第二篇最优控制理论习题答案
- 格式:pdf
- 大小:128.48 KB
- 文档页数:4
2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d L x dt x∂⋅=∂ 代入欧拉方程0L d L x dt x∂∂-⋅=∂∂,可得20x =,即0x = 故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L x x ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩将f t ,1c ,2c 代入J 可得5*201500502150233J x x dt =+=-=⎰ 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。
解:由题可知,21L x =+,()00x =,()1x 自由欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,L 0ft x∂=∂,0fTt L L x x ∂⎛⎫+= ⎪∂⎝⎭易得到()x t a =其通解为:()x t at b =+代入边界条件()f x t a =,()00x =,1f t =,求出0a =,0b = 将f t ,a ,b 代入J 可得()1*211J x dt =+=⎰极值轨线为()*0x t = 2-9 求使泛函22211220(2)J x x x x dt π=++⎰为极值并满足边界条件1(0)0x =,2(0)0x =1()12x π=,2()12x π=- 的极值轨线*1()x t 和*2()x t 。
标准文档1 2f最优控制习题及参考答案习题 1 求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:t f J = ∫(x2 +1)dt t 0解: 由已知条件知: t 0 = 0 , t f = 1d由欧拉方程得: (2x ) = 0dtx = C 1x = C 1t + C 2将 x (0) = 1,x (1) = 2 代入,有:C 2 = 1,C 1 = 1得极值轨线: x *(t ) = t +1习题 2 求性能指标: J = ∫ 1(x 2 +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解:由上题得: x *(t ) = C t + C由 x (0) = 0 得: C 2 = 0∂L由∂xt =t f= 2x (t f ) = 2C 1 t =t = 0 t于是: x *(t ) = 0【分析讨论】对于任意的 x (0) = x 0 ,x (1) 自由。
2 0 1∫⎩ λ = −λ有: C = x , C = 0 ,即: x *(t ) = x 其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3 已知系统的状态方程为: x1 (t ) = x2 (t ) , x 2 (t ) = u (t )边界条件为: x 1 (0) = x 2 (0) = 1 , x 1 (3) = x 2 (3) = 0 ,31 试求使性能指标 J =u 2(t )dt 2取极小值的最优控制 u *(t ) 以及最优轨线 x *(t ) 。
⎡ x ⎤解:由已知条件知: f = ⎢ 2⎥⎢⎣ u ⎥⎦Hamiton 函数: H = L + λT f H = 1u 2 + λ x + λ u⎧λ = 0由协态方程: ⎨ 12 121 22⎧λ = C① 得: ⎨11⎩λ2 = −C 1t + C 2②∂H由控制方程: ∂u= u + λ2 = 0得: u = −λ2 = C 1t − C 2 ③由状态方程: x 2 = u = C 1t − C 2得: x (t ) = 1C t 2− C t + C④22 由状态方程: x 1 = x 21 2 3得: x (t ) = 1C t 3− 1C t 2+ C t + C⑤16 122 3 41 ∫⎪⎩=−=−⎡1⎤ ⎡0⎤将 x (0) = ⎪ ⎪ , x (3) = ⎪0⎪ 代入④,⑤,⎣1⎦ ⎣ ⎦10联立解得: C 1 =由③、④、⑤式得:u * (t ) = 10t − 29 , C 2 = 2 , C 3 = C 4 = 1 9x *(t ) = 5 t 3 −t 2 + t +127 x *(t ) = 5 t 2 − 2t +1 29习题 4 已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
广西工学院在职研究生班课程《最优控制》参考答案一、简答题1、系统数学模型、边界条件与目标集、容许控制、性能指标。
2、积分型性能指标,末值型性能指标,综合型性能指标3、控制向量不受约束,且是时间的连续函数。
4、控制向量受到约束,哈密顿函数对控制向量的偏导不存在时。
5、状态调节器问题;输出调节器问题;跟踪问题。
6、不论初始状态和初始决策如何,当把其中的任何一级和状态再作为初始级和初始状态时,其余的决策对此必定也是一个最优控制。
二、计算题(70分)1、解 本题 t f 固定,末态自由。
由题意 ∙+=21x L欧拉方程2=-=∂∂-∂∂∙∙∙x L dtd xL x解得 ()21c t c t x += 由边界条件及横截条件021==∂∂∙=∙x xLf t解得 c1=0 ,c2=0 故所求极值曲线为 ()0=*t x2、解 本题是求解最短曲线问题,可以将性能指标设定为曲线长度函数的积分,当该指标为最小时,所得的曲线即为最短曲线。
根据几何知识,在直角坐标系中弧线元的长度表示为dtdx dt ds x21)()(22∙+=+=设性能指标为 dt J tftox⎰∙+=21由题意可知,tf 固定,末态固定,21xL ∙+=,由欧拉方程0=∂∂-∂∂∙xL dtd xL ,22c x=∙(常量)解得 x(t)=ct+d根据边界条件,可得c=1,d=0,故所求曲线为:()t t x =*3、解 本题为定常系统,tf 固定,末端自由,末值型指标,控制受约束的最后控制问题,可采用极小值原理求解。
由题意知,性能指标为末值型的,即 [])1()1(2)(22x x tf x +=ϕ 令哈密顿函数 H=1211)(x u x λλ++-协态方程022=∂∂-=∙x H λ,2c =λ2112111,c e c x H t+=-=∂∂-=∙λλλλ,横截条件()()1,1211=+=-t e t t λλ 求出 c1=e 1-t +1,c2=1,则有()()1,1211=+=-t e t t λλ极值条件 u ⎩⎨⎧<>-==*0,10,1)sgn()(111λλλt因为()111+=-t e t λ>0,t []1,0∈,故可确定 10,1)(<≤-=*t t u4、解 根据性能指标的形式,可知本题是线性二次型问题,且是有限时间状态调节器问题。
2-5 求通过(0)1x =,(1)2x =,使下列性能泛函为极值的极值曲线*()x t :2(1)ft t J x dt =+⎰解:由题可知,始端和终端均固定,被积函数21L x =+,0L x ∂=∂,2L x x ∂=∂, 2d L x dt x∂⋅=∂ 代入欧拉方程0L d Lx dt x∂∂-⋅=∂∂,可得20x =,即0x =故1x c = 其通解为:12x c t c =+代入边界条件(0)1x =,(1)2x =,求出11c =,21c = 极值曲线为*()1x t t =+2-6 已知状态的初值和终值为(1)4x =,()4f x t =式中f t 自由且f t >1,试求使下列性能泛函达到极小值的极值轨线*()x t :211[2()()]2ft J x t x t dt =+⎰ 解:由题可知,2122L x x =+,()4f t ψ=,()14x =,()4f x t = 欧拉方程:L 0d L x dt x∂∂-=∂∂ 横截条件:()00t x =x ,()()f f x t t ψ=,()0fTt L L xx ψ∂⎛⎫+-= ⎪∂⎝⎭易得到2dxdt= 故12x t c =+ 其通解为:()212x t t c t c =++根据横截条件可得:()()()122121114424f f f f f x c c x t t c t c x t t c ⎧=++=⎪⎪=++=⎨⎪=+=⎪⎩解以上方程组得:12569f t c c =⎧⎪=-⎨⎪=⎩ 还有一组解⎪⎩⎪⎨⎧===12121c c t f (舍去,不符合题意f t >1)将f t ,1c ,2c 代入J 可得3140)3(4)212(5025.2*=-=+=⎰⎰•t dt x x J . 极值轨线为()*269x t t t =-+2-7 设性能泛函为120(1)J x dt =+⎰求在边界条件(0)0x =,(1)x 自由情况下,使性能泛函取极值的极值轨线*()x t 。
最优控制课后习题答案最优控制课后习题答案最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题考虑一个线性时不变系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= Ax(t) + Bu(t) \\J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt\end{align*}$$其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$\begin{align*}\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P\end{align*}$$其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题考虑一个非线性系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= f(x(t), u(t)) \\J(u) &= \int_{0}^{T} g(x(t), u(t)) dt\end{align*}$$其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
最优控制习题及参考答案6212最优控制习题及参考答案习题 1求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:t f J = ∫(x2 +1)dt t 0解: 由已知条件知: t 0=0 , t f= 1d由欧拉方程得:(2x ) = 0dtx = C 1x = C 1t + C 2将 x (0) = 1,x (1) = 2 代入,有:C 2 = 1,C 1 = 1得极值轨线: x *(t ) = t +1习题 2求性能指标:J = ∫ 1(x 2 +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解: 由上题得:x * (t ) = C t + Cx * (t )63x f由 x (0) = 0 得: C 2= 0∂L由 ∂xt =tf= 2x (t f ) = 2C 1 t =t = 0t0 1于是: x *(t ) = 0【分析讨论】对于任意的 x (0) = x,x (1)自由。
6421∫ ⎩λ =有: C = x , C = 0 ,即: x *(t ) = x其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3已知系统的状态方程为:x 1 (t ) = x 2 (t ), x 2 (t ) = u (t )边界条件为: x 1(0) = x 2(0) = 1 , x 1(3)= x 2(3) = 0 ,31 试求使性能指标 J =u 2(t )dt 2取极小值的最优控制 u *(t ) 以及最优轨线 x *(t ) 。
⎡ x ⎤解: 由已知条件知: f = ⎢ 2⎥⎢⎣ u ⎥⎦Hamiton 函数: H = L + λTfH = 1u 2+ λ x + λ u⎧λ = 0由协态方程: ⎨12121 2 2⎧λ = C① 得: ⎨1 1⎩λ2 = −C 1t + C2 ② ∂H由控制方程:∂u= u + λ2 = 0 得: u = −λ2= C 1t − C 2③由状态方程:x2 = u = C1t −C2得:x (t) = 1 C t2 −C t + C ④2 2由状态方程:x1 = x21 2 3得:x (t) = 1 C t3 −1 C t 2 + C t + C ⑤1 6 12 23 465661⎪⎩=− ∫⎡1⎤ ⎡0⎤将x (0) = ⎢ ⎢,x (3) = ⎢0⎢代入④,⑤, ⎣1⎦⎣ ⎦ 10联立解得: C 1 =由③、④、⑤式得:u * (t ) = 10t − 29,C 2 = 2 , C3=C 4 =1 9x * (t ) = 5 t 3 −t 2+ t +1 27 x *(t ) = 5 t 2 − 2t +1 29习题 4已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
1. 求使得2()ln f x x x =-最小的x 值。
解:'1()20f x x x =-=求得可能的极值点是x = "21()2f x x =--恒小于0. 所以使得2()ln f x x x =-最小的x2. 求使221122()10124f X x x x x =---为极值的极值点x 。
解:12'12'12201201280x x f x x f x x =--==--=由上述两个方程得出的可能极值点为[]***12,0,0T T X x x ⎡⎤==⎣⎦二阶导数矩阵为*"20,1212,8X f --⎡⎤=⎢⎥--⎣⎦用塞尔维斯特判据来检验,有200-<, 20,12det 16012,8--⎡⎤=>⎢⎥--⎣⎦故*"X f 为负定,在[]*0,0T X =处,()f X 为极大。
3求.使222123121323()55484f X x x x x x x x x x =+++--为极值的极值点x 。
解:123'123'213'31210480244010840x x x f x x x f x x x f x x x =+-==+-==--=由上述三个方程得出的可能极值点为 []****123,,0,0,0T TX x x x ⎡⎤==⎣⎦ 二阶导数矩阵为*"10,4,84,2,48,4,10X f -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦用塞尔维斯特判据来检验,有100> 10,4det 04,2⎡⎤>⎢⎥⎣⎦10,4,8det 4,2,4808,4,10-⎡⎤⎢⎥-=>⎢⎥⎢⎥--⎣⎦故*"X f 为正定,在[]*0,0,0TX =处,()f X 为极小。
4.求使2212min ()45,f X x x =+且12()2360g X x x =+-=。
解:作拉格朗日函数12221212(,)()()45(236)L x x f X g X x x x x λλ=+=+++-极值的必要条件 11221282010302360L x x L x x L x x λλλ∂=+=∂∂=+=∂∂=+-=∂联立求解上面三个方程可得307λ=- 可能的极值点坐标为11514x =,297x = 根据问题的性质可以判断极小值存在且是唯一的。
标准文档1 2f最优控制习题及参考答案习题 1 求通过 x (0) = 1 , x (1) = 2 ,使下列性能指标为极值的曲线:t f J = ∫(x2 +1)dt t 0解: 由已知条件知: t 0 = 0 , t f = 1d由欧拉方程得: (2x ) = 0dtx = C 1x = C 1t + C 2将 x (0) = 1,x (1) = 2 代入,有:C 2 = 1,C 1 = 1得极值轨线: x *(t ) = t +1习题 2 求性能指标: J = ∫ 1(x 2 +1)dt在边界条件 x (0) = 0 , x (1) 是自由情况下的极值曲线。
解:由上题得: x *(t ) = C t + C由 x (0) = 0 得: C 2 = 0∂L由∂xt =t f= 2x (t f ) = 2C 1 t =t = 0 t于是: x *(t ) = 0【分析讨论】对于任意的 x (0) = x 0 ,x (1) 自由。
2 0 1∫⎩ λ = −λ有: C = x , C = 0 ,即: x *(t ) = x 其几何意义: x (1) 自由意味着终点在虚线上任意点。
习题 3 已知系统的状态方程为: x1 (t ) = x2 (t ) , x 2 (t ) = u (t )边界条件为: x 1 (0) = x 2 (0) = 1 , x 1 (3) = x 2 (3) = 0 ,31 试求使性能指标 J =u 2(t )dt 2取极小值的最优控制 u *(t ) 以及最优轨线 x *(t ) 。
⎡ x ⎤解:由已知条件知: f = ⎢ 2⎥⎢⎣ u ⎥⎦Hamiton 函数: H = L + λT f H = 1u 2 + λ x + λ u⎧λ = 0由协态方程: ⎨ 12 121 22⎧λ = C① 得: ⎨11⎩λ2 = −C 1t + C 2②∂H由控制方程: ∂u= u + λ2 = 0得: u = −λ2 = C 1t − C 2 ③由状态方程: x 2 = u = C 1t − C 2得: x (t ) = 1C t 2− C t + C④22 由状态方程: x 1 = x 21 2 3得: x (t ) = 1C t 3− 1C t 2+ C t + C⑤16 122 3 41 ∫⎪⎩=−=−⎡1⎤ ⎡0⎤将 x (0) = ⎪ ⎪ , x (3) = ⎪0⎪ 代入④,⑤,⎣1⎦ ⎣ ⎦10联立解得: C 1 =由③、④、⑤式得:u * (t ) = 10t − 29 , C 2 = 2 , C 3 = C 4 = 1 9x *(t ) = 5 t 3 −t 2 + t +127 x *(t ) = 5 t 2 − 2t +1 29习题 4 已知系统状态方程及初始条件为x =u , x (0) = 1试确定最优控制使下列性能指标取极小值。
第二篇最优控制理论习题答案:2-1、求通过x(0)=1,x(1)=2,并使性能指标120(1)J xdt =+∫&为最小的曲线x(t)。
解:本题属于无约束(无状态方程约束),始端和终端均固定的泛函极值问题,可用变分法求解。
被积函数 21,0,2,2L L d LL xx x x x dt x∂∂∂=+==⋅=∂∂∂&&&&&& 代入欧拉方程 0L d Lx dt x ∂∂−⋅=∂∂&, 得20x =&&, 即0x =&& 1xc =&, 12x c t c =+ (通解形式) 由边界条件 212(0)1(1)2x c x c c ==⎧⎨=+=⎩, 解之,得1211c c =⎧⎨=⎩ 故最优轨线为 *()1x t t =+2-2、求一阶系统()(),(0)1xt u t x ==&,当性能指标为12201()2J x u dt =+∫取最小值时的最优控制与最优轨线。
解:本题属于有约束,始端固定;终端时间f t 固定,()f x t 自由,控制u 无限制的泛函极值问题,可用变分法求解。
构造哈密顿函数 222211() ()22H x u u L x u λ=++=+注: 协态方程 H x x λ∂=−=−∂&, 即x λ=−& ① 极值条件/控制方程 0Hu uλ∂=+=∂, 即u λ=− ②由系统的状态方程 xu =&及②式,,x x λλ=−=−&&&& ③ 由①式及③式,得 xx =&& 故12()ttx t c e c e −=+ 12()()t t t xt c e c e λ−=−=−+& 代入边界条件11212(0)1(1)0,(1)(0)x c c c e c e λ−==+=−+=, [终端横截条件()f t f x t φλ∂=∂] 得 120.12,0.88c c ==最优轨线 *()0.120.88t tx t e e −=+ 最优控制 *()0.120.88t tu t e e −=−2-5、有一开环系统,包含放大倍数为4的放大器和一个积分环节。