初三数学抛物线常考题型
- 格式:docx
- 大小:917.99 KB
- 文档页数:28
初三数学二次函数经典题型二次函数单元检测 (A) 姓名___ ____一、填空题: 1、函数21(1)21my m x mx +=--+是抛物线,则m = .2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .8. 如果抛物线c bx ax y ++=2的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x += B . 220x y +-= C . 22y ax -=- D .2210x y -+=223x y -=12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下 B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点13.抛物线122+--=m mx x y 的图象过原点,则m 为( )A .0B .1C .-1D .±114.把二次函数122--=x x y 配方成为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m 16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A 、23(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、23(1)2y x =-+18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+ B 、25y x =- C 、22y x x =-+D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1) 求出S 与x 之间的函数关系式,并确定自变量x 的取值范围; (2) 请你设计一个方案,使获得的设计费最多,并求出这个费用.24、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.二次函数单元检测 (B ) 姓名_______一、新课标基础训练1.下列二次函数的图象的开口大小,从大到小排列依次是( ) ①y=13x 2;②y=23x 2+3;③y=-12(x-3)2-2;④y=-32x 2+5x-1. A .④②③① B .①③②④ C .④②①③ D .②③①④2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式( )A .y=3(x+5)2-5;B .y=3(x-1)2-5;C .y=3(x-1)2-3;D .y=3(x+5)2-33.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( ) A .5元 B .10元 C .15元 D .20元4.若直线y=ax+b (ab ≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( ) A .一 B .二 C .三 D .四5.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<146.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±12二、新课标能力训练7.如图,用2m 长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m 2.8.如图,有一个抛物线型拱桥,其最大高度为16m , •跨度为•40m ,• 现把它的示意图放在平面直角坐标系 中••,••则此抛物线的函数关系式为__________.9、已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?10、观察表格:23(1)求a ,b ,c 的值,并在表内空格处填入正确的数.(2)画出函数y=ax 2+bx+c 的图象,由图象确定,当x 取什么实数时,ax 2+bx+c>0.11、如图(2),已知平行四边形ABCD 的周长为8cm ,∠B =30。
中考数学压轴题专题一:利用抛物线中的角度求点的坐标(原创)二次函数中的角度问题通常要构造直角、相似、全等三角形把角度问题转化为边的问题,求抛物线中的点坐标方法一般采用两种方法,第一种是求线与线的交点,这时需要联立方程;第二种是几何法,过点做坐标轴的垂线,再利用三角函数或者是相似三角形去求解!例1.抛物线y=﹣x2+x+4与坐标轴分别交于A,B,C三点,P是第一象限内抛物线上的一点且横坐标为m.连接CP,是否存在点P,使得∠BCO+2∠PCB=90°,若存在,求m 的值,若不存在,请说明理由.解题思路:1.利用∠BCO+2∠PCB=90°和∠BCO+∠CBO=90°推出∠CBO=2∠PCB2.得出∠CMB=∠MCB得到BC=BM3.求出M的坐标,进而求出直线CM的直线解析式4.联立直线CM方程和抛物线方程,求交点坐标例2.已知抛物线y=x2+x﹣3与x轴交于点A(1,0)和点B两点,与y轴交于点C,点P是抛物线点第三象限上一动点(不与点A,B,C重合),作PD⊥x轴,垂足为D,连接PC.且∠CPD=45°,求点P的坐标;解题思路:45度可以联想到等腰直角三角形1.延长PC交x轴于点E,得出等腰直角三角形2.求出E点坐标,进而求出直线CE的解析式3.联立直线CE方程和抛物线方程,求交点坐标例3.抛物线y=x2﹣4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;解题思路1.分情况讨论,分P在原点的左右侧进行讨论2.P在原点右侧比较简单3.P在原点左侧要结合P在原点右侧的情况,可以得出等腰△OGD,求出G点坐标4.利用GD的直线直线方程或相似三角形求出P点坐标例4.已知抛物线y=﹣x2﹣6x﹣5与x轴交于点A(﹣1,0)和B(﹣5,0),与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连AN交抛物线于M,连AC、CM.tan ∠ACM=2时,求M点的横坐标;解题思路:1.构造一线三垂直利用相似求出点F坐标2.求出直线CF的解析式3.联立直线CF方程和抛物线方程,求交点坐标(求交点可以利用韦达定理)例5.在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A(﹣1,0)和点B,与y轴交于点C,顶点D的坐标为(1,﹣4).点P在抛物线上且满足∠PCB=∠CBD,求点P 的坐标;解题思路:1.分情况讨论,P在直线BC的上方和下方2.P在直线BC上方,利用∠PCB=∠CBD得出PC平行BD,利用斜率相等求出直线PC解析式联立PC方程和抛物线方程,求交点坐标3.P在直线BC的下方,∠PCB=∠CBD得出等腰三角形CFB,4.可以得出△BCD为直角三角形,,推出F为BD的中点5.求出直线CF的方程,再联立抛物线方程求出交点坐标例6.如图,在平面直角坐标系中,直线y=﹣x+2与x轴交于点A,与y轴交于点B,抛物线经过A,B两点且与x轴的负半轴交于点C.点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;解题思路:1.过点B做OA平行线2.∠ABD=2∠BAC得出∠ABD=2∠EBA,得出∠FBD=∠BAC3.利用tan∠FBD=tan∠BAC求出D点做坐标例7.已知抛物线y=(x﹣1)2,D为抛物线的顶点,直线y=kx+4﹣k与抛物线交于P、Q两点.求证:∠PDQ=90°;解题思路思路1.构造一线三垂直思路2.证明直线PD和直线DQ斜率之积为-1思路3.利用勾股定理逆定理证明例8.如图,抛物线y=x2﹣2x﹣6与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.连接BD,F为抛物线上一动点,当∠F AB =∠EDB时,求点F的坐标;解题思路:1.分点F在x轴下方时和上方时进行分类讨论2.AB在x轴上,利用tan∠FAB=tan∠EDB去求最简便例9.如图,已知抛物线C1:交x轴于点A,B,交y轴于点C.在抛物线上存在点D,使,求点D的坐标.解题思路:1.分D在BC上方和下方讨论2.找到特殊点发现tan∠OBC=3.利用角平分线的性质去求F坐标4.求联立直线BF和抛物线方程求D点坐标例10,平面直角坐标系中,已知抛物线y=﹣x2+5x﹣4与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB=90°,求点D的坐标;解题思路:利用tan∠ACB=tan∠FDB去求解例11.已知抛物线y=﹣x2﹣x+2,BC平分∠PCO时,求点P的横坐标.解题思路:1.角平分线联想到角平分线+平行线得到等腰三角形2.利用PE=PC去求解(两点之间的距离公式)例12.抛物线y=x2﹣1,M(﹣4,3),N是抛物线上两点,N在对称轴右侧,且tan∠OMN =,求N点坐标;解题思路:构造一线三垂直课后练习1.在平面直角坐标系中,已知抛物线y=ax2+4ax+4a﹣6(a>0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为点D.直线DC交x轴于点E,tan∠AED=,求a的值和CE的长;2.已知抛物线y=(x+1)2+1,点A(﹣1,2)在抛物线的对称轴上。
抛物线试题及答案初三
一、选择题
1. 抛物线y=ax^2+bx+c的顶点坐标是()
A. (-b/2a, f(-b/2a))
B. (-b/2a, f(-b/2a))
C. (-b/2a, f(-b/2a))
D. (-b/2a, f(-b/2a))
答案:A
2. 抛物线y=x^2-4x+3与x轴的交点坐标是()
A. (1,0)和(3,0)
B. (-1,0)和(3,0)
C. (1,0)和(-3,0)
D. (-1,0)和(-3,0)
答案:A
二、填空题
3. 若抛物线y=ax^2+bx+c的对称轴为直线x=2,则b的值为______。
答案:-4a
4. 抛物线y=-2x^2+4x+1的顶点坐标为(1,3),则a=______。
答案:-2
三、解答题
5. 已知抛物线y=x^2-6x+9,求抛物线的顶点坐标。
答案:顶点坐标为(3,0)。
6. 抛物线y=2x^2-4x+1与直线y=x+2相交于A、B两点,求A、B两点
的坐标。
答案:A(1,3),B(2,4)。
四、综合题
7. 抛物线y=x^2-2x-3与x轴相交于点C、D,与y轴相交于点E,求
三角形CDE的面积。
答案:三角形CDE的面积为9。
8. 已知抛物线y=ax^2+bx+c经过点(1,0)和(-1,0),且顶点在x轴上,求抛物线的解析式。
答案:抛物线的解析式为y=x^2。
在中考数学中,抛物线是一个常见的考点,经常以压轴题的形式出现。
以下是一个关于抛物线的中考压轴题的示例:题目:已知抛物线y=ax^2+bx+c(a,b,c是常数,a≠0)经过点(-1,-1),(0,1),当x=-2时,与其对应的函数值y>1。
1. 请你求出abc的值,并判断抛物线的开口方向。
2. 设直线y=kx+d(k≠0)经过点(1,-1),且与抛物线的对称轴平行。
请你求出该直线的解析式。
3. 设E(m,n)是抛物线y=ax^2+bx+c上的一个动点,且满足∠APE=90°,请你求出m的值。
解析:1. 根据题目条件,抛物线经过点(-1,-1),(0,1),可得到方程:$a-b+c=-1$ ①$c=1$ ②将x=-2,y>1代入解析式得:$4a-2b+1>1$化简得:$2a-b>0$ ③由①②③解得:$a>0$$b>0$$c=1$所以,abc=1。
由于a>0,抛物线开口向上。
2. 由题意知:直线y=kx+d经过点(1,-1),则有:k+d=-1 ④又因为直线与对称轴平行,所以其斜率等于对称轴的斜率,即:k=-b/2a=-1/2 ⑤由④⑤解得:d=-3/2所以,直线的解析式为:y=-x/2-3/2。
3. 根据题意知:E(m,n)在抛物线上,则有:$n=am^2+bm+c$ ⑥由于∠APE=90°,所以AE与PE垂直。
根据两直线垂直的条件:斜率之积等于-1。
即:$(m-1)/(n+1)=-1$ ⑦由⑥⑦解得:m=0或m=-2综上所述,m的值为0或-2。
中考压轴题专项训练1——抛物线专题考点分析:命题预测:函数是数形结合的重要体现,是每年中考的必考内容,函数的概念主要用选择、填空的形式考查自变量的取值范围,及自变量与因变量的变化图像、平面直角坐标系等,一般占2%左右.一次函数与一次方程有紧密地联系,是中考必考内容,一般以填空、选择、解答题及综合题的形式考查,占5%左右.反比例函数的图像和性质的考查常以客观题形式出现,要关注反比例函数与实际问题的联系,突出应用价值,3—6分;二次函数是初中数学的一个十分重要的内容,是中考的热点,多以压轴题出现在试卷中.要求:能通过对实际问题情景分析确定二次函数的表达式,并体会二次函数的意义;会用描点法画二次函数图像,能丛图像上分析二次函数的性质;会根据公式确定图像的顶点、开口方向和对称轴,并能解决复杂的图形综合问题。
二次函数常考点汇总:1. 两点间的距离公式:22)()(AB B A B A x x y y -+-=2. 中点坐标公式:已知A ),(A A y x ,B ),(B B y x ,则线段AB 的中点C 的坐标为⎪⎭⎫⎝⎛++2,2B A B A y y x x 。
3. 在平面直角坐标系中求面积的方法:公式法、割补法(做铅垂高或水平宽) 4. 几何分析法:特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。
例题精讲:1.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.2.如图①,抛物线y=﹣x2+(a+1)x﹣a与x轴交于A,B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积是6.(1)求a的值;(2)求△ABC外接圆圆心的坐标;(3)如图②,P是抛物线上一点,Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,△QPB的面积为2d,且∠P AQ=∠AQB,求点Q的坐标.3.已知,在平面直角坐标系xoy 中,点A 的坐标为(0,2),点P (m ,n )是抛物线2114y x =+上的一个动点.(1)①如图1,过动点P 作PB ⊥x 轴,垂足为B ,连接PA ,求证:PA=PB ; ②如图2,设C 的坐标为(2,5),连接PC ,AP+PC 是否存在最小值?如果存在,求点P 的坐标;如果不存在,请说明理由;(2)如图3,过动点P 和原点O 作直线交抛物线于另一点D ,若AP=2AD ,求直线OP 的解析式.4.【变式】在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B.(1)直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3) 已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值.5.如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.6.(本题满分10分)如图,二次函数2y x bx c =++的图像与x 轴交于A 、B 两点,与y 轴交于点C ,C OB =O .点D 在函数图像上,CD//x 轴,且CD 2=,直线l 是抛物线的对称轴,E 是抛物线的顶点.(1)求b 、c 的值;(2)如图①,连接BE ,线段C O 上的点F 关于直线l 的对称点F '恰好在线段BE 上,求点F 的坐标; (3)如图②,动点P 在线段OB 上,过点P 作x 轴的垂线分别与C B 交于点M ,与抛物线交于点N .试问:抛物线上是否存在点Q ,使得Q ∆P N 与∆APM 的面积相等,且线段Q N 的长度最小?如果存在,求出点Q 的坐标;如果不存在,说明理由.7.(8分)如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.答案解析1.【解答】解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,∴0=﹣2+c,解得c=2,∴B(0,2),∵抛物线y=﹣x2+bx+c经过点A,B,∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2)①由(1)可知直线解析式为y=﹣x+2,∵M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,∴P(m,﹣m+2),N(m,﹣m2+m+2),∴PM=﹣m+2,AM=3﹣m,PN=﹣m2+m+2﹣(﹣m+2)=﹣m2+4m,∵△BPN和△APM相似,且∠BPN=∠APM,∴∠BNP=∠AMP=90°或∠NBP=∠AMP=90°,当∠BNP=90°时,则有BN⊥MN,∴N点的纵坐标为2,∴﹣m2+m+2=2,解得m=0(舍去)或m=2.5,∴M(2.5,0);当∠NBP=90°时,过点N作NC⊥y轴于点C,则∠NBC+∠BNC=90°,NC=m,BC=﹣m2+m+2﹣2=﹣m2+m,∵∠NBP=90°,∴∠NBC+∠ABO=90°,∴∠ABO=∠BNC,∴Rt△NCB∽Rt△BOA,∴=,∴=,解得m=0(舍去)或m=,∴M(,0);综上可知当以B,P,N为顶点的三角形与△APM相似时,点M的坐标为(2.5,0)或(,0);②由①可知M(m,0),P(m,﹣m+2),N(m,﹣m2+m+2),∵M,P,N三点为“共谐点”,∴有P为线段MN的中点、M为线段PN的中点或N为线段PM的中点,当P为线段MN的中点时,则有2(﹣m+2)=﹣m2+m+2,解得m=3(三点重合,舍去)或m=;当M为线段PN的中点时,则有﹣m+2+(﹣m2+m+2)=0,解得m=3(舍去)或m=﹣1;当N为线段PM的中点时,则有﹣m+2=2(﹣m2+m+2),解得m=3(舍去)或m=﹣;综上可知当M,P,N三点成为“共谐点”时m的值为或﹣1或﹣.2.【解答】解:(1)∵y=﹣x2+(a+1)x﹣a令y=0,即﹣x2+(a+1)x﹣a=0解得x1=a,x2=1由图象知:a<0∴A(a,0),B(1,0)∵s△ABC=6∴解得:a=﹣3,(a=4舍去)(2)设直线AC:y=kx+b,由A(﹣3,0),C(0,3),可得﹣3k+b=0,且b=3∴k=1即直线AC:y=x+3,A、C的中点D坐标为(﹣,)∴线段AC的垂直平分线解析式为:y=﹣x,线段AB的垂直平分线为x=﹣1代入y=﹣x,解得:y=1∴△ABC外接圆圆心的坐标(﹣1,1)(3)作PM⊥x轴,则=∵∴A、Q到PB的距离相等,∴AQ∥PB设直线PB解析式为:y=x+b∵直线经过点B(1,0)所以:直线PB的解析式为y=x﹣1联立解得:∴点P坐标为(﹣4,﹣5)又∵∠P AQ=∠AQB可得:△PBQ≌△ABP(AAS)∴PQ=AB=4设Q(m,m+3)由PQ=4得:解得:m=﹣4,m=﹣8(当m=﹣8时,∠P AQ≠∠AQB,故应舍去)∴Q坐标为(﹣4,﹣1)3.【解答】解:(1)①设P(m,n)∴n=m2+1,∵PB⊥x 轴,∴PB=m2+1,∵A(0,2)∴AP==m2+1,∴PB=PA;②过点P作PB⊥x轴于B,由(1)得PA=PB,所以要使AP+CP最小,只需当BP+CP最小,因此当C,P,B共线时取得,此时点P的横坐标等于点C(2,5)的横坐标,所以点P的坐标为(2,2),(2)如图,作DE⊥x轴于E,作PF⊥x轴于F,由(1)得:DA=DE,PA=PF∵PA=2DA,∴PF=2DE,∵△ODE∽△OPF,∴==,设P(m,m2+1),则D(m,m2+)∵点D在抛物线y=x2+1上,∴m2+=(m)2+1,解得m=±2,∴P 1(,3),直线OP 的解析式为y=x , P 2(﹣,3)直线OP 的解析式为y=﹣x , 综上所求,所求直线OP 的解析式为y=x 或y=﹣x .4.【解答】解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB=A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+.∴ 当14n =时,d 取得最小值18. 当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB=PM. (如图)(3) ∵对一切实数x 恒有 x ≤y ≤2124x +, ∴对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ①当0x =时,①式化为 0≤c ≤14.xy111APBMO∴整数c 的值为0.此时,对一切实数x ,x ≤2ax bx +≤2124x +都成立.(0a ≠) 即 222,12.4x ax bx ax bx x ⎧≤+⎪⎨+≤+⎪⎩ 对一切实数x 均成立. 由②得 ()21ax b x +-≥0 (0a ≠) 对一切实数x 均成立.∴()210,10.a b >⎧⎪⎨∆=-≤⎪⎩ 由⑤得整数b 的值为1.此时由③式得,2ax x +≤2124x +对一切实数x 均成立. (0a ≠) 即21(2)4a x x --+≥0对一切实数x 均成立. (0a ≠) 当a=2时,此不等式化为14x -+≥0,不满足对一切实数x 均成立.当a≠2时,∵ 21(2)4a x x --+≥0对一切实数x 均成立,(0a ≠)∴2220,1(1)4(2)0.4a a ->⎧⎪⎨∆=--⨯-⨯≤⎪⎩∴由④,⑥,⑦得 0 <a ≤1.∴整数a 的值为1.∴整数a ,b ,c 的值分别为1a =,1b =,0c =.5.【解答】解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =. ∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. ④⑤② ③ ⑥ ⑦图①图②(3)存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.6. 【解答】解:(1).3)(03,20.0,c -),,0(,.2,12.1x 2CD x //2-=∴=-=++=∴∴=-==-∴=∴=c c c c c c B c C OC OB b bl CD ,舍去或解得)点坐标为(:抛物线对称轴为直线,轴,(2)设点F 坐标为(0,m ).∵对称轴是直线,1:=x l ∴点F 关于直线l 的对称点’F 的坐标为(2,m ). ∵直线BE 经过点B (3,0),E (1,-4),∴利用待定系数法可得直线BE 的表达式为y=2x-6. ∵点’F 在BE 上,∴m=2⨯2-6=-2,即点F 的坐标为(0,-2). (3)存在点Q 满足题意。
初三抛物线试题及答案一、选择题1. 抛物线y = ax^2 + bx + c的顶点坐标是什么?A. (-b, c)B. (-b/2a, c - b^2/4a)C. (-b/2a, c + b^2/4a)D. (-b/a, c)答案:B2. 如果抛物线y = x^2 + 2x + 1的对称轴是直线x = -1,那么a的值是多少?A. 1B. -1C. 0D. 2答案:A3. 抛物线y = 2x^2 - 4x + 3的开口方向是:A. 向上B. 向下C. 水平D. 无法确定答案:A二、填空题4. 已知抛物线y = 3x^2 - 6x + 5,求抛物线的顶点坐标。
答案:顶点坐标为(1, 2)5. 抛物线y = -x^2 + 4x - 3的焦点坐标是什么?答案:焦点坐标为(2, -2)三、解答题6. 已知抛物线y = 2x^2 - 8x + 7,求其与x轴的交点。
答案:首先将方程化为标准形式:y = 2(x - 2)^2 - 1。
抛物线与x轴的交点即为y = 0时的x值。
解方程2(x - 2)^2 - 1 = 0,得到x= 2 ± √(1/2),即x = 2 ± √2/2。
7. 已知抛物线y = ax^2 + bx + c经过点(1, 3)和(-1, 1),求a和b 的值。
答案:将点(1, 3)和(-1, 1)代入方程,得到两个方程:3 = a(1)^2 + b(1) + c1 = a(-1)^2 + b(-1) + c解这两个方程,得到a + b + c = 3和a - b + c = 1。
相减消去c,得到2b = 2,即b = 1。
将b的值代入任一方程,得到a + 1 + c = 3,即a + c = 2。
由于c = 3 - a - b = 3 - a - 1 = 2 - a,代入得到a + 2 - a = 2,这是一个恒等式,说明a可以是任意实数。
四、应用题8. 一个物体从地面向上抛,其高度h(米)与时间t(秒)的关系为h = -5t^2 + 20t。
初三数学二次函数综合练习卷一、填空题:1、函数21(1)21my m x mx +=--+是抛物线,则m = .2、抛物线223y x x =--+与x 轴交点为 ,与y 轴交点为 . 3、二次函数2y ax =的图象过点(-1,2),则它的解析式是 , 当x 时,y 随x 的增大而增大.4.抛物线2)1(62-+=x y 可由抛物线262-=x y 向 平移 个单位得到.5.抛物线342++=x x y 在x 轴上截得的线段长度是 .6.抛物线()4222-++=m x x y 的图象经过原点,则=m . 7.抛物线m x x y +-=2,若其顶点在x 轴上,则=m .8. 如果抛物线c bx ax y ++=2的对称轴是x =-2,且开口方向与形状与抛物线相同,又过原点,那么a = ,b = ,c = .9、二次函数2y x bx c =++的图象如下左图所示,则对称轴是 ,当函数值0y <时, 对应x 的取值范围是 .10、已知二次函数21(0)y ax bx c a =++≠与一次函数2(0)y kx m k =+≠的图象相交于点A (-2,4)和B (8,2),如上右图所示,则能使1y 2y >成立的x 的取值范围 . 二、选择题:11.下列各式中,y 是x 的二次函数的是 ( )A .21xy x +=B . 220x y +-= C . 22y ax -=- D .2210x y -+=12.在同一坐标系中,作22y x =、22y x =-、212y x =的图象,它们共同特点是 ( ) A . 都是关于x 轴对称,抛物线开口向上 B .都是关于y 轴对称,抛物线开口向下223x y -=B . 都是关于原点对称,顶点都是原点 D .都是关于y 轴对称,顶点都是原点 13.抛物线122+--=m mx x y 的图象过原点,则m 为( )A .0B .1C .-1D .±114.把二次函数122--=x x y 配方成为( )A .2)1(-=x y B . 2)1(2--=x y C .1)1(2++=x yD .2)1(2-+=x y15.已知原点是抛物线2(1)y m x =+的最高点,则m 的范围是( )A . 1-<mB . 1<mC . 1->mD . 2->m 16、函数221y x x =--的图象经过点( )A 、(-1,1)B 、(1 ,1)C 、(0 , 1)D 、(1 , 0 )17、抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( ) A 、23(1)2y x =-- B 、23(1)2y x =+-C 、23(1)2y x =++ D 、23(1)2y x =-+ 18、已知h 关于t 的函数关系式212h gt =( g 为正常数,t 为时间)如图,则函数图象为 ( )19、下列四个函数中, 图象的顶点在y 轴上的函数是( )A 、232y x x =-+ B 、25y x =- C 、22y x x=-+ D 、244y x x =-+20、已知二次函数2y ax bx c =++,若0a <,0c >,那么它的图象大致是( )21、根据所给条件求抛物线的解析式:(1)、抛物线过点(0,2)、(1,1)、(3,5) (2)、抛物线关于y 轴对称,且过点(1,-2)和(-2,0)22.已知二次函数c bx x y ++=2的图像经过A (0,1),B (2,-1)两点.(1)求b 和c 的值; (2)试判断点P (-1,2)是否在此函数图像上?23、某工厂现有80台机器,每台机器平均每天生产384•件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,•由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x 台机器,每天的生产总量为y 件,请你写出y 与x 之间的关系式; (2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,•这个桥拱的最大高度为16m ,跨度为40m ,现把它放在如图所示的直角坐标系里,•若要在离跨度中心点M5m 处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?24、如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴求抛物线的解析式;⑵P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.二次函数单元检测 (B ) ___ ____一、新课标基础训练1.下列二次函数的图象的开口大小,从大到小排列依次是( ) ①y=13x 2;②y=23x 2+3;③y=-12(x-3)2-2;④y=-32x 2+5x-1. A .④②③① B .①③②④ C .④②①③ D .②③①④2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式( )A .y=3(x+5)2-5;B .y=3(x-1)2-5;C .y=3(x-1)2-3;D .y=3(x+5)2-33.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,•若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润,则应降价( ) A .5元 B .10元 C .15元 D .20元4.若直线y=ax+b (ab ≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( ) A .一 B .二 C .三 D .四5.已知二次函数y=x 2+x+m ,当x 取任意实数时,都有y>0,则m 的取值范围是( ) A .m ≥14 B .m>14 C .m ≤14 D .m<146.二次函数y=mx 2-4x+1有最小值-3,则m 等于( ) A .1 B .-1 C .±1 D .±12二、新课标能力训练7.如图,用2m 长的木条,做一个有横档的矩形窗子,为使透进的光线最多,那么这个窗子的面积应为_______m 2.8.如图,有一个抛物线型拱桥,其最大高度为16m , •跨度为•40m ,• 现把它的示意图放在平面直角坐标系 中••,••则此抛物线的函数关系式为__________.9、已知函数4m m2x )2m (y -++=是关于x 的二次函数,求:(1)满足条件的m 值;(2)m 为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时,y 随x 的增大而增大? (3)m 为何值时,函数有最大值?最大值是什么?这时当x 为何值时,y 随x 的增大而减小?10、观察表格:2(1)求a ,b ,c 的值,并在表内空格处填入正确的数.(2)画出函数y=ax 2+bx+c 的图象,由图象确定,当x 取什么实数时,ax 2+bx+c>0.11、如图(2),已知平行四边形ABCD 的周长为8cm ,∠B =30。
初中抛物线试题及答案
一、选择题
1. 抛物线y = x^2 - 2x + 1的顶点坐标是()。
A. (1, 0)
B. (1, -1)
C. (0, 1)
D. (0, -1)
答案:A
2. 如果抛物线y = ax^2 + bx + c的对称轴是直线x = -2,那么b的值是()。
A. 4a
B. -4a
C. 2a
D. -2a
答案:B
二、填空题
1. 抛物线y = 2x^2 + 4x + 3的顶点坐标是()。
答案:(-1, 1)
2. 抛物线y = -3x^2 + 6x - 2的对称轴方程是()。
答案:x = 1
三、解答题
1. 已知抛物线y = x^2 - 6x + 9,求抛物线与x轴的交点坐标。
答案:抛物线与x轴的交点坐标为(3, 0)。
2. 抛物线y = 2x^2 - 4x + 3,求抛物线的顶点坐标和对称轴。
答案:抛物线的顶点坐标为(1, 1),对称轴为直线x = 1。
四、应用题
1. 一个抛物线形的桥拱,其方程为y = -0.5x^2 + 4x + 1,桥拱的最高点离水面的高度是5米。
求桥拱的跨度。
答案:桥拱的跨度为8米。
2. 一个物体从地面以一定的初速度向上抛,其运动轨迹可以用抛物线y = -5x^2 + 20x + 2描述,其中x表示时间(秒),y表示高度(米)。
求物体达到最高点时的时间。
答案:物体达到最高点时的时间是2秒。
如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c 经过A,B两点,抛物线的顶点为D.(1)求b,c的值;(2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标;(3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限抛物线上一动点,点M的横坐标为m,△AMB的面积为S、求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.(4)补充:在(3)的条件下,点P、Q、B、O为顶点的四边形能否成为梯形,若能,求出相应Q的坐标。
41直角坐标系XOY中,将直线y=kx沿y轴下移3个单位长度后恰好经点B(-3,0)及y 轴上的C点。
若抛物y=-x2+bx+c与x轴交于A点B点,(点A在点B的右侧),且过点C 。
(1)求直线BC及抛物线解析式(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求p点坐标如图,已知抛物线y=x2+bx+c与x轴交于A,B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC交抛物线对称轴交于点D.(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P,Q两点,且点P在第三象限.①当线段PQ=3AB/4时,求tan∠CED的值;②当以点C,D,E为顶点的三角形是直角三角形时,请直接写出点P的坐标.温馨提示:考生可以根据第(3)问的题意,在图中补出图形,以便作答.第25题图第25题备用图直角坐标系XOY中,半径2√5的⊙C与x轴交于A(-1,0),B(3,0)且点C在X轴上方。
初三中考数学函数综合题含答案一、单选题1.已知点A (1,y 1),B (2,y 2)在抛物线y =(x +1)2+2上,则下列结论正确的是( ). A .122y y >> B .212y y >> C .122y y >>D .212y y >>2.抛物线y =14(x ﹣6)2+3的顶点坐标是( )A .(6,﹣3)B .(6,3)C .(﹣6,3)D .(﹣6,﹣3) 3.抛物线y =2(x -1)2-3的顶点坐标是( ) A .()1,3-- B .()1,3- C .()1,3- D .()1,3 4.一次函数y =-2x +5的图像不经过的象限是( )A .一B .二C .三D .四 5.将函数y =2x 的图象向上平移4个单位后,下列各点在平移后的图象上的是( ) A .()1,5 B .()0,4 C .()1,3- D .()2,3- 6.在直角坐标系的x 轴的负半轴上,则点P 坐标为( )A .()4,0-B .()0,4C .()0,3-D .()1,0 7.直线7y x =--一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限8.下列各点中,在反比例函数2y x=-图象上的是-( )A .(21),B .233⎛⎫⎪⎝⎭, C .(21)--, D .(12)-,9.已知点()11,A x y ,()22,B x y 在直线()0y kx b k =+≠上,当12x x <时,12y y >,且0kb <,则直线()0y kx b k =+≠在平面直角坐标系中的图象大致是( )A .B .C .D .10.下列一次函数中,y 随x 的增大而减小的是( ) A .y =x ﹣3 B .y =1﹣x C .y =2x D .y =3x +2 11.下列二次函数中,对称轴是直线1x =的是( )A .21y x =+B .()221y x =+C .()21y x =-+D .()231y x =--12.反比例函数y =2x的图象位于( )A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限13.如图,△ABC 中,点B ,C 是x 轴上的点,且A (3,2),以原点O 为位似中心,作△ABC 的位似图形△A ′B ′C ′,且△ABC 与A ′B ′C ′的相似比是1:2,则点A ′的坐标是( )A .(﹣6,﹣4)B .(﹣1.5,﹣1)C .(1.5,1)或(﹣1.5,﹣1)D .(6,4)或(﹣6,﹣4)14.已知点P (a ,a ﹣1)在平面直角坐标系的第四象限,则a 的取值范围在数轴上可表示为( ) A .B .C .D .15.要得到抛物线()2321y x =-++可以将抛物线232y x =-+( ) A .先向右平移2个单位,再向上平移1个单位 B .先向右平移2个单位,再向下平移1个单位C .先向左平移2个单位,再向上平移1个单位D .先向左平移2个单位,再向下平移1个单位二、填空题16.已知点(),P m n 在一次函数1y x =+的图象上,则n m -=______.17.已知某函数图像过点(-1,1),写出一个符合条件的函数表达式:______.18.将一次函数123=+y x 向上平移5个单位长度后得到直线AB ,则平移后直线AB 对应的函数表达式为______.19.将抛物线22(3)y x m =-+向右平移3个单位,再向上平移1个单位后恰好经过点(2,3),则m 值是 __.20.若抛物线y =x 2+bx +经过点A (0,5),B (4,5),则其对称轴是直线______三、解答题21.已知抛物线y =-(x -m )2+1与x 轴的交点为A ,B (B 在A 的右边),与y 轴的交点为C .(1)写出m =1时与抛物线有关的三个正确结论.(2)当点B 在原点的右边,点C 在原点的下方时,是否存在△BOC 为等腰三角形的情形?若存在,求出m 的值;若不存在,请说明理由. (3)请你提出两个对任意的m 值都能成立的正确命题.22.在平面直角坐标系xOy 中,点()11,A x y ,()22,B x y 在抛物线()2210y ax ax a =-+>上,其中12x x < (1)求抛物线的对称轴;(2)若122x x a +=-,比较1y 与2y 的大小关系,并说明理由.23.如图,在平面直角坐标系中,二次函数243y ax x =+-图象的顶点是A ,与x 轴交于B ,C 两点,与y 轴交于点D .点B 的坐标是()1,0.(1)求A ,C 两点的坐标,并根据图象直接写出当0y >时x 的取值范围;(2)将图象向上平移m 个单位后,二次函数图象与x 轴交于E ,F 两点,若6EF =,求m 的值.24.一抛物线以()1,9-为顶点,且经过x 轴上一点()4,0-,求该抛物线解析式及抛物线与y 轴交点坐标.25.已知抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3),点P 为抛物线上的一点. (1)求此抛物线的解析式;(2)若点P 的横坐标为2,则点P 到x 轴的距离为 .【参考答案】一、单选题 1.D 2.B 3.C 4.C 5.B 6.A 7.A 8.D 9.C 10.B 11.D 12.A 13.D 14.C 15.D 二、填空题 16.117.y =-x (答案不唯一) 18.y =13x +719.-3020.2x = 三、解答题21.(1)抛物线的对称轴为直线x =1,抛物线与x 轴的两个交点为(0,0),(2,0),抛物线开口向下 (2)存在,2(3)无论m 为何值,函数的始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点 【解析】 【分析】(1)当m =1时,y =-(x -1)2+1,根据()2y a x h k =-+的性质写出三个结论即可; (2)求得C (0,1-m 2),根据点B 在原点的右边,点C 在原点的下方,可得m >1,根据等腰三角形的性质可得1+m =m 2-1,解方程求解即可;(3)根据()2y a x h k =-+的性质,可知无论m 为何值,函数的始终有最大值1;无论m为何值,函数始终与x 轴有两个不同的交点. (1)解:当m =1时,y =-(x -1)2+1, ∴抛物线的对称轴为直线x =1, 令0y =,-(x -1)2+1=0, 解得120,2x x ==,抛物线与x 轴的两个交点为(0,0),(2,0), 抛物线开口向下; (2)存在,理由如下: 令x =0,则y =1-m 2, ∴C (0,1-m 2),令y =0,则x =1+m 或x =m -1, ∴B (1+m ,0),∵点B 在原点的右边,点C 在原点的下方, ∴1+m >0,1-m 2<0, ∴m >1,∵△BOC 为等腰三角形, ∴1+m =m 2-1,解得m =2或m =-1(舍), ∴m =2; (3)无论m 为何值,函数始终有最大值1;无论m 为何值,函数始终与x 轴有两个不同的交点. 【点睛】本题考查了()2y a x h k =-+的性质,等腰三角形的性质,解一元二次方程,二次函数与坐标轴交点问题,掌握()2y a x h k =-+的性质是解题的关键. 22.(1)直线1x = (2)12y y >,见解析 【解析】 【分析】(1)将解析式整理成顶点式,直接写出对称轴;(2)方法一:利用作差法,将12y y -表示出来,再进行判断正负,据此判断大小即可;方法二:判断12,y y 距离对称轴的大小,根据函数增减性判断. (1)解:∵()222111y ax ax a x a =-+=--+, ∴抛物线的对称轴为直线1x = (2)方法一:()()221211222121y y ax ax ax ax -=-+--+,()()22122122ax ax ax ax =-+-,()()12122a x x x x =-+-, ()212a x x =--,∵0a >,12x x <, ∴120y y ->, 即12y y >,方法二:∵0a >,122x x a +=-, ∴122x x +<, ∴1212x x +<, 又∵抛物线对称轴是直线1x =,开口向上,且12x x <, ∴1211x x ->-, ∴12y y >. 【点睛】本题主要考查二次函数中系数的运用,以及比较函数值的大小,熟练掌握二次函数的基础运算是解题的关键.23.(1)(2,1)A ,(3,0)C ,当0y >时,13x <<. (2)8m = 【解析】 【分析】(1)利用待定系数法求出a ,再求出点C 的坐标即可解决问题.(2)由题意得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,由12|6|x x -=可得出答案.(1)解:把(1,0)B 代入243y ax x =+-,得043a =+-,解得1a =-,2243(2)1y x x x ∴=-+-=--+,)1(2,A ∴,对称轴为直线2x =,B ,C 关于2x =对称,(3,0)C ∴,∴当0y >时,13x <<.(2)解:抛物线向上平移m 个单位,可得抛物线的解析式为243y x x m =-+-+,设二次函数图象与x 轴交于1(E x ,0),2(F x ,0)两点,则124x x +=,123x x m =-,12||6x x ∴-=,212()36x x ∴-=,21212()436x x x x ∴+-=,164(3)36m ∴-⨯-=,8m ∴=.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质和二次函数图象上点的坐标特征,解决问题的关键是能够把二次函数的一般形式化为顶点式. 24.y =﹣x 2-2x +8;抛物线与y 轴交点为()0,8 【解析】 【分析】知道顶点和抛物线上一点,可以用抛物线的顶点式求答; 【详解】解:设抛物线解析式为()2y a x h k =-+,依题意1h =-,9k =,将()4,0-代入()219y a x =++中,得099a =+,解得1a =-,∴抛物线解析式为()219y x =-++,即y =﹣x 2-2x +8; 令0x =,则8y =,∴抛物线与y 轴交点为()0,8. 【点睛】本题考查待定系数法求二次函数的解析式;在知道顶点坐标的时候,利用顶点式求二次函数解析式十分方便. 25.(1)223y x x =-- (2)3 【解析】 【分析】(1)把点A (0,﹣3),代入抛物线解析式,即可求解;(2)根据抛物线()214y x =--的对称轴为直线1x =,可得点P 和点A (0,﹣3)关于直线1x =对称,从而得到点的纵坐标为-3,即可求解.(1)解:∵抛物线y =(x ﹣1)2+k 与y 轴相交于点A (0,﹣3), ∴()2301k -=-+, 解得:4k =-,∴此抛物线的解析式为()221423y x x x =--=--; (2)解:∵抛物线()214y x =--的对称轴为直线1x =, ∴点P 和点A (0,﹣3)关于直线1x =对称, ∴点的纵坐标为-3, ∴点P 到x 轴的距离为3. 【点睛】本题主要考查了求二次函数的解析式,利用抛物线的对称性求函数值,熟练掌握利用待定系数法求函数解析式的步骤是解题的关键.。
抛物线习题精选精讲(1)抛物线——二次曲线的和谐线椭圆与双曲线都有两种定义方法,可抛物线只有一种:到一个定点和一条定直线的距离相等的所有点的集合.其离心率e=1,这使它既与椭圆、双曲线相依相伴,又鼎立在圆锥曲线之中.由于这个美好的1,既使它享尽和谐之美,又生出多少华丽的篇章.【例1】P 为抛物线px y 22=上任一点,F 为焦点,则以PF 为直径的圆与y 轴( ).A 相交 .B 相切 .C 相离 .D 位置由P 确定【解析】如图,抛物线的焦点为,02p F ⎛⎫⎪⎝⎭,准线是 :2pl x =-.作PH ⊥l 于H ,交y 轴于Q ,那么PF PH =, 且2pQH OF ==.作MN ⊥y 轴于N 则MN 是梯形PQOF 的中位线,()111222MN OF PQ PH PF =+==.故以PF 为直径的圆与y 轴相切,选B.【评注】相似的问题对于椭圆和双曲线来说,其结论则 分别是相离或相交的.(2)焦点弦——常考常新的亮点弦有关抛物线的试题,许多都与它的焦点弦有关.理解并掌握这个焦点弦的性质,对破解这些试题是大有帮助的.【例2】 过抛物线()022 p px y =的焦点F 作直线交抛物线于()()1122,,,A x y B x y 两点,求证: (1)12AB x x p =++ (2)pBF AF 211=+ 【证明】(1)如图设抛物线的准线为l ,作1AA l ⊥11111,2pA BB l B AA x ⊥==+于,则AF , 122pBF BB x ==+.两式相加即得:12AB x x p =++(2)当AB ⊥x 轴时,有AF BF p ==,112AF BF p∴+=成立; 当AB 与x 轴不垂直时,设焦点弦AB 的方程为:2p y k x ⎛⎫=- ⎪⎝⎭.代入抛物线方程:l XY FA(x,y)11B(x,y)22A 1B 1l2222p k x px ⎛⎫-= ⎪⎝⎭.化简得:()()222222014p k x p k x k -++=∵方程(1)之二根为x 1,x 2,∴1224k x x ⋅=.()122111212121111112224x x p p pp p AF BF AA BB x x x x x x +++=+=+=+++++ ()()121222121222424x x p x x p p p p pp x x p x x ++++===+++++. 故不论弦AB 与x 轴是否垂直,恒有pBF AF 211=+成立.(3)切线——抛物线与函数有缘有关抛物线的许多试题,又与它的切线有关.理解并掌握抛物线的切线方程,是解题者不可或缺的基本功.【例3】证明:过抛物线22y px =上一点M (x 0,y 0)的切线方程是:y 0y=p (x+x 0)【证明】对方程22y px =两边取导数:22.py y p y y''⋅=∴=,切线的斜率 00x x p k y y ='==.由点斜式方程:()()20000001p y y x x y y px px y y -=-⇒=-+20021y px =,代入()即得: y 0y=p (x+x 0)(4)定点与定值——抛物线埋在深处的宝藏抛物线中存在许多不不易发现,却容易为人疏忽的定点和定值.掌握它们,在解题中常会有意想不到的收获.例如:1.一动圆的圆心在抛物线x y 82=上,且动圆恒与直线02=+x 相切,则此动圆必过定点( )()()()().4,0.2,0.0,2.0,2A B C D -显然.本题是例1的翻版,该圆必过抛物线的焦点,选B. 2.抛物线22y px =的通径长为2p ;3.设抛物线22y px =过焦点的弦两端分别为()()1122,,,A x y B x y ,那么:212y y p =-以下再举一例【例4】设抛物线22y px =的焦点弦AB 在其准线上的射影是A 1B 1,证明:以A 1B 1为直径的圆必过一定点【分析】假定这条焦点弦就是抛物线的通径,那么A 1B 1=AB=2p ,而A 1B 1与AB 的距离为p ,可知该圆必过抛物线的焦点.由此我们猜想:一切这样的圆都过抛物线的焦点.以下我们对AB 的一般情形给于证明.【证明】如图设焦点两端分别为()()1122,,,A x y B x y ,那么:22121112.y y p CA CB y y p =-⇒⋅==设抛物线的准线交x 轴于C ,那么.CF p =2111111.90A FB CF CA CB A FB ∴∆=⋅∠=︒中故.这就说明:以A 1B 1为直径的圆必过该抛物线的焦点.● 通法 特法 妙法(1)解析法——为对称问题解困排难 解析几何是用代数的方法去研究几何,所以它能解决纯几何方法不易解决的几何问题(如对称问题等). 【例5】(07.四川文科卷.10题)已知抛物线y=-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于( )A.3B.4C.32D.42【分析】直线AB 必与直线x+y=0垂直,且线段 AB 的中点必在直线x+y=0上,因得解法如下.【解析】∵点A 、B 关于直线x+y=0对称,∴设直线AB的方程为:y x m =+. 由()223013y x mx x m y x =+⎧⇒++-=⎨=-+⎩设方程(1)之两根为x 1,x 2,则121x x +=-. 设AB 的中点为M (x 0,y 0),则120122x x x +==-.代入x+y=0:y 0=12.故有11,22M ⎛⎫- ⎪⎝⎭. 从而1m y x =-=.直线AB 的方程为:1y x =+.方程(1)成为:220x x +-=.解得:2,1x =-,从而1,2y =-,故得:A (-2,-1),B (1,2).AB ∴=,选C.(2)几何法——为解析法添彩扬威虽然解析法使几何学得到长足的发展,但伴之而来的却是难以避免的繁杂计算,这又使得许多考生对解析几何习题望而生畏.针对这种现状,人们研究出多种使计算量大幅度减少的优秀方法,其中最有成效的就是几何法.【例6】(07.全国1卷.11题)抛物线24y x =的焦点为F ,准线为l ,经过FXYAB FA 1B 11M C XOY ABMl x y +=ÿ物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积( )A .4 B. C. D .8 【解析】如图直线AFAFX=60°. △AFK 为正三角形.设准线l 交x 轴于M ,则2,FM p ==且∠KFM=60°,∴24,44AKFKF S ∆===选C. 【评注】(1)平面几何知识:边长为a 的正三角形的面积用公式2S ∆=计算. (2)本题如果用解析法,需先列方程组求点A 的坐标,,再计算正三角形的边长和面积.虽不是很难,但决没有如上的几何法简单.(3)定义法——追本求真的简单一着许多解析几何习题咋看起来很难.但如果返朴归真,用最原始的定义去做,反而特别简单. 【例7】(07.湖北卷.7题)双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .12【分析】 这道题如果用解析法去做,计算会特别繁杂,而平面几何知识又一时用不上,那么就从最原始的定义方面去寻找出路吧.如图,我们先做必要的准备工作:设双曲线的半 焦距c ,离心率为e ,作 MH l H ⊥于,令1122,MF r MF r ==.∵点M 在抛物线上,1112222,MF MF rMH MF r e MH MF r ∴=====故,这就是说:12||||MF MF 的实质是离心率e.其次,121||||F F MF 与离心率e 有什么关系?注意到: ()1212111122111F F e r r c e a e e MF r r r e +⋅⎛⎫====-=- ⎪⎝⎭. XY O F(1,0)AK60°Y2=2px L:x=-1M这样,最后的答案就自然浮出水面了:由于()12112||||11||||F F MF e e MF MF -=-+=-.∴选 A..(4)三角法——本身也是一种解析三角学蕴藏着丰富的解题资源.利用三角手段,可以比较容易地将异名异角的三角函数转化为同名同角的三角函数,然后根据各种三角关系实施“九九归一”——达到解题目的.因此,在解析几何解题中,恰当地引入三角资源,常可以摆脱困境,简化计算.【例8】(07.重庆文科.21题)如图,倾斜角为a 的直线经过抛物线x y 82=的焦点F ,且与抛物线交于A 、B 两点。
初三数学中考必考题1.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1) 求该抛物线的解析式;(2) 若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)2.如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =.(1)求点D 到BC 的距离DH 的长;(2)求y 关于x 的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AMABC D ER P H Q=x .(1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切?(3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?4.如图1,在平面直角坐标系中,己知ΔAOB 是等边三角形,点A 的坐标是(0,4),点B 在第一象限,点P 是x 轴上的一个动点,连结AP ,并把ΔAOP 绕着点A 按逆时针方向旋转.使边AO 与AB 重合.得到ΔABD.(1)求直线AB 的解析式;(2)当点P 运动到点(3,0)时,求此时DP 的长及点D 的坐标;(3)是否存在点P ,使ΔOPD 的面积等于43,若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.5如图,菱形ABCD 的边长为2,BD=2,E 、F 分别是边AD ,CD 上的两个动点,且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.ABC MN图 3OABC MND 图 2OABMNP图 1O6如图,抛物线21:23L y x x =−−+交x 轴于A 、B 两点,交y 轴于M 点.抛物线1L 向右平移2个单位后得到抛物线2L ,2L 交x 轴于C 、D 两点. (1)求抛物线2L 对应的函数表达式;(2)抛物线1L 或2L 在x 轴上方的部分是否存在点N ,使以A ,C ,M ,N 为顶点的四边形是平行四边形.若存在,求出点N 的坐标;若不存在,请说明理由;(3)若点P 是抛物线1L 上的一个动点(P 不与点A 、B 重合),那么点P 关于原点的对称点Q 是否在抛物线2L 上,请说明理由.7.如图,在梯形ABCD 中,AB ∥CD ,AB =7,CD =1,AD =BC =5.点M ,N 分别在边AD ,BC 上运动,并保持MN ∥AB ,ME ⊥AB ,NF ⊥AB ,垂足分别为E ,F .(1)求梯形ABCD 的面积;(2)求四边形MEFN 面积的最大值.(3)试判断四边形MEFN 能否为正方形,若能, 求出正方形MEFN 的面积;若不能,请说明理由.8.如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数xky =的图象上. C D A BE F NM(1)求m ,k 的值; (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式.(3)选做题:在平面直角坐标系中,点P 的坐标 为(5,0),点Q 的坐标为(0,3),把线段PQ 向右平 移4个单位,然后再向上平移2个单位,得到线段P 1Q 1, 则点P 1的坐标为 ,点Q 1的坐标为.9.如图16,在平面直角坐标系中,直线y =−x 轴交于点A ,与y 轴交于点C ,抛物线2(0)3y ax x c a =−+≠经过A B C ,,三点. (1)求过A B C ,,三点抛物线的解析式并求出顶点F 的坐标;(2)在抛物线上是否存在点P ,使ABP △为直角三角形,若存在,直接写出P 点坐标;若不存在,请说明理由; (3)试探究在直线AC 上是否存在一点M ,使得MBF △的周长最小,若存在,求出M 点的坐标;若不存在,请说明理由.10.如图所示,在平面直角坐标系中,矩形ABOC 的边BO 在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物x友情提示:本大题第(1)小题4分,第(2)小题7分.对完成第(2)小题有困难的同学可以做下面的(3)选做题.选做题2分,所得分数计入总分.但第(2)、(3)小题都做的,第(3)小题的得分不重复计入总分.线2y ax bx c =++过点A E D ,,. (1)判断点E 是否在y 轴上,并说明理由; (2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知:如图14,抛物线2334y x =−+与x 轴交于点A ,点B ,与直线34y x b =−+相交于点B ,点C ,直线34y x b =−+与y 轴交于点E . (1)写出直线BC 的解析式. (2)求ABC △的面积.(3)若点M 在线段AB 上以每秒1个单位长度的速度从A 向B 运动(不与A B ,重合),同时,点N 在射线BC 上以每秒2个单位长度的速度从B 向C 运动.设运动时间为t 秒,请写出MNB △的面积S 与t 的函数关系式,并求出点M 运动多少时间时,MNB △的面积最大,最大面积是多少?12.在平面直角坐标系中△ABC 的边AB 在x 轴上,且OA>OB,以AB 为直径的圆过点C 若yxODEC FA BC 的坐标为(0,2),AB=5,A,B 两点的横坐标X A ,X B 是关于X 的方程2(2)10x m x n −++−=的两根:(1) 求m ,n 的值(2) 若∠ACB 的平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数的解析式 (3) 过点D 任作一直线`l 分别交射线CA ,CB (点C 除外)于点M ,N ,则11CMCN+的值是否为定值,若是,求出定值,若不是,请说明理由13.已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x 轴的另一个交点为E.求四边形ABDE 的面积;(3)△AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为⎪⎪⎭⎫ ⎝⎛−−abac a b 44,22)14.已知抛物线c bx ax y ++=232,ACO BNDML`(Ⅰ)若1==b a ,1−=c ,求该抛物线与x 轴公共点的坐标;(Ⅱ)若1==b a ,且当11<<−x 时,抛物线与x 轴有且只有一个公共点,求c 的取值范围;(Ⅲ)若0=++c b a ,且01=x 时,对应的01>y ;12=x 时,对应的02>y ,试判断当10<<x 时,抛物线与x 轴是否有公共点?若有,请证明你的结论;若没有,阐述理由.15.已知:如图①,在Rt △ACB 中,∠C =90°,AC =4cm ,BC =3cm ,点P 由B 出发沿BA 方向向点A 匀速运动,速度为1cm/s ;点Q 由A 出发沿AC 方向向点C 匀速运动,速度为2cm/s ;连接PQ .若设运动的时间为t (s )(0<t <2),解答下列问题: (1)当t 为何值时,PQ ∥BC ?(2)设△AQP 的面积为y (2cm ),求y 与t 之间的函数关系式;(3)是否存在某一时刻t ,使线段PQ 恰好把Rt △ACB 的周长和面积同时平分?若存在,求出此时t 的值;若不存在,说明理由;(4)如图②,连接PC ,并把△PQC 沿QC 翻折,得到四边形PQP ′C ,那么是否存在某一时刻t ,使四边形PQP ′C 为菱形?若存在,求出此时菱形的边长;若不存在,说明理由.16.已知双曲线k y x =与直线14y x =相交于A 、B 两点.第一象限上的点M (m ,n )(在A 点左侧)是双曲线ky x=上的动点.过点B 作BD ∥y 轴于点D.过N (0,-n )作NC ∥x 轴交双曲线ky x=于点E ,交BD 于点C.(1)若点D 坐标是(-8,0),求A 、B 两点坐标及k 的值.(2)若B 是CD 的中点,四边形OBCE 的面积为4,求直线CM 的解析式.(3)设直线AM 、BM 分别与y 轴相交于P 、Q 两点,且MA =pMP ,MB =qMQ ,求p -q 的值.P图①压轴题答案1.解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得 c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO BOFD S S S ∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅=11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形 所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==,所以AOB DBE ∆∆.2解:(1)Rt A ∠=∠,6AB =,8AC =,10BC ∴=.点D 为AB 中点,132BD AB ∴==.90DHB A ∠=∠=,B B ∠=∠.BHD BAC ∴△∽△, DH BD AC BC ∴=,3128105BD DH AC BC ∴==⨯=.(2)QR AB ∥,90QRC A ∴∠=∠=.C C ∠=∠,RQC ABC ∴△∽△,RQ QC AB BC ∴=,10610y x−∴=, 即y 关于x 的函数关系式为:365y x =−+. (3)存在,分三种情况:①当PQ PR =时,过点P 作PM QR ⊥于M ,则QM RM =.1290∠+∠=,290C ∠+∠=,1C ∴∠=∠.84cos 1cos 105C ∴∠===,45QM QP ∴=, 1364251255x ⎛⎫−+ ⎪⎝⎭∴=,185x ∴=. ②当PQ RQ =时,312655x −+=, 6x ∴=.③当PR QR =时,则R 为PQ 中垂线上的点, 于是点R 为EC 的中点,11224CR CE AC ∴===.tan QR BAC CR CA ==, 366528x −+∴=,152x ∴=.ABCD ERP H QM21 HA BCD E R PHQ综上所述,当x 为185或6或152时,PQR △为等腰三角形. 3解:(1)∵MN ∥BC ,∴∠AMN =∠B ,∠ANM =∠C .∴△AMN ∽△ABC .∴AM AN AB AC=,即43x AN=.∴AN =43x .……………2分∴S =2133248MNP AMN S S x x x ∆∆==⋅⋅=.(0<x <4)……………3分 (2)如图2,设直线BC 与⊙O 相切于点D ,连结AO ,OD ,则AO =OD =21MN . 在Rt △ABC 中,BC. 由(1)知△AMN ∽△ABC .∴AM MN AB BC=,即45x MN=.∴54MN x =, ∴58OD x =.…………………5分过M 点作MQ ⊥BC 于Q ,则58MQ OD x ==. 在Rt △BMQ 与Rt △BCA 中,∠B 是公共角, ∴△BMQ ∽△BCA . ∴BM QM BC AC=. ∴55258324xBM x ⨯==,25424AB BM MA x x =+=+=. ∴x =4996. ∴当x =4996时,⊙O 与直线B C 相切.…………………………………7分(3)随点M 的运动,当P 点落在直线BC 上时,连结AP ,则O 点为AP 的中点.∵MN ∥BC ,∴∠AMN =∠B ,∠AOM =∠APC∴△AMO ∽△ABP .∴12AM AO AB AP ==.AM =MB =2. 故以下分两种情况讨论:①当0<x ≤2时,2Δ83x S y PMN ==.∴当x =2时,2332.82y =⨯=最大……………………………………8分 ②当2<x <4时,设PM ,PN 分别交BC 于E ,F .BD 图 2P 图 3∵四边形AMPN 是矩形, ∴PN ∥AM ,PN =AM =x . 又∵MN ∥BC ,∴四边形MBFN 是平行四边形. ∴FN =BM =4-x .∴()424PF x x x =−−=−. 又△PEF ∽△ACB .∴2PEF ABCS PF AB S ∆∆⎛⎫= ⎪⎝⎭. ∴()2322PEF S x ∆=−.………………………………………………9分 MNP PEF y S S ∆∆=−=()222339266828x x x x −−=−+−.……………………10分当2<x <4时,29668y x x =−+−298283x ⎛⎫=−−+ ⎪⎝⎭.∴当83x =时,满足2<x <4,2y =最大.……………………11分 综上所述,当83x =时,y 值最大,最大值是2.…………………………12分4解:(1)作BE ⊥OA ,∴ΔAOB 是等边三角形∴BE=OB ·sin60o=B(∵A(0,4),设AB 的解析式为4y kx =+,所以42+=,解得k =, 以直线AB的解析式为43y x =−+ (2)由旋转知,AP=AD,∠PAD=60o, ∴ΔAPD 是等边三角形,=如图,作B E ⊥AO,DH ⊥OA,GB ⊥DH,显然ΔGBD 中∠GBD=30°∴GD=12BD=, ∴GB=2BD=32,OH=OE+HE=OE+BG=37222+=∴D(532,72)(3)设OP=x,则由(2)可得D(323,2x x++)若ΔOPD的面积为:133(2)2x x+=解得:2321x−±=所以P(2321−±,0)567解:(1)分别过D ,C 两点作DG ⊥AB 于点G ,CH ⊥AB 于点H .……………1分 ∵AB ∥CD ,∴DG =CH ,DG ∥CH .∴四边形DGHC 为矩形,GH =CD =1.∵DG =CH ,AD =BC ,∠AGD =∠BHC =90°,∴△AGD ≌△BHC (HL ).∴AG =BH =2172−=−GH AB =3.………2分 ∵在Rt △AGD 中,AG =3,AD =5, ∴DG =4.∴()174162ABCD S +⨯==梯形.………………………………………………3分(2)∵MN ∥AB ,ME ⊥AB ,NF ⊥AB ,∴ME =NF ,ME ∥NF .∴四边形MEFN 为矩形. ∵AB ∥CD ,AD =BC , ∴∠A =∠B .∵ME =NF ,∠MEA =∠NFB =90°, ∴△MEA ≌△NFB (AAS ).∴AE =BF .……………………4分设AE =x ,则EF =7-2x .……………5分C DA B E FN M G H C DA B E F NM G H∵∠A =∠A ,∠MEA =∠DGA =90°, ∴△MEA ∽△DGA . ∴DGME AG AE =. ∴ME =x 34.…………………………………………………………6分∴6494738)2(7342+⎪⎭⎫ ⎝⎛−−=−=⋅=x x x EF ME S MEFN 矩形.……………………8分当x =47时,ME =37<4,∴四边形MEFN 面积的最大值为649.……………9分(3)能.……………………………………………………………………10分由(2)可知,设AE =x ,则EF =7-2x ,ME =x 34.若四边形MEFN 为正方形,则ME =EF . 即=34x 7-2x .解,得1021=x .……………………………………………11分∴EF =21147272105x −=−⨯=<4. ∴四边形MEFN 能为正方形,其面积为251965142=⎪⎭⎫ ⎝⎛=MEFN S 正方形.8解:(1)由题意可知,()()()131−+=+m m m m .解,得m =3.………………………………3分∴A (3,4),B (6,2); ∴k =4×3=12.……………………………4分 (2)存在两种情况,如图:①当M 点在x 轴的正半轴上,N 点在y 轴的正半轴上时,设M 1点坐标为(x 1,0),N 1点坐标为(0,y 1).∵四边形AN 1M 1B 为平行四边形,∴线段N 1M 1可看作由线段AB 向左平移3个单位, 再向下平移2个单位得到的(也可看作向下平移2由(1)知A 点坐标为(3,4),B 点坐标为(6,2),∴N 1点坐标为(0,4-2),即N 1(0,2);………………………………5分 M 1点坐标为(6-3,0),即M 1(3,0).………………………………6分设直线M 1N 1的函数表达式为21+=x k y ,把x =3,y =0代入,解得321−=k .∴直线M 1N 1的函数表达式为232+−=x y .……………………………………8分②当M 点在x 轴的负半轴上,N 点在y 轴的负半轴上时,设M 2点坐标为(x 2,0),N 2点坐标为(0,y 2).∵AB ∥N 1M 1,AB ∥M 2N 2,AB =N 1M 1,AB =M 2N 2, ∴N 1M 1∥M 2N 2,N 1M 1=M 2N 2.∴线段M 2N 2与线段N 1M 1关于原点O 成中心对称.∴M 2点坐标为(-3,0),N 2点坐标为(0,-2).………………………9分设直线M 2N 2的函数表达式为22−=x k y ,把x =-3,y =0代入,解得322−=k ,∴直线M 2N 2的函数表达式为232−−=x y .所以,直线MN 的函数表达式为232+−=x y 或232−−=x y .………………11分(3)选做题:(9,2),(4,5).………………………………………………2分9解:(1)直线y =−x 轴交于点A ,与y 轴交于点C .(10)A ∴−,,(0C ,·················································································· 1分 点A C ,都在抛物线上,0a c c ⎧=⎪∴⎨⎪=⎩a c ⎧=⎪∴⎨⎪=⎩∴抛物线的解析式为2y x x =− ······················································ 3分 ∴顶点13F ⎛⎫− ⎪ ⎪⎝⎭, ······················································································· 4分 (2)存在 ····································································································· 5分1(0P ··································································································· 7分2(2P ··································································································· 9分 (3)存在 ··································································································· 10分理由: 解法一:延长BC 到点B ',使B C BC '=,连接B F '交直线AC 于点M ,则点M 就是所求的点. ················································································································· 11分 过点B '作B H AB '⊥于点H .B点在抛物线233y x x =−(30)B ∴, 在Rt BOC △中,tan OBC ∠=,30OBC ∴∠=,BC =,在Rt BB H '△中,12B H BB ''==6BH H '==,3OH ∴=,(3B '∴−−, ············································· 12分设直线B F '的解析式为y kx b =+x3k bk b⎧−=−+⎪∴⎨=+⎪⎩解得6kb=⎪⎪⎨⎪=⎪⎩62y x∴=− ······················································································· 13分yy x⎧=−⎪∴⎨=−⎪⎩377xy⎧=⎪⎪⎨⎪=−⎪⎩37M⎛∴⎝⎭,∴在直线AC上存在点M,使得MBF△的周长最小,此时377M⎛⎫−⎪⎪⎝⎭,. ······· 14分解法二:过点F作AC的垂线交y轴于点H,则点H为点F关于直线AC的对称点.连接BH交AC于点M,则点M即为所求. ································ 11分过点F作FG y⊥轴于点G,则OB FG∥,BC FH∥.90BOC FGH∴∠=∠=,BCO FHG∠=∠HFG CBO∴∠=∠同方法一可求得(30)B,.在Rt BOC△中,tan3OBC∠=,30OBC∴∠=,可求得3GH GC==,GF∴为线段CH的垂直平分线,可证得CFH△为等边三角形,AC∴垂直平分FH.即点H为点F关于AC的对称点.0H⎛∴−⎝⎭, ··········································· 12分设直线BH的解析式为y kx b=+,由题意得03k bb=+⎧⎪⎨=⎪⎩kb⎧=⎪⎪⎨⎪=⎪⎩y∴=······················································································ 13分xy y ⎧=⎪∴⎨⎪=⎩77x y =⎪⎪⎨⎪=−⎪⎩377M ⎛∴− ⎝⎭, ∴在直线AC 上存在点M ,使得MBF △的周长最小,此时377M ⎛⎫− ⎪ ⎪⎝⎭,. 1 10解:(1)点E 在y 轴上 ··············································································· 1分 理由如下:连接AO ,如图所示,在Rt ABO △中,1AB =,BO =,2AO ∴=1sin 2AOB ∴∠=,30AOB ∴∠= 由题意可知:60AOE ∠=306090BOE AOB AOE ∴∠=∠+∠=+=点B 在x 轴上,∴点E 在y 轴上. ································································· 3分 (2)过点D 作DM x ⊥轴于点M1OD =,30DOM ∠=∴在Rt DOM △中,12DM =,2OM = 点D 在第一象限,∴点D的坐标为122⎛⎫ ⎪ ⎪⎝⎭, ················································································ 5分 由(1)知2EO AO ==,点E 在y 轴的正半轴上∴点E 的坐标为(02),∴点A的坐标为( ·················································································· 6分 抛物线2y ax bx c =++经过点E ,2c ∴=由题意,将(A,122D ⎛⎫ ⎪ ⎪⎝⎭,代入22y ax bx =++中得32131242a a ⎧+=⎪⎨++=⎪⎩解得99a b =−⎪⎪⎨⎪=−⎪⎩∴所求抛物线表达式为:28299y x x =−−+ ·················································· 9分 (3)存在符合条件的点P ,点Q . ································································· 10分 理由如下:矩形ABOC 的面积3AB BO ==∴以O B P Q ,,,为顶点的平行四边形面积为由题意可知OB 为此平行四边形一边, 又3OB =OB ∴边上的高为2 ······················································································· 11分 依题意设点P 的坐标为(2)m ,点P在抛物线28299y x x =−−+上28229m ∴−+=解得,10m =,2m = 1(02)P ∴,,22P ⎛⎫ ⎪ ⎪⎝⎭以O B P Q ,,,为顶点的四边形是平行四边形,PQ OB ∴∥,PQ OB ==, ∴当点1P 的坐标为(02),时, 点Q 的坐标分别为1(Q,22)Q ; 当点2P 的坐标为28⎛⎫−⎪ ⎪⎝⎭时,点Q的坐标分别为328Q ⎛⎫−⎪ ⎪⎝⎭,428Q ⎛⎫⎪ ⎪⎝⎭. ··········································· 14分 (以上答案仅供参考,如有其它做法,可参照给分) 11解:(1)在2334y x =−+中,令0y = 23304x ∴−+=12x ∴=,22x =−(20)A ∴−,,(20)B , (1)又点B 在34y x b =−+上 302b ∴=−+32b =BC ∴的解析式为3342y x =−+ ········································································ 2分 (2)由23343342y x y x ⎧=−+⎪⎪⎨⎪=−+⎪⎩,得11194x y =−⎧⎪⎨=⎪⎩2220x y =⎧⎨=⎩ ····················································· 4分 914C ⎛⎫∴− ⎪⎝⎭,,(20)B ,4AB ∴=,94CD =······················································································· 5分 1994242ABC S ∴=⨯⨯=△ ·················································································· 6分 (3)过点N 作NP MB ⊥于点P EO MB ⊥ NP EO ∴∥BNP BEO ∴△∽△ ······················································································· 7分 BN NPBE EO∴=································································································· 8分 由直线3342y x =−+可得:302E ⎛⎫ ⎪⎝⎭, ∴在BEO △中,2BO =,32EO =,则52BE =25322t NP ∴=,65NP t ∴= ················································································ 9分 16(4)25S t t ∴=−2312(04)55S t t t =−+<< ············································································· 10分 2312(2)55S t =−−+ ····················································································· 11分 此抛物线开口向下,∴当2t =时,125S =最大∴当点M 运动2秒时,MNB △的面积达到最大,最大为125.12解:(1)m=-5,n=-3 (2)y=43x+2 (3)是定值.因为点D 为∠ACB 的平分线,所以可设点D 到边AC,BC 的距离均为h , 设△ABCAB 边上的高为H, 则利用面积法可得:222CM h CN h MN H⋅⋅⋅+=(CM+CN )h=MN ﹒HCM CN MNH h +=又H=CM CN MN⋅化简可得(CM+CN)﹒1MN CM CN h=⋅故111CM CN h+=13解:(1)由已知得:310c b c =⎧⎨−−+=⎩解得c=3,b =2∴抛物线的线的解析式为223y x x =−++ (2)由顶点坐标公式得顶点坐标为(1,4)所以对称轴为x=1,A,E 关于x=1对称,所以E(3,0) 设对称轴与x 轴的交点为F所以四边形ABDE 的面积=ABO DFE BOFD S S S ∆∆++梯形=111()222AO BO BO DF OF EF DF ⋅++⋅+⋅ =11113(34)124222⨯⨯++⨯+⨯⨯ =9(3)相似如图,======所以2220BD BE +=,220DE =即:222BD BE DE +=,所以BDE ∆是直角三角形所以90AOB DBE ∠=∠=︒,且2AO BO BD BE ==, 所以AOBDBE ∆∆.14解(Ⅰ)当1==b a ,1−=c 时,抛物线为1232−+=x x y , 方程01232=−+x x 的两个根为11−=x ,312=x . ∴该抛物线与x 轴公共点的坐标是()10−,和103⎛⎫ ⎪⎝⎭,. ············································ 2分 (Ⅱ)当1==b a 时,抛物线为c x x y ++=232,且与x 轴有公共点.对于方程0232=++c x x ,判别式c 124−=∆≥0,有c ≤31. ···································· 3分①当31=c 时,由方程031232=++x x ,解得3121−==x x . 此时抛物线为31232++=x x y 与x 轴只有一个公共点103⎛⎫− ⎪⎝⎭,. ······························ 4分 ②当31<c 时, 11−=x 时,c c y +=+−=1231, 12=x 时,c c y +=++=5232.由已知11<<−x 时,该抛物线与x 轴有且只有一个公共点,考虑其对称轴为31−=x ,。
二次函数常考题型与解析一.选择题(共12小题)1.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=72.点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y33.抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.4.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣5.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大6.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤7.抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.108.已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或9.已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≤C.n≤2 D.b<110.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧11.如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=1212.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0二.填空题(共9小题)13.已知点P(m,n)在抛物线y=ax2﹣x﹣a上,当m≥﹣1时,总有n≤1成立,则a的取值范围是.14.a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b c(用“>”或“<”号填空)15.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是.16.如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.17.如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为.18.二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为.19.直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB 时,直线AB恒过一个定点,该定点坐标为.20.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C 的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为.21.抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.三.解答题(共12小题)22.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.23.已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.24.已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.25.如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.26.如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).(1)求a,b的值;(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.27.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.28.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.29.如图1(注:与图2完全相同),二次函数y=x2+bx+c的图象与x轴交于A (3,0),B(﹣1,0)两点,与y轴交于点C.(1)求该二次函数的解析式;(2)设该抛物线的顶点为D,求△ACD的面积(请在图1中探索);(3)若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC 边运动,其中一点到达端点时,另一点也随之停止运动,当P,Q运动到t秒时,△APQ沿PQ所在的直线翻折,点A恰好落在抛物线上E点处,请直接判定此时四边形APEQ的形状,并求出E点坐标(请在图2中探索).30.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.31.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax2相交于A,B两点(点B在第一象限),点D在AB的延长线上.(1)已知a=1,点B的纵坐标为2.①如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,求AC的长.②如图2,若BD=AB,过点B,D的抛物线L2,其顶点M在x轴上,求该抛物线的函数表达式.(2)如图3,若BD=AB,过O,B,D三点的抛物线L3,顶点为P,对应函数的二次项系数为a3,过点P作PE∥x轴,交抛物线L于E,F两点,求的值,并直接写出的值.32.小明的爸爸和妈妈分别驾车从家同时出发去上班,爸爸行驶到甲处时,看到前面路口时红灯,他立即刹车减速并在乙处停车等待,爸爸驾车从家到乙处的过程中,速度v(m/s)与时间t(s)的关系如图1中的实线所示,行驶路程s(m)与时间t(s)的关系如图2所示,在加速过程中,s与t满足表达式s=at2(1)根据图中的信息,写出小明家到乙处的路程,并求a的值;(2)求图2中A点的纵坐标h,并说明它的实际意义;(3)爸爸在乙处等待7秒后绿灯亮起继续前行,为了节约能源,减少刹车,妈妈驾车从家出发的行驶过程中,速度v(m/s)与时间t(s)的关系如图1中的折线O﹣B﹣C所示,加速过程中行驶路程s(m)与时间t(s)的关系也满足s=at2,当她行驶到甲处时,前方的绿灯刚好亮起,求此时妈妈驾车的行驶速度.33.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2016•荆门)若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【分析】先根据二次函数y=x2+mx的对称轴是x=3求出m的值,再把m的值代入方程x2+mx=7,求出x的值即可.【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.【点评】本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键.2.(2016•兰州)点P1(﹣1,y1),P2(3,y2),P3(5,y3)均在二次函数y=﹣x2+2x+c的图象上,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y3>y1=y2C.y1>y2>y3D.y1=y2>y3【分析】根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=﹣x2+2x+c,∴对称轴为x=1,P2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(﹣1,y1)与(3,y1)关于对称轴对称,故y1=y2>y3,故选D.【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.3.(2016•贺州)抛物线y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图象大致为()A.B.C.D.【分析】根据二次函数图象与系数的关系确定a>0,b<0,c<0,根据一次函数和反比例函数的性质确定答案.【解答】解:由抛物线可知,a>0,b<0,c<0,∴一次函数y=ax+b的图象经过第一、三、四象限,反比例函数y=的图象在第二、四象限,故选:B.【点评】本题考查的是二次函数、一次函数和反比例函数的图象与系数的关系,掌握二次函数、一次函数和反比例函数的性质是解题的关键.4.(2016•临沂)二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【分析】选出3点的坐标,利用待定系数法求出函数的解析式,再根据二次函数的性质逐项分析四个选项即可得出结论.【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c 中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.【点评】本题考查了待定系数求函数解析式以及二次函数的性质,解题的关键是利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用待定系数法求出函数解析式是关键.5.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【点评】本题考查的是二次函数的性质,熟练掌握二次函数的性质是解题的关键.6.(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A (﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④C.②④⑤D.①③④⑤【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.【点评】主要考查图象与二次函数系数之间的关系.解题关键是注意掌握数形结合思想的应用.7.(2016•绍兴)抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,则c的值不可能是()A.4 B.6 C.8 D.10【分析】根据抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,可以得到c的取值范围,从而可以解答本题.【解答】解:∵抛物线y=x2+bx+c(其中b,c是常数)过点A(2,6),且抛物线的对称轴与线段y=0(1≤x≤3)有交点,∴解得6≤c≤14,故选A.【点评】本题考查二次函数的性质、解不等式,解题关键是明确题意,列出相应的关系式.8.(2016•泸州)已知二次函数y=ax2﹣bx﹣2(a≠0)的图象的顶点在第四象限,且过点(﹣1,0),当a﹣b为整数时,ab的值为()A.或1 B.或1 C.或D.或【分析】首先根据题意确定a、b的符号,然后进一步确定a的取值范围,根据a﹣b为整数确定a、b的值,从而确定答案.【解答】解:依题意知a>0,>0,a+b﹣2=0,故b>0,且b=2﹣a,a﹣b=a﹣(2﹣a)=2a﹣2,于是0<a<2,∴﹣2<2a﹣2<2,又a﹣b为整数,∴2a﹣2=﹣1,0,1,故a=,1,,b=,1,,∴ab=或1,故选A.【点评】本题考查了二次函数的性质,解题的关键是能够根据图象经过的点确定a+b+c的值和a、b的符号,难度中等.9.(2016•株洲)已知二次函数y=ax2+bx+c(a>0)的图象经过点A(﹣1,2),B(2,5),顶点坐标为(m,n),则下列说法错误的是()A.c<3 B.m≤C.n≤2 D.b<1【分析】根据已知条件得到,解方程组得到c=3﹣2a<3,b=1﹣a<1,求得二次函数的对称轴为x=﹣=﹣=﹣<,根据二次函数的顶点坐标即可得到结论.【解答】解:由已知可知:,消去b得:c=3﹣2a<3,消去c得:b=1﹣a<1,对称轴:m=x=﹣=﹣=﹣<,∵A(﹣1,2),a>0,那么顶点的纵坐标为函数的最小值,∴n≤2,故B错.【点评】本题考查了二次函数的性质,二次函数图象上点的坐标特征,熟记二次函数的性质是解题的关键.10.(2015•南昌)已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧【分析】根据题意判定点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,从而得出﹣2<<0,即可判定抛物线对称轴的位置.【解答】解:∵抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,∴点(﹣2,0)关于对称轴的对称点横坐标x2满足:﹣2<x2<2,∴﹣2<<0,∴抛物线的对称轴可能在y轴左侧且在直线x=﹣2的右侧.故选:D.【点评】本题考查了二次函数的性质,根据点坐标判断出另一个点的位置是解题的关键.11.(2007•临沂)如图,某厂有许多形状为直角梯形的铁皮边角料,为节约资源,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A.x=10,y=14 B.x=14,y=10 C.x=12,y=15 D.x=15,y=12【分析】由直角三角形相似得,得x=•(24﹣y),化简矩形面积S=xy 的解析式为S=﹣(y﹣12)2+180,再利用二次函数的性质求出S 的最大值,以及取得最大值时x、y的值.【解答】解:以直角梯形的下底直角边端点为原点,两直角边方向为x,y轴建立直角坐标系,过点D作DE⊥x轴于点E,∵NH∥DE,∴△CNH∽△CDE,∴=,∵CH=24﹣y,CE=24﹣8,DE=OA=20,NH=x,∴,得x=•(24﹣y),∴矩形面积S=xy=﹣(y﹣12)2+180,∴当y=12时,S有最大值,此时x=15.故选D.【点评】本题考查的是直角梯形以及矩形的性质的相关知识点.12.(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<0【分析】把(﹣,m)代入y=ax2+bx图象的顶点坐标公式得到顶点(﹣,﹣),再把(﹣,﹣)代入得到k=,由图象的特征即可得到结论.【解答】解:∵y=ax2+bx图象的顶点(﹣,m),∴﹣=﹣,即b=a,∴m==﹣,∴顶点(﹣,﹣),把x=﹣,y=﹣代入反比例解析式得:k=,由图象知:抛物线的开口向下,∴a<0,∴a<k<0,故选D.【点评】本题考查了二次函数的性质,反比例函数图象上点的坐标特征,熟练掌握反比例函数图象上点的坐标特征是解题的关键.二.填空题(共9小题)13.(2016•厦门)已知点P(m,n)在抛物线y=ax2﹣x﹣a上,当m≥﹣1时,总有n≤1成立,则a的取值范围是﹣≤a<0.【分析】依照题意画出图形,结合函数图形以及已知条件可得出关于a的一元一次不等式组,解不等式组即可得出a的取值范围.【解答】解:根据已知条件,画出函数图象,如图所示.由已知得:,解得:﹣≤a<0.故答案为:﹣≤a<0【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是画出函数图象,依照数形结合得出关于a的不等式组.本题属于基础题,难度不大,解决该题型题目时,根据二次函数的性质画出函数图象,利用数形结合解决问题是关键.14.(2016•镇江)a、b、c是实数,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,则b、c的大小关系是b<c(用“>”或“<”号填空)【分析】求出二次函数的对称轴,再根据二次函数的增减性判断即可.【解答】解:∵二次函数y=x2﹣2ax+3的图象的对称轴为x=a,二次项系数1>0,∴抛物线的开口向上,在对称轴的右边,y随x的增大而增大,∵a+1<a+2,点A(a+1、b)、B(a+2,c)在二次函数y=x2﹣2ax+3的图象上,∴b<c,故答案为:<.【点评】本题考查了二次函数图象上点的坐标特征,求出对称轴解析式,然后利用二次函数的增减性求解更简便.15.(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c<0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.16.(2016•梅州)如图,抛物线y=﹣x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+,2)或(1﹣,2).【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P点坐标.【解答】解:∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作PE⊥y轴于点E,则E为线段CD的中点,∵抛物线y=﹣x2+2x+3与y轴交于点C,∴C(0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在y=﹣x2+2x+3中,令y=2,可得﹣x2+2x+3=2,解得x=1±,∴P点坐标为(1+,2)或(1﹣,2),故答案为:(1+,2)或(1﹣,2).【点评】本题主要考查等腰三角形的性质,利用等腰三角形的性质求得P点纵坐标是解题的关键.17.(2014•宁德)如图,P是抛物线y=﹣x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为6.【分析】设P(x,y)(2>x>0,y>0),根据矩形的周长公式得到C=﹣2(x﹣1)2+6.根据二次函数的性质来求最值即可.【解答】解:∵y=﹣x2+x+2,∴当y=0时,﹣x2+x+2=0即﹣(x﹣2)(x+1)=0,解得x=2或x=﹣1故设P(x,y)(2>x>0,y>0),∴C=2(x+y)=2(x﹣x2+x+2)=﹣2(x﹣1)2+6.=6,.∴当x=1时,C最大值即:四边形OAPB周长的最大值为6.故答案是:6.【点评】本题考查了二次函数的最值,二次函数图象上点的坐标特征.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.本题采用了配方法.18.(2016•泰州)二次函数y=x2﹣2x﹣3的图象如图所示,若线段AB在x轴上,且AB为2个单位长度,以AB为边作等边△ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为(1+,3)或(2,﹣3).【分析】△ABC是等边三角形,且边长为2,所以该等边三角形的高为3,又点C在二次函数上,所以令y=±3代入解析式中,分别求出x的值.由因为使点C落在该函数y轴右侧的图象上,所以x>0.【解答】解:∵△ABC是等边三角形,且AB=2,∴AB边上的高为3,又∵点C在二次函数图象上,∴C的纵坐标为±3,令y=±3代入y=x2﹣2x﹣3,∴x=1或0或2∵使点C落在该函数y轴右侧的图象上,∴x>0,∴x=1+或x=2∴C(1+,3)或(2,﹣3)故答案为:(1+,3)或(2,﹣3)【点评】本题考查二次函数的图象性质,涉及等边三角形的性质,分类讨论的思想等知识,题目比较综合,解决问题的关键是根据题意得出C的纵坐标为±3.19.(2016•大庆)直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB恒过一个定点,该定点坐标为(0,4).【分析】根据直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,可以联立在一起,得到关于x的一元二次方程,从而可以得到两根之和与两根之积,再根据OA⊥OB,可以求得b的值,从而可以得到直线AB恒过的定点的坐标.【解答】解:∵直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,∴kx+b=,化简,得x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,又∵OA⊥OB,∴=,解得,b=4,即直线y=kx+4,故直线恒过顶点(0,4),故答案为:(0,4).【点评】本题考查二次函数的性质、一次函数的性质,解题的关键是明确题意,找出所求问题需要的条件,知道两条直线垂直时,它们解析式中的k的乘积为﹣1.20.(2016•长春)如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3),D是抛物线y=﹣x2+6x上一点,且在x轴上方,则△BCD面积的最大值为15.【分析】设D(x,﹣x2+6x),根据勾股定理求得OC,根据菱形的性质得出BC,=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,然后根据三角形面积公式得出∴S△BCD根据二次函数的性质即可求得最大值.【解答】解:∵D是抛物线y=﹣x2+6x上一点,∴设D(x,﹣x2+6x),∵顶点C的坐标为(4,3),∴OC==5,∵四边形OABC是菱形,∴BC=OC=5,BC∥x轴,∴S=×5×(﹣x2+6x﹣3)=﹣(x﹣3)2+15,△BCD∵﹣<0,∴S有最大值,最大值为15,△BCD故答案为15.【点评】本题考查了菱形的性质,二次函数的性质,注意数与形的结合是解决本题的关键.21.(2016•自贡)抛物线y=﹣x2+4ax+b(a>0)与x轴相交于O、A两点(其中O为坐标原点),过点P(2,2a)作直线PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(其中B、C不重合),连接AP交y轴于点N,连接BC和PC.(1)a=时,求抛物线的解析式和BC的长;(2)如图a>1时,若AP⊥PC,求a的值.【分析】(1)根据抛物线经过原点b=0,把a=、b=0代入抛物线解析式,即可求出抛物线解析式,再求出B、C坐标,即可求出BC长.(2)利用△PCB∽△APM,得=,列出方程即可解决问题.【解答】解:(1)∵抛物线y=﹣x2+4ax+b(a>0)经过原点O,∴b=0,∵a=,∴抛物线解析式为y=﹣x2+6x,∵x=2时,y=8,∴点B坐标(2,8),∵对称轴x=3,B、C关于对称轴对称,∴点C坐标(4,8),∴BC=2.(2)∵AP⊥PC,∴∠APC=90°,∵∠CPB+∠APM=90°,∠APM+∠PAM=90°,∴∠CPB=∠PAM,∵∠PBC=∠PMA=90°,∴△PCB∽△APM,∴=,∴=,整理得a2﹣4a+2=0,解得a=2±,∵a>1,∴a=2+.【点评】本题考查二次函数性质、相似三角形的判定和性质、待定系数法等知识,解题的关键是利用相似三角形性质列出方程解决问题,学会转化的思想,属于中考常考题型.三.解答题(共12小题)22.(2016•黔南州)已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当y<0时,求x的取值范围.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,从而得到抛物线的解析式,然后依据配方法可求得抛物线的顶点坐标;(2)依据抛物线的解析式与平移的规划规律,写出平移后抛物线的解析式,然后求得抛物线与x轴的交点坐标,最后依据y<0可求得x的取值范围.【解答】解:(1)∵把C(0,﹣6)代入抛物线的解析式得:C=﹣6,把A(﹣2,0)代入y=x2+bx﹣6得:b=﹣1,∴抛物线的解析式为y=x2﹣x﹣6.∴y=(x﹣)2﹣.∴抛物线的顶点坐标D(,﹣).(2)二次函数的图形沿x轴向左平移个单位长度得:y=(x+2)2﹣.令y=0得:(x+2)2﹣=0,解得:x1=,x2=﹣.∵a>0,∴当y<0时,x的取值范围是﹣<x<.【点评】本题主要考查的是抛物线与x轴的交点、待定系数法求二次函数的解析式,掌握相关知识是解题的关键.23.(2016•无锡)已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B两点,与y轴交于点C,它的顶点为P,直线CP与过点B 且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.【分析】(1)由二次函数的解析式可求出对称轴为x=1,过点P作PE⊥x轴于点E,所以OE:EB=CP:PD;(2)过点C作CF⊥BD于点F,交PE于点G,构造直角三角形CDF,利用tan∠PDB=即可求出FD,由于△CPG∽△CDF,所以可求出PG的长度,进而求出a 的值,最后将A(或B)的坐标代入解析式即可求出c的值.【解答】解:(1)过点P作PE⊥x轴于点E,∵y=ax2﹣2ax+c,∴该二次函数的对称轴为:x=1,∴OE=1∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)∵A与B关于直线x=1对称,∴A(﹣,0);(2)过点C作CF⊥BD于点F,交PE于点G,令x=1代入y=ax2﹣2ax+c,∴y=c﹣a,令x=0代入y=ax2﹣2ax+c,∴y=c∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD∴△CPG∽△CDF,∴==∴PG=,∴a=,∴y=x2﹣x+c,把A(﹣,0)代入y=x2﹣x+c,∴解得:c=﹣1,∴该二次函数解析式为:y=x2﹣x﹣1.【点评】本题考查二次函数,涉及待定系数法求出二次函数解析式,相似三角形的性质与判定,锐角三角函数等知识内容,解题的关键是利用作垂线构造直角三角形,再利用相似三角形的对应边的比相等即可得出答案.24.(2016•淄博)已知,点M是二次函数y=ax2(a>0)图象上的一点,点F的坐标为(0,),直角坐标系中的坐标原点O与点M,F在同一个圆上,圆心Q 的纵坐标为.(1)求a的值;(2)当O,Q,M三点在同一条直线上时,求点M和点Q的坐标;(3)当点M在第一象限时,过点M作MN⊥x轴,垂足为点N,求证:MF=MN+OF.【分析】(1)设Q(m,),F(0,),根据QO=QF列出方程即可解决问题.(2)设M(t,t2),Q(m,),根据K OM=K OQ,求出t、m的关系,根据QO=QM 列出方程即可解决问题.(3)设M(n,n2)(n>0),则N(n,0),F(0,),利用勾股定理求出MF 即可解决问题.【解答】解:(1)∵圆心Q的纵坐标为,∴设Q(m,),F(0,),∵QO=QF,∴m2+()2=m2+(﹣)2,∴a=1,∴抛物线为y=x2.(2)∵M在抛物线上,设M(t,t2),Q(m,),。
、填空题:2 .1、函数y (m 1)x m 12mx 1是抛物线,则m = _—2、抛物线y x2 2x 3与x轴交点为______________ ,与y轴交点为.3、二次函数y ax2的图象过点(一1, 2),则它的解析式是_________________当x4 .抛物线y 时,6(xy随x的增大而增大.1)222可由抛物线y 6x 2向平移个单位得到.5. 抛物线y 2 x4x3在x轴上截得的线段长度是6. 抛物线y 2 x2x2m 4的图象经过原点,贝U m7. 抛物线y 2 x x m,若其顶点在x轴上,则m8.如果抛物线3 2y ax2bx c 的对称轴是x = - 2,且开口方向与形状与抛物线y 2X相同,又过原点,那么a= ___________________ , b = ________________ , c9、二次函数y x2 bx c的图象如下左图所示,则对称轴是 __________________ ,当函数值y对应x的取值范围是0时,\‘ yVO x10、已知二次函数y1 2ax bx c(a 0)与一次函数y2kx m(k 0)的图象相交于点A (- 2, 4)和B(8, 2),如上右图所示,则能使y1y成立的x的取值范围二、选择题:11.下列各式中,y是x的二次函数的是A. xy x2 1 B . x2 y 22 2ax 2 D . x y 1 012.在同一坐标系中,作y 2x2、y2x2、A. 都是关于x轴对称,抛物线开口向上BB. 都是关于原点对称,顶点都是原点Dmx m21的图象过原点,则2y1 2-x2的图象,它们共同特点是2都是关于都是关于13.抛物线yA. 0 x2m为(C . - 1y轴对称,抛物线开口向下y轴对称,顶点都是原点)D . ± 121、根据所给条件求抛物线的解析式: (1) 、抛物线过点(0, 2)、(1 , 1 )、(3, 5)(2) 、抛物线关于y 轴对称,且过点(1,— 2)和(一2, 0)bx C 的图像经过 A ( 0, 1), B (2,— 1)两点.(2 )试判断点P (— 1, 2)是否在此函数图像上?14•把二次函数y x 2 2x 1配方成为()2 2A . y (x 1)B . y (x 1) 2C . y 已知原点是抛物线 y (m 1)x 2的最高点,则A. m 1 B . m 115. (x 1)2 m 的范围是m 1D. y (x1)2 216、 函数y 2x 2 x 1的图象经过点(A 、(一 1, 1)B 、( 1 , 1) (0, 1 )、(1 , 0 )17、 2抛物线y 3x 向右平移1个单位,再向下平移 2个单位, 所得到的抛物线是2y 3(x 1)2 B 、y3(x 21)2C 、y 23(x 1)2 D 、y 3(x1)2 218、已知h 关于t 的函数关系式higt 2 ( g 为正常数,t 为时间)如图,贝U 函数图象为22 2A 、y x 3x 2B 、y 5 xC 、y 2 2x 2x D 、y x 4x 422.已知二次函数 yx 2(1)求b 和c 的值;20三、解答题:c 0,那么它的图象大致是()23、某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形一边长为X米,面积为S平方米.(1) 求出S与x之间的函数关系式,并确定自变量x的取值范围;(2) 请你设计一个方案,使获得的设计费最多,并求出这个费用24、某工厂现有80台机器,每台机器平均每天生产384?件产品,现准备增加一批同类机器以提高生产总量,在试生产中发现,?由于其他生产条件没变,因此每增加一台机器,每台机器平均每天将少生产4件产品.(1)如果增加x台机器,每天的生产总量为y件,请你写出y与x之间的关系式;(2)增加多少台机器,可以使每天的生产总量最大?最大生产总量是多少?25、如图,有一个抛物线的拱形立交桥,?这个桥拱的最大高度为16m跨度为40m,现把它放在如图所示的直角坐标系里,?若要在离跨度中心点M5m处垂直竖一根铁柱支撑这个拱顶,铁柱应取多长?1624、如图,抛物线y x2 5x ⑴求抛物线的解析式;⑵P是y轴正半轴上一点,且△n经过点A(1 , 0),与y轴交于点B.PAB是以AB为腰的等腰三角形,试求P点坐标.。
初三数学常考题型:抛物线经典好题
对于抛物线压轴题,要善于归类总结,掌握常规方法,积累特殊方法。
比如说平行四边形的存在性问题,等腰直角三角形的存在性问题,都是有多种方法求解的。
手写版的参考答案和简单分析:
第一题:考点有待定系数法求抛物线表达式,将军饮马问题,直角三角形的存在性问题,这道题目比较基础,适合初步接触抛物线时练习。
第二题,这道题目也比较常规基础,第一问求直线解析式,知道截距求表达式,可不用列方程组,省下一点时间。
第2问同样是将军饮马问题,送分问。
第3问是求线段长度的最值,最常见的方法就是设坐标列式子求最值。
第三题,这是一道面积问题和平行四边形的存在性问题,用到了水平宽乘以铅垂高求三角形面积。
平行四边形的存在性问题通常有三种方法求点的坐标,我在前面的文章中已经有详细讲解。
这道题我采用的是平行四边形对角坐标公式(中点坐标公式),也可以用点的平移的方法来解决。
第四题,又见将军饮马,可见将军饮马问题有多重要。
第3问求面积的最大值,采用的是直线平移,当直线与抛物线只有一个交点时,高最大,面积最大。
第5题:线段旋转问题,等腰三角形的存在性问题。
第6题:平行四边形的存在性问题和线段最值问题,第三问线段最值问题,用到了转换的思想,通过等腰直角三角形把求直角边的最值转化为求斜边的最值。
五、抛物线与平行四边形15.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与轴相交于A、B两点,与轴相交于点C,OA=1,OC=3,连接BC.(1)求b的值;(2)点D是直线BC上方抛物线一动点(点B、C除外),当△BCD的面积取得最大值时,在轴上是否存在一点P,使得|PB﹣PD|最大,若存在,请求出点P的坐标;若不存在,请说明理由.(3)在(2)的条件下,若在平面上存在点Q,使得以点B、C、D、Q为顶点的四边形为平行四边形,请直接写出点Q坐标.【答案】(1)b=2,c=3;(2)P(0,);(3)(-,),(,-),(,),∴直线BC的解析式为:y=-x+3,如图1,作直线l∥BC,设直线l的解析式为:y=-x+b,由题意可知:△BCD中边BC长一定,当△BCD的面积取得最大值时,即以BC为底边,其高最大,也就是直线l与抛物线有一个交点时,三角形高最大,△BCD的面积最大,则,(3)如图4,分三种情况:①当CD为平行四边形的对角线时,【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,平行四边形的判定,以及坐标与图形性质,确定点D、P、B共线是解决第(2)小题的关键,画出以点B、C、D、Q为顶点的四边形为平行四边形是解决第(3)小题的关键.16.如图,抛物线经过两点,与x轴交于另一点B.点P是抛物线上的动点。
(1)求抛物线的解析式;(2)是否存在点P,使得△BCP是以B C为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)当P运动到第一象限时,过P作直线PM平行y轴,交直线B C于点M。
①求线段PM长度的最大值②D为平面内任意一点,当线段PM最大时,是否存在以C、P、M、D为顶点的平行四边形。
若存在,直接写出所有符合条件的点D坐标.【答案】(1) ;(2)见解析;(3) ①4; ②D1,D2,D3.(3)①求出直线BC解析式,根据PM平行y轴用二次函数表示P M的长度从而表示出PM的最大值;②分3种情况:CM为对角线;MP为对角线;CP为对角线.解:(1)将两点代入到中得,∴抛物线的解析式为.(2)存在.第二种情况,当以B为直角顶点时,过点P作PH⊥x轴,垂足为H.∵∠CBA=45°,∠CBP=90°,∴∠OBP=45°.∴∠HPB=45°,∴PH=HB.即:,解得:(舍去),.∴则P2的坐标是.综上所述,P的坐标是或17.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A、B两点,点A在点B 左侧,点B的坐标为(1,0)、C(0,﹣3).(1)求抛物线的解析式.(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?如存在,求点P的坐标;若不存在,请说明理由.【答案】(1)y=x2+x﹣3(2)(3)P1(﹣3,﹣3)或P2(,3)或P3(,3)解:(1)解:将点B、C的坐标代入抛物线的解析式得:,解得:a= ,c=﹣3.∴抛物线的解析式为y= x2+ x﹣3.(2)解:令y=0,则x2+ x﹣3=0,解得x1=1,x2=﹣4,∴A(﹣4,0)、B(1,0).令x=0,则y=﹣3,∴C(0,﹣3),∴S△ABC= ×5×3= .设D(m,m2+ m﹣3),过点D作DE∥y轴交AC于E.直线AC的解析式为y=﹣x﹣3,则E(m,﹣m﹣3),DE=﹣m﹣3﹣(m2+ m﹣3)=﹣(m+2)2+3,当m=﹣2时,DE有最大值为3,此时,S△ACD有最大值为×DE×4=2DE=6.∴四边形ABCD的面积的最大值为6+ = ,18.在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,是否存在以点P、Q、B、O为顶点的四边形为平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)y=x2+x﹣4;(2)m=﹣2时,S有最大值,S=4;(3)Q(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).【解析】(1)先假设出函数解析式,利用三点法求解函数解析式.(2)∵M点的横坐标为m,且点M在这条抛物线上,∴M点的坐标为:(m,m2+m﹣4),∴S=S△AOM+S△OBM﹣S△AOB=×4×(﹣m2﹣m+4)+×4×(﹣m)﹣×4×4=﹣m2﹣2m+8﹣2m﹣8=﹣m2﹣4m,=﹣(m+2)2+4,∵﹣4<m<0,当m=﹣2时,S有最大值为:S=﹣4+8=4.答:m=﹣2时,S有最大值,S=4.(3)设P(x,x2+x﹣4).当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,又∵直线的解析式为y=﹣x,则Q(x,﹣x).由PQ=OB,得|﹣x﹣(x2+x﹣4)|=4,解得x=0,﹣4,﹣2±2.x=0不合题意,舍去.如图,当BO为对角线时,知A与P应该重合,OP=4.四边形PBQO为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=﹣x得出Q为(4,﹣4).由此可得Q(﹣4,4)或(﹣2+2,2﹣2)或(﹣2﹣2,2+2)或(4,﹣4).点睛:考查了三点式求抛物线的方法,以及抛物线的性质和最值的求解方法.19.如图,抛物线y=ax2+bx﹣经过A(﹣1,0),B(5,0)两点.(1)求此抛物线的解析式;(2)在抛物线的对称轴上有一点P,使得PA+PC的值最小时,求△ABP的面积;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣2x﹣;(2);(3)符合条件的点N的坐标为(4,﹣)、(2+,)或(2﹣,).种情况分别画出图形,从而得出答案.详解:(1)把A(﹣1,0),B(5,0)代入y=ax2+bx﹣,得到,解得:,即抛物线的解析式为y=x2﹣2x﹣;六、抛物线与动点问题20.如图,在平面直角坐标系中,抛物线y =ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.点P、Q分别是AB、BC上的动点,当点P从A点出发,在线段AB上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度的速度向C 点运动,其中一个点到达终点时,另一个点也停止运动.设P 、Q 同时运动的时间为t 秒(0<t <2).(1)求抛物线的表达式;(2)设△PBQ 的面积为S ,当t 为何值时,△PBQ 的面积最大,最大面积是多少? (3)当t 为何值时,△PBQ 是等腰三角形?【答案】(1)y =38x 2−34x −3;(2)当t =1时,S △PBQ 最大=910.;(3)当t 的值是32秒或3023秒或4829秒时,△CPQ 为等腰三角形.(2)由题意可知:AP =3t ,BQ =t . ∴PB =6−3t .由题意得,点C 的坐标为(0,−3). 在Rt △BOC 中,BC 22345+=. 如图1,过点Q 作QH ⊥AB 于点H .∴QH∥CO,∴△BHQ∽△BOC∴HQ BQOC BC=,即35HQ t=∴HQ=3 5 t.∴S△PBQ=12PB⋅HQ=12(6−3t)⋅35t=−910t2+95t=−910(t−1)2+910.∴当t=1时,S△PBQ最大=910. ()答:运动1秒使△PBQ的面积最大,最大面积是9 10;∵cos∠HBQ =BD OB BP BC=∴142635tt=-,解得t=4829∴当t=4829秒时,△CPQ 是等腰三角形,即当△CPQ为等腰三角形时,t的值是32秒或3023秒或4829秒.21.如图,在平面直角坐标系中,抛物线(a ≠0)与x轴交于A、B两点,与y轴交于点C,且OA =2,OB=8,OC =6.(1)求抛物线的解析式;(2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时,点N从B 出发,在线段BC 上以每秒1个单位长度的速度向C点运动,当其中一个点到达终点时,另一个点也停止运动,当△MBN存在时,求运动多少秒使△MBN的面积最大,最大面积是多少?(3)在(2)的条件下,△MBN面积最大时,在BC上方的抛物线上是否存在点P,使△BPC的面积是△MBN面积的9倍?若存在,求点P的坐标;若不存在,请说明理由.【答案】(1);(2)运动秒使△MBN的面积最大,最大面积是;(3)P(3,)或(5,).(2)设运动时间为t秒,则AM=3t,BN=t,∴MB=10﹣3t.由题意得,点C的坐标为(0,6).在Rt△BOC 中,BC==10.如图,过点N作NH⊥AB于点H,∴NH∥CO,∴△BHN∽△BOC,∴,即,∴HN=t,∴S△MBN=MB•HN=(10﹣3t)•t==﹣(t﹣)2+,当△MBN存在时,0<t<2,∴当t=时,S△MBN最大=.答:运动秒使△MBN的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k≠0).把B(8,0),C(0,6)代入,得:,解得:,∴直线BC的解析式为.∵点P在抛物线上,∴设点P的坐标为(m,),如图,过点P作PE∥y轴,交BC于点E,则E点的坐标为(m,).22.如图,已知抛物线与y轴交于点,与x轴交于点,点P是线段AB上方抛物线上的一个动点.求这条抛物线的表达式及其顶点坐标;当点P移动到抛物线的什么位置时,使得,求出此时点P的坐标;当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动;与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止当两个动点移动t秒时,求四边形P AMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?【答案】(1)抛物线的表达式为,抛物线的顶点坐标为;(2)P点坐标为;(3)当时,S有最大值,最大值为24.解:根据题意,把,代入抛物线解析式可得,解得,抛物线的表达式为,,抛物线的顶点坐标为;如图1,过P作轴于点C,,,当时,,,即,设,则,,把P点坐标代入抛物线表达式可得,解得或,经检验,与点A重合,不合题意,舍去,所求的P点坐标为;七、抛物线与直线、线段的交点问题23.在平面直角坐标系xOy中,抛物线y=mx2﹣4mx+4m+4(m≠0)的顶点为P.P,M两点关于原点O成中心对称.(1)求点P,M的坐标;(2)若该抛物线经过原点,求抛物线的表达式;(3)在(2)的条件下,将抛物线沿x轴翻折,翻折后的图象在0≤x≤5的部分记为图象H,点N为抛物线对称轴上的一个动点,经过M,N的直线与图象H有两个公共点,结合图象求出点N的纵坐标n的取值范围.【答案】(1)点P(2,4),点M(﹣2,﹣4);(2)y=﹣x2+4x(3)﹣4<n≤24.已知二次函数y=x2﹣2(k+1)x+k2﹣2k﹣3与x轴有两个交点.(Ⅰ)求k取值范围;(Ⅱ)当k取最小整数时,此二次函数的对称轴和顶点坐标;(Ⅲ)将(Ⅱ)中求得的抛物线在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分不变,得到一个新图象.请你求出新图象与直线y=x+m有三个不同公共点时m的值.【答案】(Ⅰ)k>﹣1(Ⅱ)对称轴为:x=1.顶点坐标为(1,﹣4);(Ⅲ)m的值为1或13 425.在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).(1)求抛物线的表达式;(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.【答案】(1)抛物线的表达式为y=x2+2x﹣3;(2)y的取值范围是﹣4≤y<5;(3)b的取值范围是3<b<21 4.解:(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),∴1+m+2m﹣7=0,解得m=2,∴抛物线的表达式为y=x2+2x﹣3;(2)y=x2+2x﹣3=(x+1)2﹣4,∵当﹣4<x<﹣1时,y随x增大而减小;当﹣1≤x<1时,y随x增大而增大,∴当x=﹣1,y 最小=﹣4,当x=﹣4时,y=5,∴﹣4<x <1时,y 的取值范围是﹣4≤y <5;26.在平面直角坐标系xOy 中,抛物线2443y mx mx m =-++的顶点为A .(1)求点A 的坐标;(2)将线段OA 沿x 轴向右平移2个单位得到线段O A ''.①直接写出点O '和A '的坐标;②若抛物线2443y mx mx m =-++与四边形AOO A ''有且只有两个公共点,结合函数的图象,求m 的取值范围.【答案】(1)(2,3)(2)O '(2,0), A '(4,3)(3)304m -<<(3)如图,∵抛物线y =mx 2-4mx +4m +3与四边形AOO ′A ′有且只有两个公共点,∴m <0.由图象可知,抛物线是始终和四边形AOO 'A '的边O 'A '相交,∴抛物线已经和四边形AOO ′A ′有两个公共点,∴将(0,0)代入y =mx 2-4mx +4m +3中,得m =34-. ∴34-<m <0. 七、抛物线与整点问题27. 在平面直角坐标系xOy 中,抛物线221(0)y mx mx m m =-+->与x 轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点。
初三数学二次函数的性质试题答案及解析1.抛物线y=5(x﹣2)2+1的顶点是.【答案】(2,1)【解析】根据抛物线的顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),可直接写出顶点坐标.解:抛物线y=5(x﹣2)2+1的顶点是(2,1).故答案为:(2,1).点评:此题主要考查了二次函数的性质,二次函数顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.2.已知抛物线y=x2﹣2x﹣3与y轴交于点C,则点C的坐标是;若点C′是点的C关于该抛物线的对称轴对称点,则C′点的坐标是.【答案】(0,﹣3),(2,﹣3)【解析】要知抛物线y=x2﹣2x﹣3与y轴交点C的坐标,应知点C的横坐标是0,把0代入即可,抛物线关于对称轴具有对称性,从而可求出点C‘的纵坐标,代入即可求出横坐标.即求出答案.解:抛物线y=x2﹣2x﹣3与y轴交于点C,当x=0时 y=02﹣2×0﹣3=﹣3,∴点C的坐标是(0,﹣3),y=x2﹣2x﹣3,这里a=1,b=﹣2,∴﹣=﹣=1,即:对称轴是x=1,∵点C′是点C关于该抛物线的对称轴对称的点,点C的坐标是(0,﹣3),∴点C′也在抛物线y=x2﹣2x﹣3上,且C′点的纵坐标也是﹣3,当y=﹣3时 x2﹣2x﹣3=﹣3,解得:x1=0,x2=2,∴C′点的坐标是:(2,﹣3),故答案为:(0,﹣3),(2,﹣3).点评:此题主要考查对抛物线的性质的理解和掌握,能正确求出抛物线上点的坐标;并能利用抛物线的对称轴的对称性,求出对称点的坐标.3.已知抛物线的表达式是y=2(x+2)2﹣1,那么它的顶点坐标是.【答案】(﹣2,﹣1)【解析】已知解析式为抛物线的顶点式,可直接写出顶点坐标.解:∵y=2(x+2)2﹣1是抛物线解析式的顶点式,∴根据顶点式的坐标特点可知,顶点坐标为(﹣2,﹣1).故答案为(﹣2,﹣1).点评:本题主要考查了求抛物线的顶点坐标的方法,确定抛物线的顶点坐标的方法可以用配方法或公式法.4.已知抛物线的顶点坐标为(﹣1,﹣2),且通过点(1,10),则该抛物线的解析式为.【答案】y=3(x+1)2﹣2【解析】设抛物线的解析式为y=a(x+1)2﹣2.然后将点(1,10)代入其中,利用待定系数法求该抛物线的解析式即可.解:由题意,可设抛物线的解析式为y=a(x+1)2﹣2.∵该抛物线的解析式通过点(1,10),∴10=a(1+1)2﹣2,解得,a=3;故该抛物线的解析式是:y=3(x+1)2﹣2.点评:本题考查了待定系数法求二次函数的解析式.解答该题时,要充分利用已知条件“抛物线的顶点坐标为(﹣1,﹣2)”来设该抛物线的解析式.5.二次函数y=﹣2(x﹣1)(x﹣3)的图象的对称轴是.【答案】直线x=2【解析】此题先化抛物线的解析式为一般式,再用对称轴公式求解即可.解:∵y=﹣2(x﹣1)(x﹣3)=﹣2x2+8x﹣6,∴x=﹣=2.故答案是:直线x=2.点评:此题主要考查二次函数y=ax2+bx+c(a,b,c为常数,a≠0)对称轴公式,要求掌握并灵活运用.公式为x=﹣.6.根据图中的抛物线可以判断:当x 时,y随x的增大而减小.【答案】<1【解析】要确定抛物线的单调性首先要知道其对称轴,然后根据对称轴来确定x的取值范围.解:根据图象可知对称轴为x=(﹣1+3)÷2=1,所以当x<1时,y随x的增大而减小;当x=1时,y有最小值.故答案为:<1;点评:此题主要考查了函数的单调性与对称性.7.已知抛物线y=x2+(2m+1)x+m+1,根据下列条件分别求m的值.(1)若抛物线过原点;(2)若抛物线的顶点在x轴上;(3)若抛物线的对称轴为x=1.【答案】(1)m=﹣1(2)m=±(3)m=﹣【解析】(1)将原点(0,0)代入抛物线方程,求得m值;(2)根据根的判别式解答;(3)由对称轴方程解答m值.解:(1)∵抛物线y=x2+(2m+1)x+m+1过原点,∴点O(0,0)满足该抛物线方程,∴0=m+1,解得m=﹣1;(2)∵抛物线的顶点在x轴上,∴△=(2m+1)2﹣4(m+1)=0,即4m2﹣3=0,解得,m=±;(3)∵抛物线的对称轴为x=1,∴2m+1=﹣2,解得m=﹣.点评:本题主要考查了待定系数法求二次函数解析式.解答此题时,用到了二次函数的根的判别式△=b2﹣4ac、对称轴方程x=﹣及方程解的意义.8.已知二次函数y=ax2+bx﹣3的图象经过点A(2,﹣3),B(﹣1,0).求二次函数的解析式.【答案】y=x2﹣2x﹣3【解析】根据题意知,将A(2,﹣3),B(﹣1,0)代入二次函数的解析式,利用待定系数法法求该二次函数的解析式即可.解:根据题意,得,解得,;∴该二次函数的解析式为:y=x2﹣2x﹣3.点评:本题主要考查了待定系数法求二次函数的解析式.解题时,借用了二次函数图象上点的坐标特征:经过图象上的点一定在函数图象上,且图象上的每一个点均满足该函数的解析式.9.一个二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,求这个函数的关系式.【答案】y=4x2+5x【解析】先设二次函数的一般关系式,然后将已知条件代入其中并解答即可.解:设二次函数的关系式为y=ax2+bx+c(a≠0),∵二次函数的图象经过点(0,0),(﹣1,﹣1),(1,9)三点,∴点(0,0),(﹣1,﹣1),(1,9)满足二次函数的关系式,∴,解得,所以这个函数关系式是:y=4x2+5x.点评:本题主要考查的是利用待定系数法求二次函数解析式.10.根据条件求下列抛物线的解析式:(1)二次函数的图象经过(0,1),(2,1)和(3,4);(2)抛物线的顶点坐标是(﹣2,1),且经过点(1,﹣2).【答案】(1)y=x2﹣2x+1(2)y=﹣x2﹣x﹣【解析】(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得到一个三元一次方程组,求出方程组的解即可;(2)根据抛物线的顶点坐标设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得到一个关于a的方程,求出a的值即可.解:(1)设抛物线的解析式是y=ax2+bx+c,把(0,1),(2,1),(3,4)代入得:,解得:,∴y=x2﹣2x+1.(2)设抛物线的解析式是:y=a(x+2)2+1,把(1,﹣2)代入得:﹣2=a(1+2)2+1,∴a=﹣,∴y=﹣(x+2)2+1,即y=﹣x2﹣x﹣.点评:本题考查了用待定系数法求出二次函数的解析式,解三元一次方程组,解一元一次方程等知识点的理解和掌握,关键是看学生如何正确地设抛物线的解析式,注意抛物线的解析式有:①三点式y=ax2+bx+c;②顶点式y=a(x﹣h)2+k,顶点坐标是(h,k);③交点式y=a(x﹣m)(x﹣n),抛物线与x轴的交点坐标是(m,0),(n,0).11.已知反比例函数y=与一次函数y=kx﹣2的图象都经过点A(a,﹣4),且一次函数y=kx﹣2的图象与x轴交于点B.(1)求a、k的值;(2)若抛物线y=x2+bx+c过点A、B,求此抛物线的解析式.【答案】(1)k=1(2)y=x2+x﹣6【解析】(1)把A(a,﹣4)代入y=求出a,把A的坐标代入直线求出k即可;(2)根据直线的解析式求出B的坐标,把A、B的坐标代入抛物线得出关于b、c的方程组,求出即可.解:(1)把A(a,﹣4)代入y=得:﹣4=,∴a=﹣2,即A(﹣2,﹣4),代入y=kx﹣2得:﹣4=﹣2k﹣2,∴k=1,答:a=﹣2,k=1.解:(2)直线是y=x﹣2,把y=0代入得:0=x﹣2,∴x=2,∴B(2,0),把A(﹣2,﹣4),B(2,0)代入y=x2+bx+c得:,解得:b=1,c=﹣6,y=x2+x﹣6,答:此抛物线的解析式是y=x2+x﹣6.点评:本题主要考查对解二元一次方程组,解一元一次方程,用待定系数法求抛物线的解析式,反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.12.直线y=2x+3与抛物线y=ax2交于A、B两点,已知A点的横坐标是3,求A、B两点的坐标及抛物线的解析式.【答案】(﹣1,1)【解析】首先根据点A的横坐标求得其纵坐标,然后代入抛物线求得其解析式,然后联立组成方程组后求交点坐标即可.解:∵直线y=2x+3与抛物线y=ax2交于A、B两点且A点的横坐标是3,∴点A的纵坐标y=2×3+3=9,∴点A的坐标为(3,9),将点A的坐标代入y=ax2得:a=1,∴抛物线的解析式为y=x2,∴解得:或∴点B的坐标为:(﹣1,1).点评:本题考查了二次函数的性质,重点是知道如何求两图象的交点坐标.13.抛物线y=(x+1)2﹣3的顶点坐标是()A.(1,﹣3)B.(﹣1,﹣3)C.(1,3)D.(﹣1,3)【答案】B【解析】已知抛物线的顶点式,可直接写出顶点坐标.解:由y=(x+1)2﹣3,根据顶点式的坐标特点可知,顶点坐标为(﹣1,﹣3),故选B.点评:考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.14.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示.线一定经过点(2,0);④在对称轴左侧,y随x增大而减小.从表可知,说法正确的个数有()A.1个 B.2个 C.3个 D.4个【答案】B【解析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=,再根据抛物线的性质即可进行判断.解:根据图表,抛物线与y轴交与(0,6),①正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x==,∴②正确;设抛物线经过点(x,0),∴x==解得:x=3∴抛物线一定经过(3,0),故③错误;在对称轴左侧,y随x增大而增大,④错误故选B.点评:本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.15.抛物线y=﹣3(x﹣3)2+5的顶点坐标为()A.(3,5)B.(﹣3,5)C.(5,﹣3)D.(5,3)【答案】A【解析】因为y=﹣3(x﹣3)2+5是二次函数的顶点式,根据顶点式可直接写出顶点坐标.解:∵抛物线解析式为y=﹣3(x﹣3)2+5,∴二次函数图象的顶点坐标是(3,5).故选A.点评:本题考查了二次函数的性质,根据抛物线的顶点式,可确定抛物线的开口方向,顶点坐标(对称轴),最大(最小)值,增减性等.16.已知二次函数y=x2+bx+c的图象上有三个点(﹣1,y1)、(1,y2)、(3,y3),若y1=y3,则()A.y2>c>y1B.y2<c<y1C.c>y1>y2D.c<y1<y2【答案】B【解析】根据已知得出(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,抛物线的开口向上,求出对称轴是直线x=1,根据0<1<3即可求出答案.解:∵y1=y3,∴(﹣1,y1)和(3,y3)关于二次函数数y=x2+bx+c的对称轴对称,∴二次函数y=x2+bx+c的对称轴是直线x==1,且二次函数图象的开口向上,∵x=0时,y=c,0<1<3,∴y2<c<y1,故选B.点评:本题主要考查对二次函数图象上点的坐标特征,二次函数的性质等知识点的理解和掌握,能求出对称轴和根据二次函数的性质求出正确答案是解此题的关键.17.(2011•淮北模拟)给出下列四个命题:正确命题的个数是()(1)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(2)若A(a,m)、B(a﹣1,n)(a>0)在反比例函数y=的图象上,则m<n;(3)一次函数y=﹣2x﹣3的图象不经过第三象限;(4)二次函数y=﹣2x2﹣8x+1的最大值是9.A.1个B.2个C.3个D.4个【答案】B【解析】根据题意和函数的有关性质,逐一判断每个命题的正确性.解:(1)联立或,解得或所以点A的坐标为(3,3)或((1,﹣1),在第一或第四象限正确(2)反比例函数y=,在每个象限内y随x的增大而减小,点A在第一象限,而点B不能确定在第几象限,无法比较m、n的大小,错误(3)一次函数y=﹣2x﹣3的图象不经过第一象限,错误(4)二次函数y=﹣2x2﹣8x+1,可化为y=﹣2(x+2)2+9所以二次函数y=﹣2x2﹣8x+1的最大值是9,正确.(1)、(4)正确,故选B.点评:此题考查了二次函数的增减性和最值,一次函数、反比例函数的增减性,以及一次函数的图象性质.18.(2010•无锡一模)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<m C.y>m D.y=m【答案】C【解析】根据对称轴及函数值判断a的取值范围,从而得出a﹣1<0,因为当x是y随x的增大而减小,所以当x=a﹣1<0时,函数值y一定大于m.解:当x=a时,y<0,则a的范围是x1<a<x2,又对称轴是x=,所以a﹣1<0,当x是y随x的增大而减小,当x=0是函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选C.点评:本题主要考查了二次函数的对称轴,以及增减性.19.抛物线y=﹣2(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,﹣3)C.(﹣2,3)D.(﹣1,3)【答案】D【解析】已知抛物线的顶点式,可直接写出顶点坐标.解:由y=﹣2(x+1)2+3,根据顶点式的坐标特点可知,顶点坐标为(﹣1,3),故选D.点评:考查将解析式化为顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.20.已知抛物线y=5(x﹣1)2,下列说法中,你认为不正确的是()A.顶点坐标为(1,0)B.对称轴为直线x=0C.当x>1时,y随x的增大而增大D.当x<1时,y随x的增大而减小【答案】B【解析】根据二次函数y=5(x﹣1)2的性质,利用排除法求解.解:A、顶点坐标为(1,0),正确,不符合题意;B、对称轴为直线x=1,错误,符合题意;C、当x>1时,y随x的增大而增大,正确,不符合题意;D、当x<1时,y随x的增大而减小,正确,不符合题意.故选B.点评:本题考查了二次函数的性质,牢记形如y=a(x﹣h)2的二次函数的性质是解答本题的关键.。
初三数学抛物线常考题型
中考压轴题精选第1题
中考压轴题精选第2题。
要拿下中考压轴题,并不是那么容易,但每一天或者每两天能完成一道压轴题,日积月累,还是会有很大收获和提高的。
中考压轴题精选第3题
中考压轴题精选第4题
对于抛物线压轴题,要善于归类总结,掌握常规方法,积累特殊方法。
比如说平行四边形的存在性问题,等腰直角三角形的存在性问题,都是有多种方法求解的。
中考数学压轴题精选第5题
中考数学压轴题精选第6题
给大家准备了手写版的参考答案和简单分析:
参考答案1
第一题:考点有待定系数法求抛物线表达式,将军饮马问题,直角三角形的存在性问题,这道题目比较基础,适合初步接触抛物线时练习。
参考答案2
第二题,这道题目也比较常规基础,第一问求直线解析式,知道截距求表达式,可不用列方程组,省下一点时间。
第2问同样是将军饮马问题,送分问。
第3问是求线段长度的最值,最常见的方法就是设坐标列式子求最值。
参考答案3
第三题,这是一道面积问题和平行四边形的存在性问题,用到了水平宽乘以铅垂高求三角形面积。
平行四边形的存在性问题通常有三种方法求点的坐标,我在前面的文章中已经有详细讲解。
这道题我采用的是平行四边形对角坐标公式(中点坐标公式),也可以用点的平移的方法来解决。
第四题,又见将军饮马,可见将军饮马问题有多重要。
第3问求面积的最大值,采用的是直线平移,当直线与抛物线只有一个交点时,高最大,面积最大。
参考答案5
第5题:线段旋转问题,等腰三角形的存在性问题。
先看看这几道题目。
中考压轴题精选第1题
中考压轴题精选第2题。
要拿下中考压轴题,并不是那么容易,但每一天或者每两天能完成一道压轴题,日积月累,还是会有很大收获和提高的。
中考压轴题精选第3题
中考压轴题精选第4题
对于抛物线压轴题,要善于归类总结,掌握常规方法,积累特殊方法。
比如说平行四边形的存在性问题,等腰直角三角形的存在性问题,都是有多种方法求解的。
中考数学压轴题精选第5题
中考数学压轴题精选第6题
给大家准备了手写版的参考答案和简单分析:
参考答案1
第一题:考点有待定系数法求抛物线表达式,将军饮马问题,直角三角形的存在性问题,这道题目比较基础,适合初步接触抛物线时练习。
参考答案2
第二题,这道题目也比较常规基础,第一问求直线解析式,知道截距求表达式,可不用列方程组,省下一点时间。
第2问同样是将军饮马问题,送分问。
第3问是求线段长度的最值,最常见的方法就是设坐标列式子求最值。
参考答案3
第三题,这是一道面积问题和平行四边形的存在性问题,用到了水平宽乘以铅垂高求三角形面积。
平行四边形的存在性问题通常有三种方法求点的坐标,我在前面的文章中已经有详细讲解。
这道题我采用的是平行四边形对角坐标公式(中点坐标公式),也可以用点的平移的方法来解决。
第四题,又见将军饮马,可见将军饮马问题有多重要。
第3问求面积的最大值,采用的是直线平移,当直线与抛物线只有一个交点时,高最大,面积最大。
参考答案5
第5题:线段旋转问题,等腰三角形的存在性问题。