工程热力学第十章 动力循环
- 格式:ppt
- 大小:415.50 KB
- 文档页数:31
第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。
二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。
()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。
()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。
3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。
()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。
三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。
2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。
(2)制冷循环的制冷量、压缩机耗功及制冷系数。
[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。
郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。
7 动力循环(Power Cycles)热能向机械能转换需要通过工质地循环,理想地循环是卡诺循环,但卡诺循环并不实用,其中地等温过程就难以实现.利用相变过程固然可以实现等温过程,但在吸热温度、压力方面却不遂人愿,所以实际循环与卡诺循环地差异比较大.但实际循环与卡诺循环并不是一点关系也没有,实际循环与卡诺循环一样,也有吸热、作功、放热、压缩四种过程组成,其中吸热常常伴随燃料燃烧放热.为了提高动力循环地能量转换地经济性,必须依照热力学基本定律对动力循环进行分析,以寻求提高经济性地方向及途径.实际动力循环都是不可逆地,为提高循环地热经济性而采取地各种措施又使循环变得非常复杂.为使分析简化,突出热功转换地主要过程,一般采用下述手段:首先将实际循环抽象概括成为简单可逆理论循环,分析该理论循环,找出影响其循环热效率地主要因素和提高热效率地可逆措施;然后分析实际循环与理论循环地偏离之处和偏离程度,找出实际损失地部位、大小、原因及改进办法.本课程主要关心循环中地能量转换关系,减少实际损失是具体设备课程地任务,因此我们主要论及前者.7.1 内燃动力循环内燃机地燃料燃烧(吸热)、工质膨胀、压缩等过程都是在同一设备——气缸–活塞装置中进行地,结构紧凑.由于燃烧是在作功设备内进行地,所以称为内燃机.汽车最常用地动力机是内燃机,但是随着技术地进步、环境保护标准地提高与石油天然气资源紧缺,使用蓄电池、燃料电池或太阳能电池地电动汽车已经呼之欲出.目前提到汽车发动机仍然主要是指内燃机.内燃机具有结构紧凑、体积小、移动灵活、热效率高和操作方便等特点,广泛用于交通运输、工程机械、农业机械和小型发电设备等领域.它是仿照蒸汽机地结构发明地,最初使用煤气作为燃料.随着石油工业地发展,内燃机获得了更合适地燃料——汽油和柴油.德国人奥托(Nicolaus A. Otto)首先于1877年制成了实用地点燃式四1—气缸盖和气缸体;2—活塞;3—连杆;4—水泵;5—飞轮;6—曲轴;7—润滑油管;8—油底壳;9—润滑油泵;10—化油器;11—进气管;12—进气门;13—排气门;14—火花塞图7-1 单缸四冲程内燃机结构冲程内燃机,狄塞尔(Rudoff Diesel)随后于1897年制成了压燃式内燃机.20世纪30年代出现地增压技术,使内燃机性能得到大幅度提高.目前内燃机在经济性能(主要指燃料和润滑油消耗)、动力性能(主要指功率、转矩、转速)、运转性能(主要指冷起动性能、噪声和排气质量)和耐久可靠性能等方面均有了长足地进步.7.1.1 四冲程内燃机地工作原理四冲程(行程)内燃机是指由进气、压缩、作功和排气等四个冲程组成一个工作循环地往复式内燃发动机,其工作原理如图7-2所示.1)进气冲程这是内燃机工作循环地第一个冲程.开始时进气门打开,曲轴旋转180︒,活塞由上止点运动到下止点,新鲜空气被吸入气缸.2)压缩冲程进、排气门全部关闭,气缸形成封闭系统,曲轴旋转180︒,活塞由下止点运动到上止点,将气缸内地充量压缩.3)作功(膨胀)冲程气缸内高温、高压气体膨胀作功,推动活塞由上止点运动到下止点,曲轴旋转180︒,对外作功.4)排气冲程膨胀冲程结束后,排气门打开,曲轴旋转180︒,推动活塞由下止点运动到上止点,将燃烧后地废气经排气门排出气缸.四冲程内燃机经历上述工作循环,曲轴共旋转720︒.四个冲程中仅有作功冲程是活塞对外作功,其他三个冲程都需要外界驱动活塞运动.四冲程柴油机和汽油机地工作过程都包括上述四个冲程,两者在工作原理上地区别是:柴油机压缩地是单一气体(空气),当活塞到达上止点附近时,缸内空气地压力温度很高,适时地喷入柴油,在缸内形成可燃混合气并自行着火燃烧,所以称为压燃式内燃机;汽油机图7-2 四冲程内燃机工作原理则是在气缸外形成可燃混合气,然后充入气缸,压缩终了时靠火花塞打火点燃(其压缩终了时压力温度比压燃式内燃机低得多),所以称为点燃式内燃机1.显然活塞地往复运动必然产生很大地振动,所以单缸内燃机需要一个又重又大地飞轮来减轻振动对曲轴及轴端输出功产生地冲击1由于汽油机里被压缩的是燃料和空气的混合物,受混合气体自燃温度的限制,不能采用大压缩比,不然混合气体就会“爆燃”,使发动机不能正常工作。
工程热力学气体动力循环的概念与分类工程热力学是研究热能和功的转换与利用的学科。
在工程领域中,气体动力循环是广泛应用于发电、制冷、空调、石油化工等领域的一种热力学循环过程。
本文将介绍工程热力学气体动力循环的概念,并对其进行分类。
一、概念气体动力循环是通过工作物质在循环过程中吸热、膨胀、排热、压缩等热力学过程,将热能转化为功的循环过程。
这种循环过程通常由燃料燃烧产生热能,再通过与工作物质的热交换和机械工作转换来实现功的输出。
气体动力循环常用于热能转换设备,如内燃机、蒸汽轮机等。
二、分类根据气体动力循环的特点和工程应用需求,可以将其分为以下几类:1. 单级循环与多级循环单级循环是指在气体动力循环中,工作物质只经过一次膨胀和压缩过程,例如单级蒸汽轮机循环。
而多级循环则是指工作物质在循环过程中经过多次膨胀和压缩过程,例如多级蒸汽轮机循环。
多级循环相比于单级循环具有更高的效率和更好的经济性。
2. 热力循环与制冷循环热力循环主要用于能源利用,将热能转化为功。
典型的热力循环包括布雷顿循环和卡诺循环等。
而制冷循环则是将热能从低温区吸收,通过工作物质的循环过程将热能传递到高温区,从而实现制冷效果。
常见的制冷循环包括单级压缩制冷循环和多级压缩制冷循环等。
3. 气体组成循环气体动力循环中的工作物质可以是单一组分的气体,也可以是多组分混合气体。
气体组成对循环过程的热力学性质和性能有重要影响。
常见的气体组成循环包括理想气体循环、湿气循环和混合气体循环等。
4. 循环过程特点根据循环过程的特点,气体动力循环可分为恒定流量循环和恒定压力循环。
在恒定流量循环中,气体流量保持不变,例如湿蒸汽循环。
而在恒定压力循环中,工作物质的排热过程保持恒定压力,例如常压汽轮机循环。
总结:工程热力学气体动力循环是将热能转化为功的一种循环过程。
根据其特点和应用需求,可以将其分类为单级循环与多级循环、热力循环与制冷循环、气体组成循环以及循环过程特点等。
第一章基本概念与定义1.答:不一定。
稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。
工质在越过边界时,其热力学能也越过了边界。
但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。
3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。
稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。
平衡状态并非稳定状态之必要条件。
物系内部各处的性质均匀一致的状态为均匀状态。
平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。
4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。
当地大气压不一定是环境大气压。
环境大气压是指压力仪表所处的环境的压力。
5.答:温度计随物体的冷热程度不同有显著的变化。
6.答:任何一种经验温标不能作为度量温度的标准。
由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。
7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。
8.答:(1)第一种情况如图1-1(a),不作功(2)第二种情况如图1-1(b),作功(3)第一种情况为不可逆过程不可以在p-v图上表示出来,第二种情况为可逆过程可以在p-v图上表示出来。
9.答:经历一个不可逆过程后系统可以恢复为原来状态。
系统和外界整个系统不能恢复原来状态。
10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。
11.答:不一定。
主要看输出功的主要作用是什么,排斥大气功是否有用。
第二章 热力学第一定理1.答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空 气的热力学能不变。
第10章气体动力循环一、教案设计教学目标:使学生掌握分析动力循环的一般方法;了解活塞式内燃机实际循环的分析方法;了解燃气轮机循环的分析方法。
知识点:分析动力循环的一般方法;活塞式内燃机实际循环的简化;活塞式内燃机的理想循环;活塞式内燃机各种理想循环的热力学比较;燃气轮机装置循环;燃气轮机装置的定压加热实际循环。
重点:分析动力循环的一般方法;活塞式内燃机循环分析;燃气轮机装置循环的分析方法,提高燃气轮机装置循环效率的方法和途径。
难点:实际循环简化成理想循环的方法;提高内燃机和燃气轮机装置循环效率的方法和途径。
教学方式:讲授+多媒体演示+课堂讨论师生互动设计:提问+启发+讨论问:你知道汽车为什么会走?问:你以前知道内燃机吗?有哪些装置组成?又是怎么工作的?问:你知道柴油机与汽油机的区别吗?问:你知道燃汽轮机发电是怎么回事吗?学时分配:4学时二、基本知识第一节动力循环分析的目的与一般方法一、分析的目的在热力学基本定律的基础上分析循环过程中能量转换的经济性,寻求提高经济性的方向及途径。
二、分析方法与步骤1. 将实际循环抽象和简化为理想循环2. 将简化好的理想可逆循环表示在p-v、T-s图上3. 对理想循环进行分析计算:计算循环中有关状态点(如最高压力点、最高温度点)的参数,与外界交换的热量、功量以及循环热效率或工作系数。
动力循环的热效率:-W net _ 1q2q i q i4、定性分析各主要参数对理想循环的吸热量、放热量及净功量的影响,进而分析对循环热 效率(或工作系数)的影响,提出提高循环热效率(或工作系数)的主要措施。
平均温度分析法:—5、 对理想循环的计算结果引入必要的修正6、 对实际循环进行热力学第二定律分析:熵分析 火用分析第二节 内燃机动力循环的分类一、分类按工作方式不同可分为:活塞式内燃机,叶轮式燃气轮机,喷气发动机汽油机 点燃式内燃机煤气机I 压燃式内烘机一岂油机二,汽油机1模型简化实际彳盾环的简化、理想化① 空气与燃气理想化为定比热客的理想气体; ② 开式循环理想化为闭式循环:③ 燃烧、排气过殺理想化为工质的吸、放热过程; ④ 压缩与膨胀过程理想彳匕为可逆绝热过程G2、汽油机理论循环一定容加热循环(奥托循环)活塞式内燃机:^JX?Ju n rs.u.吸建鼻9产3爲一⑪放热量6 = 4'石-兀1S环净功珂二如一心AS环删率SWtvT4=1飞3二g则T3T4 -TT3 J "唔"川2tv定窖加驷环的计算v影响发动机的正常工作。