中。
这就是“厌氧放磷”。
聚磷菌在分解聚磷时产生的能量除一部分供自己生存外,其余供聚磷菌吸收废水中的有机物,并在厌氧发酵产酸菌的作用下转化成乙酸背,再进一步转化为PHB (聚自-短基丁酸)储存于体内。
进入好氧状态后,聚磷菌将储存于体内的PHB进行好氧分解,并释放出大量能量,一部分供自己增殖,另一部分供其吸收废水中的磷酸盐,以聚磷的形式积聚于体内。
这就是“好氧吸磷”。
在此阶段,活性污泥不断增殖。
除了一部分含磷活性活泥回流到厌氧池外,其余的作为剩余污泥排出系统,达到除磷的目的。
脱氮:生活废水中各种形式的氮占的比例比较恒定:有机氮50%~60%,氨氮40%~50%,亚硝酸盐与硝酸盐中的氮占 0~5%。
它们均来源于人们食物中的蛋白质。
脱氮的方法有化学法和生物法两大类。
A、化学法脱氮:包括氨吸收法和加氯法。
a、氨吸收法:先把废水的pH值调整到10以上,然后在解吸塔内解吸氨b、加氯法:在含氨氮的废水中加氯。
通过适当控制加氯量,可以完全除去水中的氨氮。
为了减少氯的投加量,此法常与生物硝化联用,先硝化再除去微量的残余氨氮。
B、生物法脱氮:生物脱氮是在微生物作用下,将有机氮和氨态氮转化为氮气的过程,其中包括硝化和反硝化两个反应过程。
脱氮除磷的水污染处理工艺近几十年来,水污染问题日益严重。
其中,氮和磷的排放是造成水体富营养化的主要原因之一。
为了解决这个问题,脱氮除磷的水污染处理工艺被广泛应用。
本文将对脱氮除磷的工艺进行详细介绍。
一、脱氮工艺1.生物法生物法是目前广泛使用的脱氮工艺。
主要包括生物硝化脱氮和生物反硝化技术两种方式。
生物硝化脱氮:通过硝化作用将氨氮先转化为亚硝酸盐,然后进一步转化为硝酸盐,最终转化成氮气释放。
生物硝化脱氮技术适合于高温和中温条件下的工业和城市污水处理。
生物反硝化技术:通过微生物将污水中的硝态氮还原成分子态氮。
生物反硝化技术在低温条件下和含有高浓度有机物或有毒物质的废水中有着较好的效果。
2.生物化学联合法生物化学联合法是将化学脱氮和生物脱氮相结合的方法。
将化学氮移除和Nitrifier-Denitrifier反应器相结合,可以同时去除废水中的氨氮、硝酸盐和有机氮。
二、除磷工艺1.生物法生物法反应器中添加特定的微生物种类,通过细胞内聚磷体的形成来去除废水中的磷。
生物法可以采用常温条件下的生物除磷法和PRB(磷酸根还原菌)方法。
生物除磷法:将一部分有机质转化为聚磷体,降低了废水中的磷浓度。
其中产生的胞外聚磷体通过化学加药破坏,从而将磷元素移除。
PRB技术:利用磷酸酯酶降解废水中的聚磷体,释放出其身上的磷元素,然后在还原本身成为无磷物质。
2.化学法化学法是使用化学物质来去除废水中的磷。
包括化学沉淀法和吸附法。
化学沉淀法:添加化学药剂,生成难溶的沉淀物,从而使废水中的磷以沉淀物的形式存在,达到去除的效果。
吸附法:利用化学吸附剂吸附废水中的磷元素,将其移除。
在吸附剂表面形成的吸附床与污水中的磷发生交换,达到去除的效果。
三、联合工艺脱氮除磷联合工艺是将脱氮和除磷相结合的工艺。
其中包括生物化学联合法、化学-生物工艺和物理化学-生物工艺。
联合工艺相比于单纯的脱氮或除磷工艺,具有去除效率高、运行稳定等优势。
综上所述,脱氮除磷是解决水污染的重要手段之一。
污水脱氮除磷技术介绍污水脱氮除磷技术是指对污水中的氮、磷进行有效去除的技术。
磷和氮是污水中的主要污染物之一,如果不进行有效去除,会导致水体富营养化,引发藻类大量繁殖,影响水体的生态平衡。
因此,对污水中的氮、磷进行去除是保护水体环境的重要措施之一一、污水脱氮技术1.生物脱氮法:生物脱氮法是利用特定微生物将污水中的氨氮转化为氮气排放。
这种方法需要提供好氧和缺氧条件,通过调控曝气和停氧时间,使特定微生物发挥作用。
目前常用的生物脱氮方法有硝化-反硝化法和厌氧氨氧化-硝化法两种。
2.化学脱氮法:化学脱氮法是指通过加入化学药剂使污水中的氮污染物发生化学反应,将氮污染物转化为氮气排放。
常用的化学药剂有硫酸铁、硫酸铝等。
这种方法操作简单,但药剂投入量大,处理成本较高。
3.膜法脱氮:膜法脱氮是利用气液界面上的气流驱动气体分子穿透膜,并利用膜的选择性透过性,选择性去除污水中的氮气。
膜法脱氮技术通常包括反渗透法(RO)、气体渗透法(GO)、气体渗透双极渗透法(GPD)等。
二、污水除磷技术1.化学除磷法:化学除磷法是通过加入化学药剂与污水中的磷形成沉淀物,将磷从污水中去除。
常用的化学药剂有氢氧化钙(Ca(OH)2)、氢氧化铝(Al(OH)3)等。
这种方法操作简单,但药剂投入量大,处理成本较高。
2.生物除磷法:生物除磷法是通过调控好氧-缺氧情况下特定微生物的生长环境,促使其在缺氧条件下吸收和积累磷。
常用的生物除磷方法有反硝化除磷法、AO法、高效耐磷生物工艺等。
3.吸附除磷法:吸附除磷法是通过将特定材料引入污水中,利用材料对磷的吸附性能,将污水中的磷吸附到材料表面。
常用的吸附材料有Fe3O4、氧化铝、活性炭等。
4.膜法除磷:膜法除磷是利用膜的选择性透过性,选择性去除污水中的磷。
常见的膜法除磷技术有微滤膜法(MF)、超滤膜法(UF)、纳滤膜法(NF)、反渗透膜法(RO)等。
需要注意的是,不同的工业场所的污水特性各异,其处理过程、工艺选择也会有所不同。
生物脱氮除磷原理生物脱氮除磷原理生物脱氮和除磷是现代污水处理过程中的两个主要步骤。
这样做可以有效地降低污染物的排放,并促进水环境的恢复和保护。
这篇文章将介绍生物脱氮和除磷的原理,并分别进行详细的说明。
一、生物脱氮氮是生命所必需的元素之一,然而,过量的氮会导致水体富营养化,甚至造成水体死亡。
因此,在污水处理过程中,生物脱氮是一个重要的步骤,目的是减少氮的含量,保护水资源。
生物脱氮的原理是通过微生物代谢来降低污水中的氮含量。
具体来说,将含有氮化合物的污水引入生物反应器中,细菌依靠缺氧状态下的代谢产生能量来去除氮,将氨氮转化为氮气和硝酸盐。
这样可以有效地减少氮的含量,并且为其他生物链提供营养素。
二、除磷磷是植物生长所必需的元素之一,但是污水中过多的磷会导致水体富营养化,破坏水生态环境。
因此,除磷也是现代污水处理过程的一个重要步骤。
除磷的方法主要有化学沉淀方法和生物除磷方法。
其中,化学沉淀法是通过添加化学药剂,使磷离子与药剂中的金属离子反应,产生一种不溶性沉淀,在沉淀的过程中去除磷。
相对而言,生物除磷方法更为可持续。
生物除磷的原理是利用一些专门的微生物,按照一定的顺序和比例,对污水中的有机质和磷进行吸收和固定。
这些微生物可以根据磷的生物循环特点,利用有机质和磷的沉积结合,通过代谢来吸收和固定磷,使磷含量得到降低。
三、总结生物脱氮和除磷在现代污水处理中是必不可少的步骤。
通过生物反应器和微生物代谢的过程,这些步骤可以有效地降低含氮和含磷物质的含量。
这些污染物不仅会污染水体,还会间接影响人类健康和生态环境。
为了保护我们的水资源和生态环境,我们需要科学的污水处理方法,以消除污染物和保护我们的水体资源。
污水生物脱氮除磷的基本原理
污水生物脱氮除磷是一种利用生物的代谢能力来降低污水中氮和磷的浓度的技术。
其基本原理是利用污水中的生物分解形成的氨氮,通过氨氧化、反硝化及硫酸还原这三个生物代谢过程,将氨氮转变成无害物质,并利用磷细菌将磷结合在污泥中,最终将氮和磷从污水中去除。
1、氨氧化过程
氨氧化过程是污水生物处理中脱氮的主要过程,也是把氨氮转变成无害物质的主要过程。
氨氧化的具体过程是把氨氮转变成氮气的过程,真正的氨氧化过程是由被称作氨氧化菌的细菌来承担的。
这些特殊的细菌需要降低水温、提高pH值和添加活性碳等外源物质的供给,才能进行氨氧化反应。
2、反硝化过程
反硝化过程是把亚硝酸氮转变成氮气的过程,它是生物处理中氮的最后一步转变过程,反硝化的最后产物是氮气,也就是说它是将氮从污水中最终去除出去的转变过程。
反硝化过程受反硝化菌的影响较大,反硝化菌属于好氧细菌,反硝化条件包括高氧化性、低温度、较高的pH值等。
3、硫酸还原过程
硫酸还原过程是通过硫酸还原菌将污水中的亚硝酸氮还原成氨氮的过程,它是把水中的氮含量降低的重要手段。
硫酸还原过程还可以与氨氧化过程相结合,从而提高去除氮的效率。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着城市化进程的加速和工业的迅猛发展,大量生活污水和工业废水被排放到水环境中,造成了严重的环境问题。
为了有效减少污水对环境的危害,人们研发了多种污水处理技术。
其中,污水生物脱氮除磷工艺因具有较好的处理效果和较低的运行成本,得到了广泛的应用。
本文将就污水生物脱氮除磷工艺的现状及其发展进行详细探讨。
二、污水生物脱氮除磷工艺的现状1. 工艺概述污水生物脱氮除磷工艺是一种基于微生物作用,利用活性污泥法等生物处理技术,将污水中的氮、磷等营养元素去除的工艺。
该工艺主要利用微生物的代谢作用,将污水中的氮、磷转化为无害物质,从而达到净化水质的目的。
2. 国内外应用现状目前,国内外广泛应用的污水生物脱氮除磷工艺主要包括A/O法、A2/O法、氧化沟法等。
这些工艺在我国污水处理领域得到了广泛应用,特别是在城市污水处理厂和工业废水处理中。
此外,一些新型的生物脱氮除磷技术,如MBR(膜生物反应器)技术、超声波强化生物脱氮除磷技术等也在逐步推广应用。
三、工艺运行机制与原理污水生物脱氮除磷工艺主要依靠活性污泥中的微生物完成。
在反应过程中,微生物通过吸附、吸收、代谢等作用,将污水中的氮、磷等营养元素转化为无害物质。
具体来说,脱氮过程主要通过氨化、硝化和反硝化等步骤实现;除磷过程则主要通过聚磷菌的过量摄磷和释磷实现。
四、工艺发展及挑战1. 技术发展随着科技的不断进步,污水生物脱氮除磷工艺也在不断发展和完善。
新型的生物反应器、高效的微生物菌剂、智能化的控制系统等技术手段的应用,使得污水处理效率得到了显著提高。
同时,一些新型的污水处理理念和技术,如低碳、低能耗、资源化等也得到了广泛关注。
2. 面临的挑战尽管污水生物脱氮除磷工艺取得了显著的成果,但仍面临一些挑战。
如:如何进一步提高处理效率、降低运行成本;如何解决污泥处理与处置问题;如何应对复杂多变的水质等。
此外,一些新兴污染物(如微塑料、新型有机污染物等)也对传统污水处理技术提出了新的挑战。
污水处理中的脱氮除磷工艺
通常污水处理设备的外壳都是金属材质(碳钢、不锈钢)或者玻璃钢材质制作。
不同的污水处理设备对污染水的敏感度处理工艺和处理后的排放标准都不相同。
污水中95%以上的氨氮(HN3-N)以NH4的形式存在。
通过鼓风曝气,亚硝酸菌首先将氨氮转化为亚硝酸盐:
(亚硝酸菌)NH4+1.5O2NO2-+2H+H2O。
然后将亚硝酸盐转化为硝酸盐:硝酸菌No2总体反应为:NH4+2O2NO3+2H+H2O。
污水处理设备
以上反应在好氧部分进行。
在厌氧部分,硝酸盐和亚硝酸盐通过兼氧微生物或厌氧微生物(如碱生产菌、假单胞菌、无色杆菌等)进行反硝化和脱氮。
反消化菌利用NO3中的氧(又称化合态氧或硝化氧)继续分解代谢有机污染物,去除BOD5,同时将NO3中的氮转化为氮N2这个过程可以用以下方式表示:
反消化菌NO3-+有机物N2+N2O+OH。
除磷原理:
厌氧段优势的非丝状储磷菌分解储存的聚磷酸盐,提供能量,吸收水中大量的BOD5,释放正磷酸盐,降低厌氧段的BOD5,提高磷含量。
公厕污水进入好氧段后,好氧微生物利用氧化分解获得的能量,吸收原水中释放的大量正磷和磷,完成磷的过渡积累,达到去除BOD5和除磷的目的。
污水处理脱氮除磷工艺原理。
脱氮除磷原理
脱氮除磷是一种常用的废水处理方法,它通过一系列化学过程将废水中的氮和磷去除掉。
脱氮除磷的原理主要包括生物处理和化学处理两个方面。
生物处理是脱氮除磷的主要手段之一。
在生物处理中,利用好氧和厌氧两种微生物的作用来降低废水中的氮和磷含量。
在好氧条件下,氨氮可以被氨氧化细菌氧化为亚硝酸盐,然后亚硝酸盐可被亚硝酸盐氧化细菌进一步氧化为硝酸盐。
通过这个过程,废水中的氮被转化为氨氮、亚硝酸盐和硝酸盐。
在厌氧条件下,通过一系列反应,废水中的磷可被还原成无机磷。
化学处理也是脱氮除磷的重要手段之一。
在化学处理中,常用的方法包括加入化学药剂和利用吸附剂去除废水中的氮和磷。
常用的化学药剂有聚合氯化铝、硫酸铁等。
这些药剂可与废水中的氮和磷反应,形成沉淀物或沉淀物颗粒,从而使废水中的氮和磷得以去除。
吸附剂则通过其表面特性和吸附能力去除废水中的氮和磷。
综上所述,脱氮除磷是通过利用生物处理和化学处理的方式,将废水中的氮和磷去除,从而达到净化废水的目的。
这些原理的应用可以在废水处理中起到重要作用,降低废水对环境的污染。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,水体富营养化问题日益严重,其中氮、磷等营养物质的排放是主要污染源之一。
污水生物脱氮除磷工艺作为一种经济、高效的污水处理技术,受到了广泛关注。
本文将重点介绍污水生物脱氮除磷工艺的现状及其发展。
二、污水生物脱氮除磷工艺概述污水生物脱氮除磷工艺是一种利用微生物的作用,通过生化反应将污水中的氮、磷等营养物质去除的工艺。
该工艺主要包括硝化、反硝化、聚磷菌的过量吸磷等过程,通过这些过程实现污水中氮、磷的有效去除。
三、污水生物脱氮除磷工艺的现状1. 工艺类型与特点目前,污水生物脱氮除磷工艺主要包括传统活性污泥法、A2/O工艺、MBR工艺、SBR工艺等。
这些工艺各有特点,如传统活性污泥法处理效果好,但能耗较高;A2/O工艺脱氮除磷效果好,对水质变化适应能力强。
在实际应用中,需根据实际情况选择合适的工艺。
2. 实际应用情况目前,污水生物脱氮除磷工艺已在全球范围内得到广泛应用。
在我国,该工艺在污水处理厂、工业废水处理等领域发挥了重要作用。
然而,仍存在一些问题,如能耗高、污泥产量大等,需要进一步优化和改进。
四、污水生物脱氮除磷工艺的发展1. 技术创新与优化随着科技的不断进步,新的技术手段和材料不断应用于污水生物脱氮除磷工艺中。
例如,利用新型生物反应器、高效微生物菌剂等提高处理效果,降低能耗和污泥产量。
同时,通过对现有工艺的优化和改进,提高工艺的稳定性和可靠性。
2. 集成化与智能化发展未来,污水生物脱氮除磷工艺将更加注重集成化和智能化发展。
通过将不同工艺进行集成,实现一体化处理,提高处理效率。
同时,利用智能化技术手段,实现对污水处理过程的实时监测和调控,提高工艺的稳定性和处理效果。
3. 政策与标准支持政府对污水处理和环境保护的重视程度不断提高,出台了一系列政策和标准,为污水生物脱氮除磷工艺的发展提供了有力支持。
未来,随着政策和标准的不断完善和落实,该工艺将得到更广泛的应用和推广。
污水脱氮除磷原理与影响因素详解一、污水脱氮原理污水中的氮主要以氨氮的形式存在,主要有氨氮、硝酸盐氮和亚硝酸盐氮三种形式。
污水脱氮的主要原理有生物法和化学法两种。
1.生物法的原理:生物法主要利用一种叫做硝化反应和反硝化反应的生物作用来去除污水中的氮。
硝化是将氨氮转化为硝酸盐氮的过程,由硝化细菌完成。
而反硝化是将硝酸盐氮还原为氮气的过程,由反硝化细菌完成。
通过控制生物反应条件和组织好各种微生物的生态系统,可以提高氮的去除效果。
2.化学法的原理:化学法主要通过添加化学药剂来实现氮的去除。
常用的化学药剂包括硝酸盐还原剂和硫酸盐沉淀剂等。
硝酸盐还原剂可以将硝酸盐氮还原为氮气,从而去除氮,硫酸盐沉淀剂则可以将磷酸盐沉淀下来。
二、污水除磷原理污水中的磷主要以磷酸盐的形式存在,主要有无机磷和有机磷两种形式。
污水除磷的主要原理有生物法和化学法两种。
1.生物法的原理:生物法主要通过利用一种叫做磷酸盐的有机物来去除污水中的磷。
在生物法中,磷酸盐会与微生物共生,微生物能够分解磷酸盐结合的有机物,将磷酸盐释放出来,然后通过沉淀或吸附等方式去除污水中的磷。
2.化学法的原理:化学法主要通过添加化学药剂来实现磷的去除。
常用的化学药剂包括铁盐和铝盐等。
这些药剂可以与磷酸盐结合形成沉淀,然后通过沉淀去除污水中的磷。
三、影响污水脱氮除磷的因素1.初始浓度:初始浓度是指污水中氮、磷含量的高低,初始浓度越高,去除难度越大。
2.温度:温度对生物反应有着很大的影响,温度过低会降低微生物的活性从而影响脱除氮和磷的效果。
3.溶解氧:溶解氧水平也对生物反应起着重要作用,足够的溶解氧能提供微生物的活性能,从而促进氮的转化和磷的去除。
4.pH值:酸碱度也会对污水脱氮除磷产生影响。
过高或过低的pH值会抑制或破坏微生物的生长。
5.水质变化:水质中不同物质的含量和比例的改变,如COD、BOD、SS等,也会影响污水脱氮除磷效果。
6.反应时间:污水中的氮、磷物质的转化需要一定的反应时间,反应时间越长,去除效果越好。
污水处理中的脱氮除磷工艺在现代社会,随着工业的发展和人口的增长,污水的排放量不断增加,其成分也变得越来越复杂。
污水中的氮和磷如果未经有效处理直接排放到自然环境中,会导致水体富营养化,引发一系列严重的生态问题。
因此,脱氮除磷工艺在污水处理中显得至关重要。
污水中的氮主要以有机氮和无机氮两种形式存在。
有机氮如蛋白质、氨基酸等,无机氮则包括氨氮、硝态氮和亚硝态氮。
磷主要以磷酸盐的形式存在,包括正磷酸盐、偏磷酸盐和多磷酸盐等。
常见的脱氮工艺包括生物脱氮和化学脱氮。
生物脱氮是目前应用最广泛的方法,其原理是利用微生物的代谢作用将氮转化为氮气排放到大气中。
这个过程主要包括氨化、硝化和反硝化三个步骤。
氨化过程是将有机氮转化为氨氮。
在这个阶段,微生物通过分解作用将蛋白质、氨基酸等有机氮化合物转化为氨氮。
这一过程通常在有氧条件下进行。
硝化过程则是将氨氮转化为硝态氮。
这一步骤需要两类细菌的参与,分别是将氨氮氧化为亚硝态氮的亚硝化细菌和将亚硝态氮进一步氧化为硝态氮的硝化细菌。
这两类细菌都是好氧菌,因此硝化过程需要充足的氧气供应。
反硝化过程是将硝态氮还原为氮气。
反硝化细菌在缺氧条件下,利用有机物作为电子供体,将硝态氮还原为氮气。
这一过程不仅实现了脱氮的目的,还降低了有机物的含量。
除了生物脱氮,化学脱氮方法也有应用。
例如,折点加氯法通过向污水中加入氯气,将氨氮氧化为氮气,但这种方法成本较高,且可能产生二次污染。
在除磷方面,常见的工艺包括生物除磷和化学除磷。
生物除磷主要依靠聚磷菌来实现。
在厌氧条件下,聚磷菌吸收污水中的有机物,并将其转化为聚β羟基丁酸酯(PHB)等储存起来,同时释放出体内的磷酸盐。
而在好氧条件下,聚磷菌分解体内的 PHB 产生能量,用于吸收污水中的磷酸盐,并将其以聚磷酸盐的形式储存在体内。
通过排放富含聚磷菌的剩余污泥,就可以达到除磷的目的。
化学除磷则是通过向污水中添加化学药剂,使磷形成沉淀而去除。
常用的化学药剂有铝盐、铁盐和石灰等。
污水厂脱氮除磷三种方法传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。
然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。
在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。
传统A²/O 工艺是一项具有脱氮除磷功能的典型污水处理技术,这个工艺结构简单、水力停留时间(HRT)短且易于控制,多数污水厂都是采用传统A²/O 工艺进行污水处理。
然而,生物脱氮除磷的过程中涉及硝化、反硝化、摄磷和释磷等多个生化过程,而每个过程对微生物组成、基质类型及环境条件的要求存在许多差异。
在传统A²/O 工艺的单泥系统中高效地完成脱氮和除磷两个过程,就会发生各种矛盾冲突,比如泥龄的矛盾、碳源竞争、硝酸盐及溶解氧(DO)残余干扰等。
传统A²O工艺存在的矛盾01 污泥龄矛盾传统A²/O 工艺属于单泥系统,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生长于同一系统中,而各类微生物实现其功能最大化所需的泥龄不同:1)自养硝化菌与普通异养好氧菌和反硝化菌相比,硝化菌的世代周期较长,欲使其成为优势菌群,需控制系统在长泥龄状态下运行。
冬季系统具有良好硝化效果时的污泥龄(SRT)需控制在30d 以上;即使夏季,若SRT<5 d,系统的硝化效果将显得极其微弱。
2)PAOs 属短世代周期微生物,甚至其最大世代周期(Gmax)都小于硝化菌的最小世代周期(Gmin)。
从生物除磷角度分析富磷污泥的排放是实现系统磷减量化的唯一渠道。
若排泥不及时,一方面会因PAOs 的内源呼吸使胞内糖原(Glycogen)消耗殆尽,进而影响厌氧区乙酸盐的吸收及聚-β- 羟基烷酸(PHAs)的贮存,系统除磷率下降,严重时甚至造成富磷污泥磷的二次释放;另一方面,SRT 也影响到系统内PAOs 和聚糖菌(GAOs)的优势生长。
《污水生物脱氮除磷工艺的现状与发展》篇一一、引言随着工业化和城市化的快速发展,污水处理问题日益突出。
其中,氮、磷等营养物质的排放对水环境造成了严重污染。
污水生物脱氮除磷工艺作为一种高效、经济的污水处理技术,得到了广泛的应用和关注。
本文将介绍污水生物脱氮除磷工艺的现状,并探讨其未来的发展趋势。
二、污水生物脱氮除磷工艺的现状1. 工艺原理污水生物脱氮除磷工艺主要利用微生物的作用,通过一系列的生化反应,将污水中的氮、磷等营养物质转化为无害物质,从而达到净化水质的目的。
该工艺主要包括硝化、反硝化、厌氧释磷和好氧吸磷等过程。
2. 常见工艺目前,常见的污水生物脱氮除磷工艺包括A/O(厌氧/好氧)工艺、A2/O(厌氧-缺氧-好氧)工艺、MBBR(移动床生物反应器)工艺等。
这些工艺在不同领域得到了广泛应用,取得了显著的成效。
3. 现状分析(1)优点:污水生物脱氮除磷工艺具有处理效率高、运行成本低、污泥产量少等优点,能够有效地去除污水中的氮、磷等营养物质。
(2)挑战:然而,该工艺在应用过程中也面临一些挑战,如硝化菌和反硝化菌的生长条件差异大、运行管理复杂等。
此外,某些工业废水中的特殊成分可能对微生物产生抑制作用,影响处理效果。
三、污水生物脱氮除磷工艺的发展趋势1. 技术创新随着科技的不断进步,新的污水处理技术不断涌现。
未来,污水生物脱氮除磷工艺将更加注重技术创新,通过优化工艺参数、改进设备结构、提高微生物活性等方式,提高处理效率,降低运行成本。
2. 组合工艺为了进一步提高处理效果,未来将更加注重将不同的污水处理工艺进行组合。
例如,将物理、化学和生物处理方法相结合,形成组合工艺,以适应不同类型污水的处理需求。
3. 智能化管理随着信息技术的发展,污水处理行业的智能化管理将成为未来发展的重要方向。
通过引入物联网、大数据、人工智能等技术手段,实现对污水处理过程的实时监控、远程控制和智能调度,提高运行管理的效率和准确性。
4. 资源化利用为了实现污水的资源化利用,未来将更加注重对污水处理过程中产生的污泥进行资源化利用。
污水脱氮除磷原理
污水脱氮除磷是一种常见的污水处理方法,旨在降低污水中的氮和磷含量,以减少对水环境的污染。
脱氮的原理通常采用生物脱氮方法,其中最常见的是硝化-反硝化过程。
在这个过程中,通过微生物的作用,将污水中的氨氮逐步转化为亚硝酸盐,然后再转化为硝酸盐。
同时,硝化过程中产生的氮气可以通过通气系统排出。
除磷的原理主要是通过化学反应将溶解性磷酸盐转化成不溶性磷酸盐沉淀,从而达到除磷的效果。
常用的除磷方法包括化学除磷和生物除磷。
化学除磷通常采用加入金属盐溶液(如氯化铁、氯化铝等)的方式,金属离子与磷酸盐发生反应生成不溶性的金属磷酸盐沉淀。
这些沉淀物随后通过沉淀池或沉淀池被除去。
生物除磷主要是利用某些特殊的细菌和微生物,在厌氧条件下将污水中的磷酸盐转化为多聚磷酸盐,这些多聚磷酸盐可以沉积在活性污泥中。
在后续的污泥处理过程中,这些磷酸盐有机体可以被分解,从而达到除磷的效果。
综上所述,污水脱氮除磷的原理一般是通过生物反应和化学反应,将污水中的氮和磷转化成沉淀物或沉积在活性污泥中,从而达到减少水环境污染的目的。
污水处理中的高效氮磷回收技术随着城市化的快速发展,厂矿企业的增多以及人口的增加,污水处理已经成为了一个重要的环境问题。
除去水中的有害物质,特别是氮和磷是一项具有挑战性的任务。
氮和磷是污水中主要的营养元素,然而它们的排放会导致水体的富营养化,引发藻类过度生长等问题。
因此,高效的氮磷回收技术变得至关重要。
本文将介绍一些目前应用广泛的污水处理中的高效氮磷回收技术。
一、生物脱氮除磷技术生物脱氮除磷技术是一种利用微生物完成氮和磷去除的生物工艺方法。
其中,生物脱氮主要是通过硝化和反硝化作用将氨氮转化为氮气释放到大气中,而生物除磷则是利用聚磷菌将有机磷物质转化为多磷酸盐后沉淀。
此技术具有投资和操作成本低、能源消耗少等优点。
二、化学沉淀技术化学沉淀技术是一种利用化学反应将氮和磷沉淀出水的方法。
常用的化学沉淀剂有氢氧化铁、氢氧化铝等。
这些沉淀剂会与污水中的氮和磷形成不溶于水的沉淀物,在适当的条件下沉降到污水底部,从而实现氮磷的回收。
这种技术具有处理效果好、操作简单等优点,但是化学药剂消耗量大,处理成本较高。
三、镁铝贵金属复合沉淀技术镁铝贵金属复合沉淀技术是一种结合化学反应和物理沉淀的方法。
该技术利用添加的复合物与污水中的氮和磷形成不溶于水的化合物,同时将污水中的重金属沉淀下来。
通过对混合沉淀物进行分离和处理,可以实现对氮和磷的回收。
这种技术具有处理效果好、沉淀物含量低等优点。
四、膜分离技术膜分离技术是一种利用特定的膜材料将水中的氮和磷分离出来的方法。
膜分离技术可以分为微滤、超滤、反渗透等多个阶段,不同阶段的膜孔径分离范围也不同。
通过调节膜孔径的大小,可以实现对不同粒径的氮和磷的分离和回收。
膜分离技术具有高效、节能等优点,但是膜的成本和维护较高。
综上所述,污水处理中的高效氮磷回收技术有多种选择。
每种技术都有其适用的场景和优缺点,选择合适的技术需要综合考虑技术成熟度、投资成本、操作维护等因素。
未来,随着科技的进步和环保意识的提升,相信会有更多更高效的氮磷回收技术被开发出来,更好地解决污水处理中的氮磷污染问题。
中小城镇污水处理厂生物除磷脱氮工艺的选择一概述改革开放以来,在我国的大中型城市中,建设了一批污水处理设施,对于保护大中型城市的环境,治理水污染起到了很大作用。
随着我国城乡经济的发展,人民生活水平的显著提高,我国农村城市化的速度将大大加快,大量的小城镇将迅速兴起,预计到本世纪末,全国设市城市将达1200个左右,建制镇25000~3O000个左右,全国城镇人口达6.8亿左右,城市化水平约为45%,其中小城镇人口所占比例达65%左右。
从发展眼光看,今后我国的大部分人口将生活在中小城镇。
目前全国共有1700O个建制镇,绝大多数没有排水和污水处理设施,而且,由于二十几年来,乡镇企业的蓬勃发展,造成一些中小城镇尤其是经济比较发达的中小城镇,污染严重,已经影响到人民的生活和健康。
从另一方面讲,中小城镇和大中城市在水系上是相通的,而且往往处于大中城市的上游,中小城镇的污水治理工作做不好,大中城市水环境的质量也不会有明显改善,因此,中小城市的环境保护问题越来越引起人们的重视。
针对目前的情况,国家提出至2010年我国污水处理率要达到4O%,因此,未来一段时间内我国将会集中在中小城镇建设一大批污水处理厂,这些污水处理厂的规模,小的只有每日几十吨,大的每日几万吨,因此在规模上和大型污水处理厂相差较大,而且,由于这些中小城镇和大中城市经济发展水平、排水体制,基础资料,融资渠道有很大不同,因此以往建设大型污水处理厂的经验只有借鉴的意义,不可能也不应该把大中城市的污水治理工艺、技术装备等搬用到城镇级的污水处理厂中去,否则目前在大中城市中出现的“建的起,用不起”的局面将会在中、小城镇更加强烈的表现出来,甚至会演变成“既建不起,更用不起”的局面,因此探索适合中小城镇的经济实用的污水处理工艺,以较少的投资建成污水处理厂,以较低的运行费用运转污水处理厂,达到消除污染、保护环境的目的是摆在给排水工作者面前的一个挑战。
考虑到1998年1月1日之后,已经开始实行《污水排放综合标准》(GB8978-1996),因此中小城镇的污水处理厂在选择处理工艺时都要考虑除磷脱氮,本文谨就适合于中小城镇城市污水处理厂的生物除磷脱氮工艺谈一些粗浅的看法,供大家参考,不妥之处请指正。
二可供选择的工艺各种除磷脱氮工艺一般都是除碳、除氮、除磷三种流程的有机组合,得利满公司提出了“SARAOE”概念,来描述用于除磷脱氮的不同区域。
1.选择区(Selectorzone)设置选择区的目的主要是为了避免污泥膨胀。
2.厌氧区(Anaerobiczone)设置厌氧区是为了提供一个使聚磷菌释放磷的环境,为后续的好氧吸磷创造条件。
3.再活化区(Reactivationzone)设置再活化区用于再活化回流污泥。
4.缺氧区(Anoxiczone)设置缺氧区,提供一个缺氧环境,使硝酸盐氮被还原为氮气。
5.好氧区(Oxidationzone)该区为主反应区,在该反应区内完成碳的氧化和氨氮的硝化。
6.内源呼吸区(Endogenouszono)在该区内进一步完成硝酸盐氮的反硝化。
在实际的工程设计中,根据受纳水体的要求和其它一些实际情况,生物除磷脱氮工艺可以分成以下几个层次:1、去除有机物、氨氮和硝酸盐氮,因对总氮无要求,可以采用生物硝化工艺,生物硝化工艺与传统活性污泥法工艺流程完全相同,不过采用延时曝气。
2、去除有机物和总氮(包括有机氮、氨氮及硝酸盐氮),因要去除总氮,因此应该采用生物反硝化工艺,需要在反应池前增设一个缺氧段,将好氧段中含有硝酸盐的混合夜回流到缺氧段,在缺氧的条件下,将硝酸盐反硝化成氮气。
3、去除有机物、氨氮和有机氮,磷。
这时,应该采用除磷的硝化工艺,在反应地前增设一个厌氧段,在厌氧段内完成磷的释放,在好氧段内实现磷的超量吸收、有机物的氧化、有机氮及氨氮的硝化。
4、去除有机物、总氮和磷。
对于这种情况,应该采用完全的生物除磷脱氮工艺。
在反应池前既要增设一个厌氧段又要增设一个缺氧段,以同时实现生物除磷脱氮。
三适合于中小型污水处理厂的除磷脱氧工艺A/O工艺、A2/O工艺、各种氧化沟工艺、SBR工艺这些从活性污泥法派生出来的工艺都可以实现除碳、除氮、除磷三种流程的组合,都是比较实用的除磷脱氮工艺。
由于磷的去除是通过排放剩余污泥实现的。
SRT小,剩余污泥排放量也就多,在污泥含磷量一定的情况下,除磷量也就越多。
生物硝化工艺需要较低的负荷,较长的泥龄,因此,除磷脱氮对某些工艺参数的要求是互相矛盾的,为实现同时除磷脱氮,研究者开发了不少新工艺,如Bardenphor工艺(四区工艺)、Phoredox工艺(改良BardenPhor工艺),UCT工艺,MUCT工艺等,这些工艺克服了除磷脱氮的一些冲突,可以同时取得较好的除磷脱氮效果,但这些工艺的缺点也是显而易见的,处理单元多,流程长,操作管理复杂,运转费用高,在应用于中小规模污水处理厂时应该慎重。
进水水质浓度和对出水水质的要求是选择除磷脱氮工艺的一个重要因素。
对于大部分城市污水,为了达到排放标准,应该选用具有除磷和硝化功能的二级处理,对于二级排放标准,可以采用生物除磷方式;对于一级排放标准,可以采用生物除磷与化学除磷相结合的方式。
对于某些低浓度或超低浓度污水,单独生物除磷效果不好,须采用生物除磷和化学除磷相结合的方式。
在上述各种除磷脱氮工艺中,对中小污水厂来讲,比较有发展前途的工艺是SBR工艺、氧化沟工艺。
因为这两种工艺一般都不设初沉地,SBR工艺和合建式氧化沟工艺也不需要二沉地、污泥回流设施,因此,水、泥处理流程大为简化,可以达到占地少、能耗低、投资省。
运行管理方便的目的,符合当前污水处理工艺合建、简化发展的总趋势。
采用延时曝气的SBR工艺和氧化沟工艺产生的剩余污泥已经基本达到好氧稳定,剩余污泥经过浓缩脱水后就可以直接应用于农田、填埋或者焚烧,不需要搞污泥消化,因此建设、运转的费用大为减少,这一点对中小城镇污水厂来说,是非常有吸引力的。
四氧化沟工艺的特点、各种形式和适用情况氧化沟实际上是活性污泥法的一种变形,它的水力流态和普通活性污泥法相差较大,是一种首尾相接的循环流,通常采用延时曝气。
氧化沟是荷兰人二战后为处理小城镇污水而开发的,由于氧化沟处理污水经济、简单和管理方便,所以它问世以来,发展很快。
严格地说,氧化沟不属于专门的生物除磷脱氮工艺。
但是随着氧化沟技术的发展,它早已超出原先的实践范围,出现了一系列除磷脱氮技术与氧化沟技术相结合的污水处理工艺流程。
按照运行方式,氧化沟可以分为连续工作式、交替工作式和半交替工作式。
连续工作式氧化沟如帕斯韦尔氧化沟、卡鲁塞尔氧化沟。
奥贝尔氧化沟在我国应用比较多,这些氧化沟通过设置适当的缺氧段、厌氧段、好氧段都能取得较好的除磷脱氮效果。
连续工作式氧化沟又可分为合建式和分建式。
交替工作式氧化沟一般采用合建式,多采用转刷曝气,不设二沉池和污泥回流设施。
交替工作式氧化沟又可分为单沟式、双沟式和三沟式,交替式氧化沟兼有连续式氧化沟和SBR工艺的一些特点,可以根据水量水质的变化调节转刷的开停,既可以节约能源,又可以实现最佳的除磷脱氮效果。
广东雁田污水厂(近期规模1.5万吨/d)采用的是双沟式氧化沟工艺。
邯郸东污水厂(一期工程规模6.6万吨)采用的是三沟式氧化沟工艺。
一般交替式氧化沟工艺的设备闲置率比较高,容积利用率比较低,如邯郸东污水厂的设计污泥星系数为O.55,实际为O.48,D型氧化沟曝气转刷的实际利用率只有37.5%。
五SBR工艺的特点、各种形式和适用情况SBR工艺的基本特征是在一个反应池中完成污水的生化反应、沉淀、排水、排泥,处理设施比一般氧化沟还要简单。
SBR工艺的概念和操作灵活性使其易于引入厌氧/好氧除磷过程或缺氧/好氧除氮过程,通过调整运行周期以及控制各工序时间的长短,可实现对氮磷的高效去除。
SBR工艺有很多种类型,除了常规SBR工艺之外,还有DAT-IAT工艺,Unitank工艺、CAST及CASS 工艺、ICEAS工艺等。
ICEAS工艺和DAT-IAT工艺均采用连续进水方式,使进水的控制系统变得简单,但是因为主反应区前面缺乏一个厌氧段,因此,除磷的效果不够理想,DAT-IAT工艺的回流比比较大,运行费用偏高。
上海石洞口污水处理厂采用的是Unitank工艺;昆明第三污水处理厂采用的是ICEAS工艺;天津经济技术开发区污水处理厂(设计规模10万吨/日)采用的是DAT-IAT工艺。
和合建式氧化沟一样,因为在一个较长停留时间的曝气系统内,只有50%左右的池容用于曝气,SBR 工艺的容积利用率也不高。
六SBR工艺和氧化沟工艺的比较如前所述,SBR工艺和氧化沟工艺都比较适合于中小型污水厂,如果设计管理的好,都可以取得比较好的除磷脱氮效果。
但是这两种工艺又各有优缺点,分别适用于不同的情况。
1.SBR工艺由于采用合建式,不需要设置二沉地,同时由于采用微孔曝气,可以采用的水深一般为4~6m,比一般氧化沟的水深(3~4m)要深,因此在同样的负荷条件下,SBR工艺的占地面积小,如果污水处理厂所在地的征地费用比较高,对SBR工艺有利。
2.SBR工艺中一个周期的沉淀时间是由活性污泥界面的沉速、MLSS浓度、水温等因素确定的,浑水时间是由滗水器的长度、上清液的滗除速率等因素决定的,对于一个固定的反应系统,沉淀时间和滗水时间的和基本上是固定的,一般都不应小于2小时,因此,每个周期的时间短,反应时间所占的比例就低,反应池的容积利用系数降低。
对于对污泥稳定要求不高的污水厂,选择SBR工艺不利。
(合建式氧化沟工艺也有这个缺点)。
3.SBR工艺和交替式氧化沟需要频繁地开停进水阀门,曝气设备,滗水器等,因此,对自控设备的要求比较高,目前,某些国产设备的质量尚不过关,如果考虑进口,自控系统所占的投资比例将增加,而且将增大维修费用。
4.在寒冷的气候条件下,因为表面爆气器会造成表面冷却或者结冰,降低污水的温度,而污水的温度降低,对生化反应尤其是硝化反应的影响较大,所以,在寒冷地区,采用氧化沟工艺,需要采取一些特殊措施,如将氧化沟加盖,而这些措施都使氧化沟工艺在和其它工艺竞争中,处于不利的地位。
5.在一些水量非常小的小城镇,夜间几乎没有污水产生,这时候SBR工艺和交替式氧化沟工艺有优越性,曝气设备可以白天运转,夜间停止运行。
七SBR工艺和氧化沟工艺比较的一个实例某开发区污水处理厂工程,设计规模5万吨/日,变化系数1.40,设计进出水水质如下:采用氧化沟工艺(CAST工艺)和三沟式氧化沟工艺进行工艺比较,结果如下表:对于上例的具体情况,经过投资估算比较和经济评价,采用SBR工艺优于三沟式氧化沟工艺。
应该提出的是:选择污水厂的处理工艺,是一件复杂的事情,目前的各种处理工艺,都各有优缺点,只有最适合某个工程的工艺,并不存在最先进的工艺。