数模转换与模数转换
- 格式:docx
- 大小:37.52 KB
- 文档页数:3
模数(A/D)和数模(D/A)转换模数(A/D)和数模(D/A)转换11.1模数转换和数模转换概述11.1.1一个典型的计算机自动控制系统一个包含A/D和D/A转换器的计算机闭环自动控制系统如图11.1所示。
传感器μV,mV控制传感器放大滤波几伏放大滤波多路开关MU某采样保持S/H模拟A/D数字I/O转换接口计算机对象执行部件多路开关MU 某模拟D/A数字I/O转换接口图11.1典型的计算机自动控制系统在图11.1中,A/D转换器和D/A转换器是模拟量输入和模拟量输出通路中的核心部件。
在实际控制系统中,各种非电物理量需要由各种传感器把它们转换成模拟电流或电压信号后,才能加到A/D转换器转换成数字量。
一般来说,传感器的输出信号只有微伏或毫伏级,需要采用高输入阻抗的运算放大器将这些微弱的信号放大到一定的幅度,有时候还要进行信号滤波,去掉各种干扰和噪声,保留所需要的有用信号。
送入A/D转换器的信号大小与A/D转换器的输入范围不一致时,还需进行信号预处理。
在计算机控制系统中,若测量的模拟信号有几路或几十路,考虑到控制系统的成本,可采用多路开关对被测信号进行切换,使各种信号共用一个A/D转换器。
多路切换的方法有两种:一种是外加多路模拟开关,如多路输入一路输出的多路开关有:AD7501,AD7503,CD4097,CD4052等。
另一种是选用内部带多路转换开关的A/D转换器,如ADC0809等。
若模拟信号变化较快,为了保证模数转换的正确性,还需要使用采样保持器。
在输出通道,对那些需要用模拟信号驱动的执行机构,由计算机将经过运算决策后确定的控制量(数字量)送D/A转换器,转换成模拟量以驱动执行机构动作,完成控制过程。
第11章模数(A/D)和数模(D/A)转换28711.1.2模/数转换器(ADC)的主要性能参数1.分辨率它表明A/D对模拟信号的分辨能力,由它确定能被A/D辨别的最小模拟量变化。
一般来说,A/D转换器的位数越多,其分辨率则越高。
【关键字】精品第7章数-模转换与模-数转换第1讲数-模转换一、教学目的:1、数模转换的基本原理。
2、理解常见的数模转换电路。
3、掌握数模转换电路的主要性能指标。
二、主要内容:1、数模转换的定义及基本原理2、权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数3、DAC主要性能指标三、重点难点:权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数。
四、课时安排:2学时五、教学方式:课堂讲授六、教学过程设计复习并导入新课:新课讲解:[重点难点]权电阻D/A转换器、倒T型D/A转换器的电路结构特点、工作原理及其主要技术参数,逐次逼近型A/D转换器、双积分型A/D转换器的电路结构特点、工作原理及其主要技术参数。
[内容提要]本章介绍数字信号和模拟信号相互转换的基本原理和常见转换电路。
必要性与意义:自然界中,许多物理量是模拟量,电子系统中的输入、输出信号多数也是模拟信号。
而数字系统处理的数字信号却具有抗干扰能力强、易处理等优点;利用数字系统处理模拟信号的情况也越来越普遍。
由于数字系统只能对数字信号进行处理,因此要根据实际情况对模拟信号和数字信号进行相互转换。
随着计算机技术和数字信号处理技术的快速发展,在通信、自动控制等许多领域,常常需要将输入到电子系统的模拟信号转换成数字信号后,再由系统进行相应的处理,而数字系统输出的数字信号,还要再转换为模拟信号后,才能控制相关的执行机构。
这样,就需要在模拟信号与数字信号之间建立一个转换接口电路—模数转换器和数模转换器。
A/D转换定义:将模拟信号转换为数字信号的过程称为模数转换(Analog to Digital),或A/D转换。
能够完成这种转换的电路称为模数转换器(Analog Digital Converter),简称ADC。
D/A转换定义:将数字信号转换为模拟信号的过程称为数模转换(Digital to Analog),或D/A转换。
什么是数模转换和模数转换1. 引言在现代科技和通信领域中,数模转换(Digital-to-Analog Conversion)和模数转换(Analog-to-Digital Conversion)是非常重要的概念。
它们在各种应用中起着至关重要的作用,如音频处理、图像处理、数据转换等。
本文将介绍数模转换和模数转换的定义、原理和应用。
2. 数模转换数模转换是将数字信号转换为模拟信号的过程。
数字信号是以离散的二进制形式表示的信号,而模拟信号是连续变化的信号。
通过数模转换,我们可以将数字信号转换为模拟信号,以便于在模拟领域进行进一步的处理和分析。
数模转换的原理是通过采样和保持、量化和编码三个步骤实现的。
首先,采样和保持将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最后,编码将离散化后的采样信号转换为二进制代码,以便进行数字信号处理。
数模转换广泛应用于音频和视频领域。
例如,在音频播放器中,数模转换器将数字音频信号转换为模拟信号,使得我们可以聆听到高质量的音乐。
同时,在数字电视中,数模转换器将数字视频信号转换为模拟视频信号,使得我们可以观看高清晰度的电视节目。
3. 模数转换模数转换是将模拟信号转换为数字信号的过程。
模拟信号是连续变化的信号,而数字信号是以离散的二进制形式表示的信号。
通过模数转换,我们可以将模拟信号转换为数字信号,以便于在数字领域进行处理和存储。
模数转换的原理是通过采样和量化两个步骤实现的。
首先,采样将连续的模拟信号转换为离散的采样信号。
然后,量化将采样信号的幅度离散化为一系列的取值。
最终,将离散化后的采样信号转换为二进制代码,以表示数字信号。
模数转换在通信领域和数据存储领域得到广泛应用。
例如,在手机通信中,模数转换器将人的声音转换为数字信号,以便于在网络中传输。
同样地,在数字存储设备中,模数转换器将模拟数据(如声音、图像等)转换为数字数据,以便于存储和处理。
第17章 模数和数模转换数模转换即将数字量转换为模拟电量(电压或电流),使输出的模拟电量与输入的数字量成正比。
实现数模转换的电路称数模转换器模数转换即将模拟电量转换为数字量,使输出的数字量与输入的模拟电量成正比。
实现模数转换的电路称模数转换器17.1 数模(D/A ) 转换器一、D/A 转换器的基本原理及分类1.数模转换的基本原理要求:输出的模拟量与输入的数字量成正比。
输入数字量 D = (D n -1 D n -2 ⋅⋅⋅ D 1 D 0 ) 2= D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20 输出模拟电压 u O = D △ = (D n -1 2n -1 + D n -2 2n -2 + ⋅⋅⋅ + D 1 21 + D 0 20)△△ 是 DAC 能输出的最小电压值,称为 DAC 的单位量化电压,它等于 D 最低位(LSB)为 1、其余各位均为 0 时的模拟输出电压(用 U LSB 表示)。
2.倒T 型网络D/A 转换器,基本原理如图示:D D 位输模D A CD 01D n -2n -1¡-u On 二进制数入拟电压输出u O2R模拟开关 S i 打向“1”侧时,相应 2R 支路接虚地;打向“0”侧时,相应 2R 支路接地。
故无论开关打向哪一侧,倒 T 型电阻网络均可等效为下图:从 A 、B 、C 节点向左看去,各节点对地的等效电阻均为 2R 。
即I 3 = 23 I 0, I 2 = 22 I 0, I 1 = 21 I 0, I 0 = 20 I 0可见,支路电流值 Ii 正好代表了二进制数位 D i 的权值 2i。
模拟开关 S i 受相应数字位 Di 控制。
当 Di = 1 时,开关合向“1”侧,相应支路电流 Ii 输出;Di = 0 时,开关合向“0”侧, Ii 流入地而不能输出。
i Σ = D 3 I 3 + D 2 I 2 + D 1 I 1 + D 0 I 0= ( D 3 23 +D 2 22 + D 1 21 + D 0 20 ) I 0 = D I 03.D/A 转换器主要指标常用 DAC 主要有权电阻网络 DAC 、 R - 2R 、T 形电阻网络 DAC 、R - 2R 倒 T 形电阻网络 DAC 和权电流网络 DAC 。
数模转换与模数转换
数模转换(Digital-to-Analog Conversion,简称DAC)和模数转换(Analog-to-Digital Conversion,简称ADC)是数字信号处理中常用的两种信号转换方法。
数模转换将数字信号转换为模拟信号,而模数转换则将模拟信号转换为数字信号。
本文将就数模转换和模数转换的原理、应用以及未来发展进行探讨。
一、数模转换(DAC)
数模转换是将数字信号转换为模拟信号的过程。
在数字系统中,所有信号都以离散的形式存在,如二进制码。
为了能够将数字信号用于模拟系统中,需要将其转换为模拟信号,从而使得数字系统与模拟系统能够进行有效的接口连接。
数模转换的原理是根据数字信号的离散性质,在模拟信号上建立相似的离散形式。
常用的数模转换方法有脉冲幅度调制(Pulse Amplitude Modulation,简称PAM),脉冲宽度调制(Pulse Width Modulation,简称PWM)和脉冲位置调制(Pulse Position Modulation,简称PPM)等。
这些方法根据传输信号的不同特点,在转换过程中产生连续的模拟信号。
数模转换在很多领域有广泛应用。
例如,在音频领域,将数字音频信号转换为模拟音频信号,使得数字音频可以通过扬声器播放出来。
另外,在电信领域,将数字信号转换为模拟信号后,可以用于传输、调制解调、功率放大等过程。
二、模数转换(ADC)
模数转换是将模拟信号转换为数字信号的过程。
模拟信号具有连续的特点,而数字系统只能处理离散的信号。
因此,当需要将模拟信号用于数字系统时,就需要将其转换为数字形式。
模数转换的原理是通过采样和量化来实现。
采样是将模拟信号在时间上进行离散化,而量化是将采样信号在幅度上进行离散化。
通过这两个过程,可以将连续的模拟信号转换为离散的数字信号。
模数转换在很多领域都有应用。
例如,在音频领域,将模拟音频信号转换为数字音频信号,使得音频信号可以被数字设备处理和存储。
另外,在测量领域,模数转换可以将物理量的模拟信号转换为数字信号,用于精确测量和数据分析。
三、发展趋势
随着科技的不断进步,数模转换和模数转换的技术也在不断改进和创新。
面向未来,有以下几个发展趋势:
1. 高精度:随着对信号处理需求的不断提升,数模转换和模数转换的精度要求越来越高。
未来的发展方向是提高转换器的分辨率和采样率,以更好地满足各个领域的需求。
2. 低功耗:随着移动设备的普及和物联网的兴起,对功耗方面的要求也越来越高。
未来的转换器将更加注重低功耗设计,以提高设备的续航能力和稳定性。
3. 集成化:未来的数模转换和模数转换器有望实现更高的集成度,以减小体积和成本。
集成化的转换器可以更好地适应各种应用场景,并带来更多的创新。
4. 多功能性:为了满足不同领域的需求,未来的转换器可能更加注重多功能性。
除了基本的转换功能外,可能还会集成滤波、放大、校准等功能,以提供更全面的信号处理能力。
综上所述,数模转换和模数转换在现代数字信号处理中起着至关重要的作用。
它们通过将数字信号与模拟信号相互转换,实现了数字系统与模拟系统的有效连接。
随着技术的不断发展,数模转换和模数转换在精度、功耗、集成度和功能性方面都将迎来新的突破,进一步推动科技的进步和应用的拓展。