2015年甘肃省武威市中考数学试卷及答案解析
- 格式:doc
- 大小:1.04 MB
- 文档页数:13
甘肃省武威市2015届中考数学一诊试题一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.=()A.3 B.﹣3 C.﹣2 D.22.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×10103.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.4.下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5 C.a2+a3=a5D.a3•a4=a125.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15° B.20° C.25° D.30°6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨7.一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定8.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=69.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()A.(﹣1,﹣1) B.(1,﹣1)C.(﹣1,1)D.(1,1)10.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,满分24分.)11.分解因式:2a2﹣4a+2= .12.不等式2x+9≥3(x+2)的正整数解是.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C= .16.已知x、y为实数,且y=﹣+4,则x﹣y= .17.在﹣1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是.18.已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t= .三、解答题(一)(本大题共5小题,共26分,解答时,应写出必要的文字说明、证明过程或演算步骤)19.计算:|﹣1|﹣2sin30°+(π﹣3.14)0+.20.先化简,再求值:,其中x=﹣.21.为了推进农村新型合作医疗改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的距离都相等(A、B、C不在同一直线上,地理位置如图所示),请你用尺规作图的方法确定点P的位置.(要求:不写已知、求作、作法,只保留作图痕迹.)22.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).23.如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.四、解答题(二)(本大题共5小题,共40分,解答时,应写出必要的文字说明、证明过程或演算步骤)24.七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.25.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2013•临夏州)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.27.如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使FB=BD,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.28.如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n)(1)求A、B的坐标;(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.2015年甘肃省武威市中考数学一诊试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.=()A.3 B.﹣3 C.﹣2 D.2【考点】立方根.【分析】根据立方根的定义解答.【解答】解:∵33=27,∴=3.故选A.【点评】本题考查了立方根的定义,是基础题,找出立方等于27的数是3是解题的关键.2.节约是一种美德,节约是一种智慧.据不完全统计,全国每年浪费食物总量折合粮食可养活约3亿5千万人.350 000 000用科学记数法表示为()A.3.5×107B.3.5×108C.3.5×109D.3.5×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于350 000 000有9位,所以可以确定n=9﹣1=8.【解答】解:350 000 000=3.5×108.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,即可判断出.【解答】解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;D:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误.故选C.【点评】此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.4.下列运算中,结果正确的是()A.4a﹣a=3a B.a10÷a2=a5 C.a2+a3=a5D.a3•a4=a12【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【专题】计算题.【分析】根据合并同类项、同底数幂的除法法则:底数不变,指数相减,同底数幂的乘法法则:底数不变,指数相加,可判断各选项.【解答】解:A、4a﹣a=3a,故本选项正确;B、a10÷a2=a10﹣2=a8≠a5,故本选项错误;C、a2+a3≠a5,故本选项错误;D、根据a3•a4=a7,故a3•a4=a12本选项错误;故选A.【点评】此题考查了同类项的合并,同底数幂的乘除法则,属于基础题,解答本题的关键是掌握每部分的运算法则,难度一般.5.如图,把一块含有45°的直角三角形的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.15° B.20° C.25° D.30°【考点】平行线的性质.【专题】压轴题.【分析】根据两直线平行,内错角相等求出∠3,再求解即可.【解答】解:∵直尺的两边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣20°=25°.故选:C.【点评】本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明把自己家1月至6月份的用水量绘制成折线图,那么小明家这6个月的月平均用水量是()A.10吨B.9吨C.8吨D.7吨【考点】折线统计图;算术平均数.【分析】从图中得到6个月用水量的6个数据,然后根据平均数的概念计算这6个数据的平均数就可得到平均用水量.【解答】解:这6个月的平均用水量:(8+12+10+15+6+9)÷6=10吨,故选:A.【点评】此题主要考查了折线图的应用以及平均数求法,要熟悉统计图,读懂统计图,熟练掌握平均数的计算方法是解题关键.7.一元二次方程x2+x﹣2=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.无实数根 D.无法确定【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵a=1,b=1,c=﹣2,∴△=b2﹣4ac=1+8=9>0∴方程有两个不相等的实数根.故选A【点评】本题考查了一元二次方程根的判别式的应用.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6 B.x(5﹣x)=6 C.x(10﹣x)=6 D.x(10﹣2x)=6【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】一边长为x米,则另外一边长为:5﹣x,根据它的面积为6平方米,即可列出方程式.【解答】解:一边长为x米,则另外一边长为:5﹣x,由题意得:x(5﹣x)=6,故选:B.【点评】本题考查了由实际问题抽相出一元二次方程,难度适中,解答本题的关键读懂题意列出方程式.9.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点()A.(﹣1,﹣1) B.(1,﹣1)C.(﹣1,1)D.(1,1)【考点】二次函数图象与系数的关系.【专题】转化思想.【分析】此题可将b+c=0代入二次函数,变形得y=x2+b(x﹣1),然后分析.【解答】解:对二次函数y=x2+bx+c,将b+c=0代入可得:y=x2+b(x﹣1),则它的图象一定过点(1,1).故选:D.【点评】本题考查了二次函数与系数的关系,在这里解定点问题,应把b当做变量,令其系数为0进行求解.10.如图,C为⊙O直径AB上一动点,过点C的直线交⊙O于D,E两点,且∠ACD=45°,DF⊥AB于点F,EG⊥AB于点G,当点C在AB上运动时,设AF=x,DE=y,下列中图象中,能表示y与x的函数关系式的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题;动点型.【分析】本题考查动点函数图象的问题.【解答】解:点C从点A运动到点B的过程中,x的值逐渐增大,DE的长度随x值的变化先变大再变小,当C与O重合时,y有最大值,∵x=0,y=ABx=AB﹣AB时,DE过点O,此时:DE=ABx=AB,y=AB所以,随着x的增大,y先增后降,类抛物线故选:A.【点评】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.本题也可以通过求函数解析式的方法求解,不过这种方法比较复杂.二、填空题(本大题共8小题,每小题3分,满分24分.)11.分解因式:2a2﹣4a+2= 2(a﹣1)2.【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.不等式2x+9≥3(x+2)的正整数解是1,2,3 .【考点】一元一次不等式的整数解.【专题】计算题.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【点评】本题考查了一元一次不等式的整数解,会解不等式是解题的关键.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是8 cm.【考点】勾股定理;等腰三角形的性质.【专题】几何图形问题.【分析】利用等腰三角形的“三线合一”的性质得到BD=BC=6cm,然后在直角△ABD中,利用勾股定理求得高线AD的长度.【解答】解:如图,AD是BC边上的高线.∵AB=AC=10cm,BC=12cm,∴BD=CD=6cm,∴在直角△ABD中,由勾股定理得到:AD===(8cm).故答案是:8.【点评】本题主要考查了等腰三角形的三线合一定理和勾股定理.等腰三角形底边上的高线把等腰三角形分成两个全等的直角三角形.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为 5 米.【考点】相似三角形的应用.【专题】压轴题.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.15.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=60°.【考点】特殊角的三角函数值;三角形内角和定理.【专题】计算题.【分析】先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.【解答】解:∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,∴∠A=∠B=60°.∴∠C=180°﹣∠A﹣∠B=180°﹣60°﹣60°=60°.故答案为:60°.【点评】本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.16.已知x、y为实数,且y=﹣+4,则x﹣y= ﹣1或﹣7 .【考点】二次根式有意义的条件.【专题】计算题.【分析】根据一对相反数同时为二次根式的被开方数,那么被开方数为0可得x可能的值,进而得到y的值,相减即可.【解答】解:由题意得x2﹣9=0,解得x=±3,∴y=4,∴x﹣y=﹣1或﹣7.故答案为﹣1或﹣7.【点评】考查二次根式有意义的相关计算;得到x可能的值是解决本题的关键;用到的知识点为:一对相反数同时为二次根式的被开方数,那么被开方数为0.17.在﹣1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,过P点画双曲线,该双曲线位于第一、三象限的概率是.【考点】概率公式;反比例函数的性质.【专题】计算题;压轴题.【分析】根据概率求法直接列举出所有符合要求点的坐标,再根据只有(1,2),(2,1)符合xy=k>0,得出答案即可.【解答】解:∵在﹣1,1,2这三个数中任选2个数分别作为P点的横坐标和纵坐标,∴符合要求的点有(﹣1,1),(﹣1,2),(1,2),(1,﹣1),(2,1),(2,﹣1),∴该双曲线位于第一、三象限时,xy=k>0,只有(1,2),(2,1)符合xy=k>0,∴该双曲线位于第一、三象限的概率是:2÷6=,故答案为:.【点评】此题主要考查了概率公式的应用以及反比例函数的性质,根据概率公式得出符合要求的点的坐标是解决问题的关键.18.已知⊙O1与⊙O2的半径分别是方程x2﹣4x+3=0的两根,且圆心距O1O2=t+2,若这两个圆相切,则t= 2或0 .【考点】圆与圆的位置关系;解一元二次方程-因式分解法.【分析】先解方程求出⊙O1、⊙O2的半径,再分两圆外切和两圆内切两种情况列出关于t的方程讨论求解.【解答】解:∵⊙O1、⊙O2的半径分别是方程x2﹣4x+3=0的两根,解得⊙O1、⊙O2的半径分别是1和3.①当两圆外切时,圆心距O1O2=t+2=1+3=4,解得t=2;②当两圆内切时,圆心距O1O2=t+2=3﹣1=2,解得t=0.∴t为2或0.故答案为:2或0.【点评】考查解一元二次方程﹣因式分解法和圆与圆的位置关系,同时考查综合应用能力及推理能力.注意:两圆相切,应考虑内切或外切两种情况是解本题的难点.三、解答题(一)(本大题共5小题,共26分,解答时,应写出必要的文字说明、证明过程或演算步骤)19.计算:|﹣1|﹣2sin30°+(π﹣3.14)0+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】根据绝对值的性质,30°角的正弦等于,任何非0数的0次幂等于1,有理数的负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:|﹣1|﹣2sin30°+(π﹣3.14)0+()﹣2,=1﹣2×+1+4,=1﹣1+1+4,=5.【点评】本题考查了实数的运算,主要有绝对值的性质,特殊角的三角函数值,零指数幂,负整数指数幂,是基础运算题,特殊角的三角函数值容易混淆,需熟练掌握.20.先化简,再求值:,其中x=﹣.【考点】分式的化简求值.【专题】计算题.【分析】先通分计算括号里的,再把除法转化成乘法进行约分,最后把x的值代入计算即可.【解答】解:原式=•=x﹣1,当x=﹣时,原式=﹣﹣1=﹣.【点评】本题考查了分式的化简求值,解题的关键是注意把分式的分子、分母因式分解.21.为了推进农村新型合作医疗改革,准备在某镇新建一个医疗点P,使P到该镇所属A村、B村、C村的距离都相等(A、B、C不在同一直线上,地理位置如图所示),请你用尺规作图的方法确定点P的位置.(要求:不写已知、求作、作法,只保留作图痕迹.)【考点】作图—应用与设计作图.【分析】连接AB,AC,作出线段AB,AC的垂直平分线,两垂直平分线的交点即为P点.【解答】解:如图所示:【点评】本题考查的是作图﹣应用与设计作图,熟知线段垂直平分线的性质是解答此题的关键.22.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(侧倾器的高度忽略不计).【考点】解直角三角形的应用-仰角俯角问题.【分析】过点A作AF⊥DE于F,可得四边形ABEF为矩形,设DE=x,在Rt△DCE和Rt△ABC中分别表示出CE,BC的长度,求出DF的长度,然后在Rt△ADF中表示出AF的长度,根据AF=BE,代入解方程求出x的值即可.【解答】解:如图,过点A作AF⊥DE于F,则四边形ABEF为矩形,∴AF=BE,EF=AB=3米,设DE=x,在Rt△CDE中,CE==x,在Rt△ABC中,∵=,AB=3,∴BC=3,在Rt△AFD中,DF=DE﹣EF=x﹣3,∴AF==(x﹣3),∵AF=BE=BC+CE,∴(x﹣3)=3+x,解得x=9(米).答:树高为9米.【点评】本题考查了解直角三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.23.如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.【考点】反比例函数与一次函数的交点问题.【专题】计算题;数形结合.【分析】(1)由题意,根据对称性得到B的横坐标为1,确定出C的坐标,根据三角形AOC的面积求出A的纵坐标,确定出A坐标,将A坐标代入一次函数与反比例函数解析式,即可求出m与n的值;(2)设直线AC解析式为y=kx+b,将A与C坐标代入求出k与b的值,即可确定出直线AC的解析式.【解答】解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象与性质,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.四、解答题(二)(本大题共5小题,共40分,解答时,应写出必要的文字说明、证明过程或演算步骤)24.七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A表示手心,B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)首先此题需三步完成,所以采用树状图法求解比较简单;然后依据树状图分析所有等可能的出现结果,根据概率公式即可求出该事件的概率;(2)首先求得出手一次出现“两同一异”的所有情况,然后根据概率公式即可求出该事件的概率.【解答】解:(1)画树状图得:∴共有8种等可能的结果:AAA,AAB,ABA,ABB,BAA,BAB,BBA,BBB;(2)∵甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的有6种情况,∴出手一次出现“两同一异”的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.25.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2013•临夏州)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.【解答】解:(1)BD=CD.理由如下:依题意得AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD(三线合一),∴∠ADB=90°,∴▱AFBD是矩形.【点评】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.27.如图,点A,B,C,D在⊙O上,AB=AC,AD与BC相交于点E,AE=ED,延长DB到点F,使FB=BD,连接AF.(1)证明:△BDE∽△FDA;(2)试判断直线AF与⊙O的位置关系,并给出证明.【考点】切线的判定;三角形的角平分线、中线和高;相似三角形的判定与性质.【专题】证明题;压轴题;探究型.【分析】(1)因为∠BDE公共,夹此角的两边BD:DF=ED:AD=2:3,由相似三角形的判定,可知△BDE∽△FDA.(2)连接OA、OB、OC,证明△OAB≌△OAC,得出AO⊥BC.再由△BDE∽△FDA,得出∠EBD=∠AFD,则BE∥FA,从而AO⊥FA,得出直线AF与⊙O相切.【解答】证明:(1)在△BDE和△FDA中,∵FB=BD,AE=ED,AD=AE+ED,FD=FB+BD∴,又∵∠BDE=∠FDA,∴△BDE∽△FDA.(2)直线AF与⊙O相切.证明:连接OA,OB,OC,∵AB=AC,BO=CO,OA=OA,∴△OAB≌△OAC,∴∠OAB=∠OAC,∴AO是等腰三角形ABC顶角∠BAC的平分线,∴=,∴AO⊥BC,∵△BDE∽△FDA,得∠EBD=∠AFD,∴BE∥FA,∵AO⊥BE,AO⊥FA,∴直线AF与⊙O相切.【点评】本题考查相似三角形的判定和切线的判定.28.如图,二次函数的图象经过△AOB的三个顶点,其中A(﹣1,m),B(n,n)(1)求A、B的坐标;(2)在坐标平面上找点C,使以A、O、B、C为顶点的四边形是平行四边形.①这样的点C有几个?②能否将抛物线平移后经过A、C两点?若能,求出平移后经过A、C两点的一条抛物线的解析式;若不能,说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)把A(﹣1,m)代入函数式而解得m的值,同理解得n值,从而得到A,B的坐标;(2)①由题意可知:这样的C点有3个,②能,分别考虑函数图象经过三个点,从而得到函数方程.【解答】解:(1)∵y=的图象过点A(﹣1,m)∴即m=1同理:n=解之,得n=0(舍)或n=2∴A(﹣1,1),B(2,2)(2)①由题意可知:这样的C点有3个.如图:当OA是对角线时,C是过O平行于AB的直线,以及过A平行于OB的直线的交点,设直线OB的解析式是y=kx,则2=2k,解得:k=1,设直线AC的解析式是:y=x+c,则﹣1+c=1,解得:c=2,直线的解析式是y=x+2,设直线AB的解析式是:y=mx+n,则,解得:,即直线的解析式是:y=x+,设直线OC的解析式是:y=x,解方程组,解得:,则C的坐标是(﹣3,﹣1);同理,当AB是对角线时,C的坐标是(1,3);OB是对角线时,C的坐标是(3,1).故:C1(﹣3,﹣1),C2(1,3),C3(3,1).②能当平移后的抛物线经过A、C1两个点时,将B点向左平移3个单位再向下平移1个单位.使点B移到A点,这时A、C1两点的抛物线的解析式为y+1=即y=附:另两条平移后抛物线的解析式分别为:i)经过A、C2两点的抛物线的解析式为ii)设经过A、C3两点的抛物线的解析式为,OC3可看作线段AB向右平移1个单位再向下平移1个单位得到m,则C3(3,1)依题意,得,解得.故经过A、C3两点的抛物线的解析式为.【点评】本题考查了二次函数的综合运用,(1)把A(﹣1,m)代入函数式而解得;(2)①由题意可知点C有几个,②分别考虑函数图象经过三个点,从而得到函数方程.也从而确定能.本题有一定难度,在图象上作好辅助线,考虑全面,而不至于漏解.。
武威中考数学试题及答案第一部分选择题(共50分)1. 在同一个平面内,已知点P(-2,3),若直线L过原点O(0,0),且L上的点Q满足PQ与OP互为正数整数倍,那么直线L的方程为()A. y=2xB. y=-2xC. y=-0.5xD. y=0.5x答案:C2. 已知集合A={x|1≤x≤6},集合B={y|2≤y≤5},则集合A∩B的元素个数为()A. 1B. 2C. 3D. 4答案:C3. 在平面直角坐标系中,点A(x,y)满足条件:x-3≥y且y≤x+3. 那么点A的取值范围为()A. x≤3且y≤6B. x≥3且y≥-3C. x≥3且y≤6D. x≤3且y≥-3答案:D4. 下列运算正确的是()A. 5x2-3y=-25,x=4解得y=-7B. 2(x-3)=2x-6C. 5(x+1)+2=5x-3D. 0.4x+0.3=0.7,解得x=1答案:C5. 判断命题“三角形ABC是等腰三角形”是否正确,其中:AB=AC,∠B=∠CA. 正确B. 错误答案:A第二部分解答题(共50分)1. 若正方体ABCD-A1B1C1D1的棱长为a,则其对角线的长度为多少?解:设正方体的一条棱的长度为a,则对角线的长度为√(a^2+a^2+a^2)=√3a答案:√3a2. 解方程:2x-3+4(x+5)=-2(2-x)解:2x-3+4(x+5)=-2(2-x)2x-3+4x+20=-4+2x6x+17=2x-44x=-21x=-21/4答案:x=-21/43. 若等差数列{an}的首项为2,公差为3,求满足an≥20的正整数n 的最小值。
解:等差数列的通项公式为an=a1+(n-1)d代入a1=2,d=3,得到an=2+3(n-1)=3n-1当3n-1≥20时,即n≥7,满足条件的最小正整数n为7。
答案:74. 如图所示,ABCD是一个矩形,M、N分别是BC、CD的中点。
连接AM、DN交于点P。
若AB的长度为8cm,BC的长度为6cm,求四边形DPMB的面积。
2015年甘肃武威中考数学模拟试卷(一)一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)2.已知不等式组⎩⎨≥+01x ,其解集在数轴上表示正确的是 ( )(3.已知线段CD 是由线段AB 平移得到的,点A (﹣1,4)的对应点为C (4,7),则点B (﹣4.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为( )5.一元二次方程2210x x --=的解是 ( ) A .121==x x B.211+=x ,212--=x C.211+=x ,212-=x D.211+-=x ,212--=x37.实数a b ,在数轴上的位置如图所示,以下说法正确的是 ( ) A . 0a b += B.b a < C.0ab > D. b a <.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )8小题,每小题3分,共24分.本题要求把正确结果填在答题纸规定的 9.分解因式:y y x -2= .10.(3分)(2014•呼和浩特)一个底面直径是80cm ,母线长为90cm 的圆锥的侧面展开图的圆心角的度数为 . 11.(3分)某校五个绿化小组一天的植树的棵数如下:10,10,12,x ,8. 已知这组数据的平均数是10,那么这组数据的方差是 . 12.(3分)等腰三角形一腰上的高与另一腰的夹角为36,则该等腰三角形的底角的度数为 .服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如下图,在四边形ABCD 中,AD BC ∥,AB =CD =2,BC =5,BAD ∠的平分线交BC 于点E ,且AE CD ∥,则四边形ABCD 的面积为 .AB CDE 第15题图A16.如下图,将ABC △放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .17.(6分)计算:|21|45sin 28)43(2---+--o18.(6分) 化简求值:ba ba b a b b a a -+÷+--22)(,其中31-=a ,31+=b19.(7分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数 ;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).20.(7分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在'B 处,A 'B ‘和CD 相交于点O .求证:OA =OC .三、解答题(共72分)21.(8分)如图,四边形ABCD是矩形,把矩形沿AC折叠,点B落在点E处,AE与DC的交点为O,连接DE.(1)求证:△ADE≌△CED;(2)求证:DE∥AC.22.(8分)为鼓励居民节约用电,我市自2012年以来对家庭用电收费实行阶梯电价,即每月对每户居民的用电量分为三个档级收费,第一档为用电量在180千瓦时(含180千瓦时)以内的部分,执行基本价格;第二档为用电量在180千瓦时到450千瓦时(含450千瓦时)的部分,实行提高电价;第三档为用电量超出450千瓦时的部分,执行市场调节价格.我市一位同学家今年2月份用电330千瓦时,电费为213元,3月份用电240千瓦时,电费为150元.已知我市的一位居民今年4、5月份的家庭用电量分别为160和410千瓦时,请你依据该同学家的缴费情况,计算这位居民4、5月份的电费分别为多少元?23(8分)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算AECE.24.(10分)在平面直角坐标系中,已知反比例函数kyx的图象经过点A(1,3).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.25.(12分)如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形PAFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.m m+2AB(x+1,aa﹣x+1,∴,﹣,﹣x+2m m+2y=AB×(﹣﹣xx(x+1,xaa x+1。
2015年甘肃省武威市中考数学一模试卷一.选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=2.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3 B.1:9 C.3:1 D.1:3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.4.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3) B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小5.如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为()A.25m B.30m C.36m D.40m6.函数y=2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.7.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED 的正切值等于()A.B. C.2 D.9.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=PA,则AB:A1B1等于()A.B.C.D.10.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3二、填空题11.已知,则=.12.若反比例函数y=(m﹣1)x|m|﹣2,则m的值是.13.高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为米.14.在△ABC中,∠C=90°,AB=5,BC=3,则sinB=.15.如图,若DE∥BC,AD=3cm,DB=2cm,则=.16.如图,在△ABC中,E为AB边上的一点,要使△ABC∽△ADE成立,还需要添加一个条件为.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为.(结果保留π)18.点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是.三.解答题(共66分)19.计算:(1)(2)若2cosα=,求α.20.画出该几何体的三视图:21.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.22.如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?23.如图,已知直角梯形ABCD,∠A=∠B=90°,AD=2,BC=8,AB=10,在线段AB上取一点P,使△ADP与△BCP相似,求AP的长.24.如图,在某建筑物AC上,竖直挂着“共建文明犍为,共享犍为文明”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行10米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长(小明的身高不计,结果精确到0.1米).≈1.732.25.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.26.如图,已知反比例函数y=的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,﹣1).(1)分别求出反比例函数与一次函数的函数关系式;(2)若一次函数与y轴相交于点C,求△BOC的面积;(3)观察图象请直接写出:一次函数的值大于反比例函数的值的自变量的取值范围.2015年甘肃省武威市中考数学一模试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=【考点】反比例函数的定义.【专题】计算题.【分析】根据反比例函数的定义作出选择.【解答】解:A、y=x是正比例函数;故本选项错误;B、y=kx﹣1当k=0时,它不是反比例函数;故本选项错误;C、符合反比例函数的定义;故本选项正确;D、y=的未知数的次数是﹣2;故本选项错误.故选C.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.2.若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3 B.1:9 C.3:1 D.1:【考点】相似三角形的性质.【专题】计算题.【分析】由相似△ABC与△DEF的相似比为1:3,根据相似三角形面积的比等于相似比的平方,即可求得△ABC与△DEF的面积比.【解答】解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选B.【点评】本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方.3.如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】俯视图是从物体上面看所得到的图形.从几何体上面看,是左边2个,右边1个正方形.【解答】解:从几何体上面看,是左边2个,右边1个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体上面看所得到的图形,解答时学生易将三种视图混淆而错误的选其它选项.4.对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3) B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.【解答】解:A、∵反比例函数y=,∴xy=3,故图象经过点(1,3),故A选项错误;B、∵k>0,∴图象在第一、三象限,故B选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故C选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故D选项正确.故选:D.【点评】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题关键.5.如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为()A.25m B.30m C.36m D.40m【考点】相似三角形的应用.【专题】方程思想;转化思想.【分析】将原题转化为相似三角形,根据相似三角形的性质解答,即可得出DE的宽.【解答】解:∵AB∥DE∴AB:DE=AC:CD∴∴DE=36m.故选C.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出池塘的宽度,体现了方程的思想.6.函数y=2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据函数y=2x与函数y=﹣分别确定图象即可得出答案.【解答】解:∵y=2x,2>0,∴图象经过一、三象限,∵函数y=﹣中系数小于0,∴图象在二、四象限.故选B.【点评】此题主要考查了从图象上把握有用的条件,准确确定图象位置,正确记忆一次函数与反比例函数的区别是解决问题的关键.7.如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC相似的是()A.B.C.D.【考点】相似三角形的判定.【专题】网格型.【分析】设小正方形的边长为1,根据已知可求出△ABC三边的长,同理可求出阴影部分的各边长,从而根据相似三角形的三边对应成比例即可得到答案.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选B.【点评】此题主要考查学生对相似三角形的判定方法的理解及运用.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED 的正切值等于()A.B. C.2 D.【考点】圆周角定理;锐角三角函数的定义.【专题】网格型.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选D.【点评】本题利用了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念求解.9.如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且PA1=PA,则AB:A1B1等于()A.B.C.D.【考点】位似变换.【分析】本题主要考查了位似变换的定义及作图,根据作图的方法可知AB:A1B1=PA:PA1,PA1= PA,从而求得AB:A1B1=3:2.【解答】解:∵PA1=PA,∴PA:PA1=3:2,又∵AB:A1B1=PA:PA1,∴AB:A1B1=3:2.故选B.【点评】本题主要考查了位似变换的作图,及性质相似比相等.10.如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【考点】反比例函数系数k的几何意义.【分析】由于点A在y=上,可知S△AOC=k,又由于点P在双曲线的上方,可知S△POE>k,而点B在y=上,可知S△BOD=k,进而可比较三个三角形面积的大小【解答】解:如右图,∵点A在y=上,∴S△AOC=k,∵点P在双曲线的上方,∴S△POE>k,∵点B在y=上,∴S△BOD=k,∴S1=S2<S3.故选;D.【点评】本题考查了反比例函数与一次函数的交点问题,解题的关键是观察当x不变时,双曲线上y的值与直线AB上y的值大小.二、填空题11.已知,则=4.【考点】比例的性质.【分析】根据等式的性质,可用k表示x、y、z,根据分式的性质,可得答案.【解答】解:由,得x=3k,y=4k,z=5k.==4,故答案为:4.【点评】本题考查了比例的性质,利用等式的性质得出x=3k,y=4k,z=5k是解题关键.12.若反比例函数y=(m﹣1)x|m|﹣2,则m的值是﹣1.【考点】反比例函数的定义.【分析】根据反比例函数的定义得到|m|﹣2=﹣1且m﹣1≠0,由此求得m的值.【解答】解:依题意得:|m|﹣2=﹣1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式(k≠0)转化为y=kx﹣1(k≠0)的形式.13.高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为9米.【考点】相似三角形的应用.【分析】由于光线是平行的,影长都在地面上,那么可得木箱高与影长构成的三角形和建筑物和影长构成的三角形相似,利用对应边成比例可得建筑物高.【解答】解:∵光线是平行的,影长都在地面上,∴光线和影长组成的角相等;木箱和建筑物与影长构成的角均为直角,∴木箱高与影长构成的三角形和建筑物和影长构成的三角形相似,设树的高度为x米,3:12=x:36,解得:x=9,∴该建筑物的高度为9m.故答案为:9.【点评】此题主要考查了相似三角形的应用,关键是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出建筑物的高.14.在△ABC中,∠C=90°,AB=5,BC=3,则sinB=.【考点】锐角三角函数的定义.【分析】根据勾股定理求出AC,根据正弦的定义计算即可.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴sinB==.故答案为:.【点评】本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.15.如图,若DE∥BC,AD=3cm,DB=2cm,则=3:5.【考点】相似三角形的判定与性质.【分析】由AD=3,DB=2,即可求得AB的长,又由DE∥BC,根据平行线分线段成比例定理,可得DE:BC=AD:AB,则可求得答案.【解答】解:∵AD=3,DB=2,∴AB=AD+BD=3+2=5,∵DE∥BC,∴DE:BC=AD:AB=3:5.故答案为:3:5.【点评】此题考查了平行线分线段成比例定理.此题比较简单,注意掌握比例线段的对应关系是解此题的关键.16.如图,在△ABC中,E为AB边上的一点,要使△ABC∽△ADE成立,还需要添加一个条件为∠ADE=∠B(答案不唯一).【考点】相似三角形的判定.【专题】开放型.【分析】要使两三角形相似,已知一公共角相等,则再添加一组角或公共角的两边对应成比例即可.【解答】解:添加条件为:∠ADE=∠B(答案不唯一);理由如下:∵∠A=∠A,∴当∠ADE=∠B时,△ADE∽△ABC,故答案为:∠ADE=∠B(答案不唯一).【点评】此题考查了相似三角形的判定定理;熟练掌握相似三角形的判定方法是解决问题的关键,注意公共角的运用.17.如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.(结果保留π)【考点】由三视图判断几何体.【分析】根据三视图易得此几何体为空心圆柱,圆柱的体积=底面积×高,把相关数值代入即可求解.【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,该几何体的体积为:10×(42π﹣32π)=70π,故答案为:70π.【点评】本题考查了由三视图判断几何体,解决本题的关键是得到此几何体的形状,易错点是得到计算此几何体所需要的相关数据.18.点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是1>y3>y2.【考点】反比例函数图象上点的坐标特征.【分析】把点(1,y1),(﹣2,y2),(3,y3)分别代入函数解析式,求得相应的y值,然后比较大小即可.【解答】解:∵点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,∴y1==6,y2=﹣3,y3==2,∵6>2>﹣3,∴y1>y3>y2.故答案为:y1>y3>y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共66分)19.计算:(1)(2)若2cosα=,求α.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)已知等式整理求出cosα的值,即可确定出α.【解答】解:(1)原式=2﹣+1﹣3=﹣2;(2)已知等式整理得:cosα=,∴α=2kπ+,k∈Z.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.画出该几何体的三视图:【考点】作图-三视图.【分析】分别画出从正面、左面、上面看所得到的图形即可.【解答】解:如图所示:.【点评】此题主要考查了画三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.21.如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.【考点】相似三角形的判定;平行线的性质.【专题】证明题.【分析】根据平行线的性质可知∠AED=∠C,∠A=∠FEC,根据相似三角形的判定定理可知△ADE∽△EFC.【解答】证明:∵DE∥BC,∴∠AED=∠C.又∵EF∥AB,∴∠A=∠FEC.∴△ADE∽△EFC.【点评】本题考查的是平行线的性质及相似三角形的判定定理.22.如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?【考点】解直角三角形的应用-仰角俯角问题.【专题】应用题;压轴题.【分析】(1)分别过E、D作AB的垂线,设垂足为G、H.在Rt△EFG中,根据坡面的铅直高度(即坝高)及坡比,即可求出FG的长,同理可在Rt△ADH中求出AH的长;由AF=FG+GH﹣AH 求出AF的长.(2)已知了梯形AFED的上下底和高,易求得其面积.梯形AFED的面积乘以坝长即为所需的土石的体积.【解答】解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG,故四边形EGHD是矩形,∴ED=GH,在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),在Rt△FGE中,i=1:2=,∴FG=2EG=16(米),∴AF=FG+GH﹣AH=16+2﹣8=10(米);×坝长=×(2+10)×8×400=19200(立方米).(2)加宽部分的体积V=S梯形AFED答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米.【点评】本题考查了解直角三角形的应用,解答本题的关键是理解坡度、坡比的含义,构造直角三角形,利用三角函数表示相关线段的长度,难度一般.23.如图,已知直角梯形ABCD,∠A=∠B=90°,AD=2,BC=8,AB=10,在线段AB上取一点P,使△ADP与△BCP相似,求AP的长.【考点】相似三角形的判定与性质;直角梯形.【分析】首先设AP=x,则BP=AB﹣AP=10﹣x,然后分别从当时,△APD∽△BPC与当时,△APD∽△BCP;去分析求解即可求得答案.【解答】解:设AP=x,则BP=AB﹣AP=10﹣x,∵直角梯形ABCD,∠A=∠B=90°,∴①当时,△APD∽△BPC,即,解得:x=2;②当时,△APD∽△BCP,即,解得:x=2或x=8;综上所述:AP=2或8.【点评】此题考查了相似三角形的判定与性质.注意掌握分类讨论思想的应用是解此题的关键.24.如图,在某建筑物AC上,竖直挂着“共建文明犍为,共享犍为文明”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行10米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长(小明的身高不计,结果精确到0.1米).≈1.732.【考点】解直角三角形的应用-仰角俯角问题.【分析】设BC的长为x,在Rt△BCF和Rt△BcE中,分别表示出FC和EC的长度,根据EF=10米,列方程求出x的值.【解答】解:设BC的长为x,在Rt△BCF中,∵∠BEF=30°,∴=tan30°=,则CF=x,在Rt△BCE中,∵∠BEC=60°,∴=tan60°=,则CE=x,∵EF=10米,∴x﹣x=10,解得:x=5≈8.7(米).答:宣传条幅BC的长约8.7米.【点评】本题考查了解直角三角形的应用,关键是根据已知仰角构造直角三角形,利用三角函数的知识求解,难度一般.25.如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.【考点】相似三角形的应用;平行投影.【分析】(1)连接AC,过D点作AC的平行线即可;(2)过M作MN⊥DE于N,利用相似三角形列出比例式求出旗杆的高度即可.【解答】解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴=,又∵AB=1.5m,BC=2.4m,DN=DE﹣NE=15﹣xMN=EG=16m,∴=,解得:x=5,答:旗杆的影子落在墙上的长度为5米.【点评】本题考查了相似三角形的知识,解题的关键是正确的构造直角三角形.26.如图,已知反比例函数y=的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,﹣1).(1)分别求出反比例函数与一次函数的函数关系式;(2)若一次函数与y轴相交于点C,求△BOC的面积;(3)观察图象请直接写出:一次函数的值大于反比例函数的值的自变量的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法就可以求出函数的解析式;(2)求△BOC的面积就是求B,C两点的坐标.(3)由图象可直接观察出一次函数的值大于反比比例函数的值时x的取值范围.【解答】解:(1)∵点A(1,3)在反比例函数图象上∴k=3即反比例函数关系式为y=;∵点B(n,﹣1)在反比例函数图象上∴n=﹣3∵点A(1,3)和B(﹣3,﹣1)在一次函数y=mx+b的图象上∴,解得.∴一次函数关系式为y=x+2(2)当x=0时,一次函数值为2∴OC=2∴S△BOC=×2×|﹣3|=3.(3)由图可知,在A点右侧时,或在B点右侧y轴左侧时,一次函数的值大于反比比例函数的值,此时x>1或﹣3<x<0.【点评】本题考查了反比例函数与一次函数的交点问题及待定系数法求函数解析式,要注意结合图形的性质并挖掘图形提供的隐含条件.。
2015年武威市中考模拟数学试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个.是符合题意的.1.2的相反数是()A. 2 B.﹣2 C.﹣D.2.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为()A.0.3×106 B 3×105 C.3×106 D.30×1043.据调查,2013年5月兰州市的房价均价为7600元/m2,2015年同期将达到8200元/m2,假设这两年兰州市房价的平均增长率为x,根据题意,所列方程为()A.8200%)1(76002=+x B.8200%)1(76002=-xC.8200)1(76002=+x D.8200)1(76002=-x4.下列汽车标志中,既是轴对称图形又是中心对称图形的是()A.B .C .D.5. 如图,直线AB∥CD,直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE,交直线AB于点G,若∠1=42°,则∠2的大小是()A.56°B.48° C.46° D.40°6.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A.30° B.45°C.60°D.70°7.已知⊙O1与⊙O2的半径分别为2cm和3cm,若O1O2=5cm.则⊙O1与⊙O2的位置关系是()A.外离B.相交C.内切D.外切8如图,由几个小正方体组成的立体图形的左视图是( )9.函数y1=x和y2=的图象如图所示,则y1>y2的x取值范围是()A.x<﹣1或x>1 B. x<﹣1或0<x<1 C.﹣1<x<0或x>1 D.﹣1<x<0或0<x<110.如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为二、填空题(共8小题,每小题3分,共24分,请将答案填在答题卡上)11.分解因式:5x2-20=________12. 若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解______13. 分式方程021=-x的解是__________14.二次函数y=﹣2(x﹣5)2+3的顶点坐标是.15.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为_________ .(结果保留π)16.如图,点E、F分别是正方形纸片ABCD的边BC、CD上一点,将正方形纸片ABCD分别沿AE、AF折叠,使得点B、D恰好都落在点G处,且EG=2,FG=3,则正方形纸片ABCD的边长为.17.将半径为4cm的半圆围成一个圆锥,这个圆锥的高为 cm.18. 若实数x、y满足|4|0x-=,则以x、y的值为边长的等腰三角形的周长为。
2015年甘肃省武威市中考数学试卷(解析版)一、本大题共10小题,每小题3分,共30分1.(3分)(2015•荆门)64的立方根是()A .4 B.±4 C.8 D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.2.(3分)(2015•武威)中国航空母舰“辽宁号”的满载排水量为67500吨.将数67500用科学记数法表示为()A .0.675×105B.6.75×104C.67.5×103D.675×102考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将67500用科学记数法表示为:6.75×104.故选:B.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•武威)若∠A=34°,则∠A的补角为()A .56°B.146°C.156°D.166°考点:余角和补角.分析:根据互补的两角之和为180°,可得出答案.解答:解:∵∠A=34°,∴∠A的补角=180°﹣34°=146°.故选B.点评:本题考查了余角和补角的知识,解答本题的关键是掌握互补的两角之和为180°.4.(3分)(2015•武威)下列运算正确的是()A .x2+x2=x4B.(a﹣b)2=a2﹣b2C.(﹣a2)3=﹣a6D.3a2•2a3=6a6考点:完全平方公式;合并同类项;幂的乘方与积的乘方;单项式乘单项式.分析:根据同类项、完全平方公式、幂的乘方和单项式的乘法计算即可.解答:解:A、x2+x2=2x2,错误;B、(a﹣b)2=a2﹣2ab+b2,错误;C、(﹣a2)3=﹣a6,正确;D、3a2•2a3=6a5,错误;故选C.点评:此题考查同类项、完全平方公式、幂的乘方和单项式的乘法,关键是根据法则进行计算.5.(3分)(2015•武威)如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得上面第一层中间有1个正方形,第二层有3个正方形.下面一层左边有1个正方形,故选A.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.(3分)(2015•武威)下列命题中,假命题是()A 平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y考点:命题与定理;有理数的乘方;线段垂直平分线的性质;中心对称图形;用样本估计总体.分析:根据平行四边形的性质、三角形外心的性质以及用样本的数字特征估计总体的数字特征和有理数乘方的运算逐项分析即可.解答:解:A、平行四边形是中心对称图形,它的中心对称点为两条对角线的交点,故该命题是真命题;B、三角形三边的垂直平分线相交于一点,为三角形的外心,这点到三角形三个顶点的距离相等,故该命题是真命题;C、用样本的数字特征估计总体的数字特征:主要数据有众数、中位数、平均数、标准差与方差,故该命题是真命题;D、若x2=y2,则x=±y,不是x=y,故该命题是假命题;故选D.点评:本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.7.(3分)(2015•武威)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A .2500x2=3600 B.2500(1+x)2=3600C .2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=3600考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.解答:解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.点评:本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).8.(3分)(2015•武威)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A .80°B.160°C.100°D.80°或100°考点:圆周角定理.分析:首先根据题意画出图形,由圆周角定理即可求得答案∠ABC的度数,又由圆的内接四边形的性质,即可求得∠ABC的度数.解答:解:如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°.∴∠ABC的度数是:80°或100°.故选D.点评:此题考查了圆周角定理与圆的内接四边形的性质.此题难度不大,注意数形结合思想与分类讨论思想的应用,注意别漏解.9.(3分)(2015•武威)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A .B.C.D.考点:相似三角形的判定与性质.分析:证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到=,借助相似三角形的性质即可解决问题.解答:解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△DOE∽△AOC,∴=,∴S△DOE:S△AOC==,故选D.点评:本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.10.(3分)(2015•武威)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P 作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B.C.D.考点:动点问题的函数图象.分析:证明△BPE∽△CDP,根据相似三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断.解答:解:∵∠CPD=∠FPD,∠BPE=∠FPE,又∵∠CPD+∠FPD+∠BPE+∠FPE=180°,∴∠CPD+∠BPE=90°,又∵直角△BPE中,∠BPE+∠BEP=90°,∴∠BEP=∠CPD,又∵∠B=∠C,∴△BPE∽△CDP,∴,即,则y=﹣x2+,y是x的二次函数,且开口向下.故选C.点评:本题考查了动点问题的函数图象,求函数的解析式,就是把自变量当作已知数值,然后求函数变量y的值,即求线段长的问题,正确证明△BPE∽△CDP是关键.二、填空题,本大题共8小题,每小题3分,共24分11.(3分)(2015•武威)分解因式:x3y﹣2x2y+xy=xy(x﹣1)2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:原式提取公因式,再利用完全平方公式分解即可.解答:解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2015•武威)分式方程的解是x=2.考点:解分式方程.分析:观察可得最简公分母是x(x+3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x(x+3),得2(x+3)=5x,解得x=2.检验:把x=2代入x(x+3)=10≠0,即x=2是原分式方程的解.故原方程的解为:x=2.故答案为:x=2.点评:此题考查了分式方程的求解方法.注意:①解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解,②解分式方程一定注意要验根.13.(3分)(2015•武威)在函数y=中,自变量x的取值范围是x≥﹣1且x≠0.考点:函数自变量的取值范围.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x≠0,解得:x≥﹣1且x≠0.故答案为:x≥﹣1且x≠0.点评:考查了函数自变量的取值范围,函数自变量的取值范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2015•武威)定义新运算:对于任意实数a,b都有:a⊕b=a(a﹣b)+1,其中等式右边是通常的加法、减法及乘法运算.如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣5,那么不等式3⊕x<13的解集为x>﹣1.考点:一元一次不等式的应用.专题:新定义.分析:根据运算的定义列出不等式,然后解不等式求得不等式的解集即可.解答:解:3⊕x<13,3(3﹣x)+1<13,解得:x>﹣1.故答案为:x>﹣1.点评:此题考查一元一次不等式解集的求法,理解运算的方法,改为不等式是解决问题的关键.15.(3分)(2015•武威)已知α、β均为锐角,且满足|sinα﹣|+=0,则α+β=75°.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:算术平方根.分析:根据非负数的性质求出sinα、tanβ的值,然后根据特殊角的三角函数值求出两个角的度数.解答:解:∵|sinα﹣|+=0,∴sinα=,tanβ=1,∴α=30°,β=45°,则α+β=30°+45°=75°.故答案为:75°.点评:本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.(3分)(2015•武威)关于x的方程kx2﹣4x﹣=0有实数根,则k的取值范围是k≥﹣6.考点:根的判别式;一元一次方程的解.分析:由于k的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.解答:解:当k=0时,﹣4x﹣=0,解得x=﹣,当k≠0时,方程kx2﹣4x﹣=0是一元二次方程,根据题意可得:△=16﹣4k×(﹣)≥0,解得k≥﹣6,k≠0,综上k≥﹣6,故答案为k≥﹣6.点评:本题考查的是根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.17.(3分)(2015•武威)如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.考点:扇形面积的计算.分析:根据题意可知,图中阴影部分的面积等于扇形BOD的面积,根据扇形面积公式即可求解.解答:解:∵AB=BC,CD=DE,∴=,=,∴+=+,∴∠BOD=90°,∴S阴影=S扇形OBD==π.故答案是:π.点评:本题考查了扇形的面积计算及圆心角、弧之间的关系.解答本题的关键是得出阴影部分的面积等于扇形BOD的面积.18.(3分)(2015•武威)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是45,2016是第63个三角形数.考点:规律型:数字的变化类.分析:根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.解答:解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.点评:此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.三、简答题(一)本大题共5小题,共26分19.(4分)(2015•武威)计算:()0++(﹣1)2015﹣tan60°.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,最后一项利用特殊角的三角函数值计算即可得到结果.解答:解:原式=1+2﹣1﹣×=2﹣3=﹣1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(4分)(2015•武威)先化简,再求值:÷(1﹣),其中x=0.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把x=0代入进行计算即可.解答:解:原式=÷(﹣)=•=,当x=0时,原式=.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(6分)(2015•武威)如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.考点:作图—复杂作图;切线的性质.分析:(1)作∠ABC的平分线交AC于P,再以P为圆心PA为半径即可作出⊙P;(2)根据角平分线的性质得到∠ABP=30°,根据三角函数可得AP=,再根据圆的面积公式即可求解.解答:解:(1)如图所示,则⊙P为所求作的圆.(2)∵∠B=60°,BP平分∠ABC,∴∠ABP=30°,∵tan∠ABP=,∴AP=,∴S⊙P=3π.点评:本题主要考查了作图﹣复杂作图,角平分线的性质,即角平分线上的点到角两边的距离相等.同时考查了圆的面积.22.(6分)(2015•武威)如图①所示,将直尺摆放在三角板上,使直尺与三角板的边分别交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示,点H,B在直尺上的度数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形.分析:(1)先根据直角三角形的两锐角互为求出∠CDG的度数,再根据两直线平行,同位角相等求出∠DEF,然后根据三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)根据度数求出HB的长度,再根据∠CBH=∠CGD=42°,利用42°的余弦值进求解.解答:解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数分别为4,13.4,∴HB=13.4﹣4=9.4(m),∴BC=HBcos42°≈9.4×0.74≈6.96(m).答:BC的长为6.96m.点评:本题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,仔细分析图形并认真计算即可.23.(6分)(2015•武威)有三张卡片(形状、大小、颜色、质地都相等),正面分别下上整式x2+1,﹣x2﹣2,3.将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B,于是得到代数式.(1)请用画树状图成列表的方法,写出代数式所有可能的结果;(2)求代数式恰好是分式的概率.考点:列表法与树状图法;分式的定义.分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;(2)由(1)中的树状图,可求得抽取的两张卡片结果能组成分式的情况,然后利用概率公式求解即可求得答案.解答:解:(1)画树状图:列表:x2+1 ﹣x2﹣2 3第一次第二次x2+1﹣x2﹣23(2)代数式所有可能的结果共有6种,其中代数式是分式的有4种:,,,,所以P (是分式)=.点评:此题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.四、简答题(二)本大题共5小题,共40分24.(7分)(2015•武威)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.训练后篮球定点投篮测试进球统计表进球数(个)8 7 6 5 4 3人数2 1 4 7 8 2 请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 5 个;(2)选择长跑训练的人数占全班人数的百分比是 10% ,该班共有同学 40 人; (3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.考点: 扇形统计图;一元一次方程的应用;统计表. 分析:(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解. 解答:解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人). 训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%, 则全班同学的人数为24÷60%=40(人), 故答案是:10%,40;(3)设参加训练之前的人均进球数为x 个, 则x (1+25%)=5,解得 x=4.即参加训练之前的人均进球数是4个.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(7分)(2015•武威)如图,平行四边形ABCD 中,AB=3cm ,BC=5cm ,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连结CE ,DF . (1)求证:四边形CEDF 是平行四边形;(2)①当AE= 3.5 cm 时,四边形CEDF 是矩形; ②当AE= 2 cm 时,四边形CEDF 是菱形. (直接写出答案,不需要说明理由)考点:平行四边形的判定与性质;菱形的判定;矩形的判定.专题:动点型.分析:(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.解答:(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.点评:本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.26.(8分)(2015•武威)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(k>x,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.考点:反比例函数综合题.分析:(1)过点D作x轴的垂线,垂足为F,首先得出A点坐标,再利用反比例函数图象上点的坐标性质得出即可;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,得出点D′的纵坐标为3,求出其横坐标,进而得出菱形ABCD平移的距离.解答:解:(1)过点D作x轴的垂线,垂足为F,∵点D的坐标为(4,3),∴OF=4,DF=3,∴OD=5,∴AD=5,∴点A坐标为(4,8),∴k=xy=4×8=32,∴k=32;(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D′点处,过点D′做x轴的垂线,垂足为F′.∵DF=3,∴D′F′=3,∴点D′的纵坐标为3,∵点D′在的图象上∴3=,解得:x=,即OF′=,∴FF′=﹣4=,∴菱形ABCD平移的距离为.点评:此题主要考查了反比例函数综合以及反比例函数图象上点的坐标性质,得出A点坐标是解题关键.27.(8分)(2015•武威)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①所示,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):∠BAE=90°或者∠EAC=∠ABC.(2)如图②所示,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.考点:切线的判定.分析:(1)求出∠BAE=90°,再根据切线的判定定理推出即可;(2)作直径AM,连接CM,根据圆周角定理求出∠M=∠B,∠ACM=90°,求出∠MAC+∠CAE=90°,再根据切线的判定推出即可.解答:解:(1)①∠BAE=90°,②∠EAC=∠ABC,理由是:①∵∠BAE=90°,∴AE⊥AB,∵AB是直径,∴EF是⊙O的切线;②∵AB是直径,∴∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠EAC=∠ABC,∴∠BAE=∠BAC+∠EAC=∠BAC+∠ABC=90°,即AE⊥AB,∵AB是直径,∴EF是⊙O的切线;(2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线.点评:本题考查了圆周角定理,切线的判定的应用,主要考查学生运用定理进行推理的能力,注意:经过半径的外端,并且垂直于半径的直线是圆的切线.28.(10分)(2015•武威)如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C (5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)抛物线经过点A(0,4),B(1,0),C(5,0),可利用两点式法设抛物线的解析式为y=a(x﹣1)(x﹣5),代入A(0,4)即可求得函数的解析式,则可求得抛物线的对称轴;(2)点A关于对称轴的对称点A′的坐标为(6,4),连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小,可求出直线BA′的解析式,即可得出点P的坐标.(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),再求得直线AC的解析式,即可求得NG的长与△ACN的面积,由二次函数最大值的问题即可求得答案.解答:解:(1)根据已知条件可设抛物线的解析式为y=a(x﹣1)(x﹣5),把点A(0,4)代入上式得:a=,∴y=(x﹣1)(x﹣5)=x2﹣x+4=(x﹣3)2﹣,∴抛物线的对称轴是:x=3;(2)P点坐标为(3,).理由如下:∵点A(0,4),抛物线的对称轴是x=3,∴点A关于对称轴的对称点A′的坐标为(6,4)如图1,连接BA′交对称轴于点P,连接AP,此时△PAB的周长最小.设直线BA′的解析式为y=kx+b,把A′(6,4),B(1,0)代入得,解得,∴y=x﹣,∵点P的横坐标为3,∴y=×3﹣=,∴P(3,).(3)在直线AC的下方的抛物线上存在点N,使△NAC面积最大.设N点的横坐标为t,此时点N(t,t2﹣t+4)(0<t<5),如图2,过点N作NG∥y轴交AC于G;作AD⊥NG于D,由点A(0,4)和点C(5,0)可求出直线AC的解析式为:y=﹣x+4,把x=t代入得:y=﹣t+4,则G(t,﹣t+4),此时:NG=﹣t+4﹣(t2﹣t+4)=﹣t2+4t,∵AD+CF=CO=5,∴S△ACN=S△ANG+S△CGN=AM×NG+NG×CF=NG•OC=×(﹣t2+4t)×5=﹣2t2+10t=﹣2(t﹣)2+,∴当t=时,△CAN面积的最大值为,由t=,得:y=t2﹣t+4=﹣3,∴N(,﹣3).点评:本题主要考查了二次函数与方程、几何知识的综合应用,解题的关键是方程思想与数形结合思想的灵活应用.。
2015年甘肃省武威市民勤六中中考数学一模试卷一.选择题(共10小题,每小题3分,共30分)1.(3分)下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=2.(3分)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.1:3.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.4.(3分)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小5.(3分)如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为()A.25m B.30m C.36m D.40m6.(3分)函数y=2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.7.(3分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是()A.B.C.D.8.(3分)如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2D.9.(3分)如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且P A1=P A,则AB:A1B1等于()A.B.C.D.10.(3分)如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB 上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3二、填空题(每题3分,每小题3分,共24分)11.(3分)已知,则=.12.(3分)若反比例函数y=(m﹣1)x|m|﹣2,则m的值是.13.(3分)高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为米.14.(3分)在△ABC中,∠C=90°,AB=5,BC=3,则sin B=.15.(3分)如图,若DE∥BC,AD=3cm,DB=2cm,则=.16.(3分)如图,在△ABC中,E为AB边上的一点,要使△ABC∽△ADE成立,还需要添加一个条件为.17.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为.(结果保留π)18.(3分)点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是.三.解答题(共66分)19.(8分)计算:(1)(2)若2cosα=,求α.20.(6分)画出该几何体的三视图:21.(6分)如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.22.(8分)如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?23.(8分)如图,已知直角梯形ABCD,∠A=∠B=90°,AD=2,BC=8,AB =10,在线段AB上取一点P,使△ADP与△BCP相似,求AP的长.24.(8分)如图,在某建筑物AC上,竖直挂着“共建文明犍为,共享犍为文明”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行10米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长(小明的身高不计,结果精确到0.1米).≈1.732.25.(10分)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.26.(12分)如图,已知反比例函数y=的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,﹣1).(1)分别求出反比例函数与一次函数的函数关系式;(2)若一次函数与y轴相交于点C,求△BOC的面积;(3)观察图象请直接写出:一次函数的值大于反比例函数的值的自变量的取值范围.2015年甘肃省武威市民勤六中中考数学一模试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(3分)下列函数是反比例函数的是()A.y=x B.y=kx﹣1C.y=D.y=【解答】解:A、y=x是正比例函数;故本选项错误;B、y=kx﹣1当k=0时,它不是反比例函数;故本选项错误;C、符合反比例函数的定义;故本选项正确;D、y=的未知数的次数是﹣2;故本选项错误.故选:C.2.(3分)若相似△ABC与△DEF的相似比为1:3,则△ABC与△DEF的面积比为()A.1:3B.1:9C.3:1D.1:【解答】解:∵相似△ABC与△DEF的相似比为1:3,∴△ABC与△DEF的面积比为1:9.故选:B.3.(3分)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是()A.B.C.D.【解答】解:从几何体上面看,是左边2个,右边1个正方形.故选:D.4.(3分)对于反比例函数y=,下列说法正确的是()A.图象经过点(1,﹣3)B.图象在第二、四象限C.x>0时,y随x的增大而增大D.x<0时,y随x增大而减小【解答】解:A、∵反比例函数y=,∴xy=3,故图象经过点(1,3),故A 选项错误;B、∵k>0,∴图象在第一、三象限,故B选项错误;C、∵k>0,∴x>0时,y随x的增大而减小,故C选项错误;D、∵k>0,∴x<0时,y随x增大而减小,故D选项正确.故选:D.5.(3分)如图,为了测量一池塘的宽DE,在岸边找到一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE交EC的延长线于B,测出AB=6m,则池塘的宽DE为()A.25m B.30m C.36m D.40m【解答】解:∵AB∥DE∴AB:DE=AC:CD∴∴DE=36m.故选:C.6.(3分)函数y=2x与函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.【解答】解:∵y=2x,2>0,∴图象经过一、三象限,∵函数y=﹣中系数小于0,∴图象在二、四象限.故选:B.7.(3分)如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是()A.B.C.D.【解答】解:∵小正方形的边长均为1∴△ABC三边分别为2,,同理:A中各边的长分别为:,3,;B中各边长分别为:,1,;C中各边长分别为:1、2,;D中各边长分别为:2,,;∵只有B项中的三边与已知三角形的三边对应成比例,且相似比为故选:B.8.(3分)如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于()A.B.C.2D.【解答】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故选:D.9.(3分)如图,五边形ABCDE和五边形A1B1C1D1E1是位似图形,且P A1=P A,则AB:A1B1等于()A.B.C.D.【解答】解:∵P A1=P A,∴P A:P A1=3:2,又∵AB:A1B1=P A:P A1,∴AB:A1B1=3:2.故选:B.10.(3分)如图,直线l和双曲线(k>0)交于A、B两点,P是线段AB 上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【解答】解:如右图,∵点A在y=上,=k,∴S△AOC∵点P在双曲线的上方,∴S>k,△POE∵点B在y=上,∴S=k,△BOD∴S1=S2<S3.故选:D.二、填空题(每题3分,每小题3分,共24分)11.(3分)已知,则=4.【解答】解:由,得x=3k,y=4k,z=5k.==4,故答案为:4.12.(3分)若反比例函数y=(m﹣1)x|m|﹣2,则m的值是﹣1.【解答】解:依题意得:|m|﹣2=﹣1且m﹣1≠0,解得m=﹣1.故答案是:﹣1.13.(3分)高为3米的木箱在地面上的影长为12米,此时测得一建筑物在水面上的影长为36米,则该建筑物的高度为9米.【解答】解:∵光线是平行的,影长都在地面上,∴光线和影长组成的角相等;木箱和建筑物与影长构成的角均为直角,∴木箱高与影长构成的三角形和建筑物和影长构成的三角形相似,设树的高度为x米,3:12=x:36,解得:x=9,∴该建筑物的高度为9m.故答案为:9.14.(3分)在△ABC中,∠C=90°,AB=5,BC=3,则sin B=.【解答】解:∵∠C=90°,AB=5,BC=3,∴AC==4,∴sin B==.故答案为:.15.(3分)如图,若DE∥BC,AD=3cm,DB=2cm,则=3:5.【解答】解:∵AD=3,DB=2,∴AB=AD+BD=3+2=5,∵DE∥BC,∴DE:BC=AD:AB=3:5.故答案为:3:5.16.(3分)如图,在△ABC中,E为AB边上的一点,要使△ABC∽△ADE成立,还需要添加一个条件为∠ADE=∠B(答案不唯一).【解答】解:添加条件为:∠ADE=∠B(答案不唯一);理由如下:∵∠A=∠A,∴当∠ADE=∠B时,△ADE∽△ABC,故答案为:∠ADE=∠B(答案不唯一).17.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为70π.(结果保留π)【解答】解:观察三视图发现该几何体为空心圆柱,其内圆半径为3,外圆半径为4,高为10,该几何体的体积为:10×(42π﹣32π)=70π,故答案为:70π.18.(3分)点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,则y1,y2,y3的大小关系是y1>y3>y2.【解答】解:∵点(1,y1),(﹣2,y2),(3,y3)均在函数的图象上,∴y1==6,y2=﹣3,y3==2,∵6>2>﹣3,∴y1>y3>y2.故答案为:y1>y3>y2.三.解答题(共66分)19.(8分)计算:(1)(2)若2cosα=,求α.【解答】解:(1)原式=2﹣+1﹣3=﹣2;(2)已知等式整理得:cosα=,∴α=2kπ+,k∈Z.20.(6分)画出该几何体的三视图:【解答】解:如图所示:.21.(6分)如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.【解答】证明:∵DE∥BC,∴∠AED=∠C.又∵EF∥AB,∴∠A=∠FEC.∴△ADE∽△EFC.22.(8分)如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?【解答】解:(1)分别过点E、D作EG⊥AB、DH⊥AB交AB于G、H,∵四边形ABCD是梯形,且AB∥CD,∴DH平行且等于EG,故四边形EGHD是矩形,∴ED=GH,在Rt△ADH中,AH=DH÷tan∠DAH=8÷tan45°=8(米),在Rt△FGE中,i=1:2=,∴FG=2EG=16(米),∴AF=FG+GH﹣AH=16+2﹣8=10(米);×坝长=×(2+10)×8×400=19200(立(2)加宽部分的体积V=S梯形AFED方米).答:(1)加固后坝底增加的宽度AF为10米;(2)完成这项工程需要土石19200立方米.23.(8分)如图,已知直角梯形ABCD,∠A=∠B=90°,AD=2,BC=8,AB =10,在线段AB上取一点P,使△ADP与△BCP相似,求AP的长.【解答】解:设AP=x,则BP=AB﹣AP=10﹣x,∵直角梯形ABCD,∠A=∠B=90°,∴①当时,△APD∽△BPC,即,解得:x=2;②当时,△APD∽△BCP,即,解得:x=2或x=8;综上所述:AP=2或8.24.(8分)如图,在某建筑物AC上,竖直挂着“共建文明犍为,共享犍为文明”的宣传条幅BC,小明站在点F处,看条幅顶端B,测得仰角为30°,再往条幅方向前行10米到达点E处,看到条幅顶端B,测得仰角为60°,求宣传条幅BC的长(小明的身高不计,结果精确到0.1米).≈1.732.【解答】解:设BC的长为x,在Rt△BCF中,∵∠BEF=30°,∴=tan30°=,在Rt△BCE中,∵∠BEC=60°,∴=tan60°=,则CE=x,∵EF=10米,∴x﹣x=10,解得:x=5≈8.7(米).答:宣传条幅BC的长约8.7米.25.(10分)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.【解答】解:(1)如图:线段MG和GE就表示旗杆在阳光下形成的影子.(2)过M作MN⊥DE于N,设旗杆的影子落在墙上的长度为x,由题意得:△DMN∽△ACB,∴=,又∵AB=1.5m,BC=2.4m,DN=DE﹣NE=15﹣xMN=EG=16m,∴=,答:旗杆的影子落在墙上的长度为5米.26.(12分)如图,已知反比例函数y=的图象与一次函数y=mx+b的图象相交于两点A(1,3),B(n,﹣1).(1)分别求出反比例函数与一次函数的函数关系式;(2)若一次函数与y轴相交于点C,求△BOC的面积;(3)观察图象请直接写出:一次函数的值大于反比例函数的值的自变量的取值范围.【解答】解:(1)∵点A(1,3)在反比例函数图象上∴k=3即反比例函数关系式为y=;∵点B(n,﹣1)在反比例函数图象上∴n=﹣3∵点A(1,3)和B(﹣3,﹣1)在一次函数y=mx+b的图象上∴,解得.∴一次函数关系式为y=x+2(2)当x=0时,一次函数值为2∴OC=2=×2×|﹣3|=3.∴S△BOC(3)由图可知,在A点右侧时,或在B点右侧y轴左侧时,一次函数的值大于反比比例函数的值,此时x>1或﹣3<x<0.。
2015年兰州市初中毕业生学业考试数学试题(含答案全解全析)第Ⅰ卷(选择题,共60分)一、选择题:本大题共15小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数解析式中,一定为二次函数的是( )A.y=3x-1B.y=ax2+bx+cC.s=2t2-2t+1D.y=x2+1x2.由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是( )A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同3.在下列二次函数中,其图象的对称轴为x=-2的是( )A.y=(x+2)2B.y=2x2-2C.y=-2x2-2D.y=2(x-2)24.如图,△ABC中,∠B=90°,BC=2AB,则cos A=( )A.√52B.12C.2√55D.√555.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(5,0),则点A的坐标为( )A.(2,5)B.(2.5,5)C.(3,5)D.(3,6)6.一元二次方程x2-8x-1=0配方后可变形为( )A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=157.下列命题错误..的是( )A.对角线互相垂直平分的四边形是菱形B.平行四边形的对角线互相平分C.矩形的对角线相等D.对角线相等的四边形是矩形8.在同一直角坐标系中,一次函数y=kx-k与反比例函数y=kx(k≠0)的图象大致是( )9.如图,经过原点O的☉P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=( )A.80°B.90°C.100°D.无法确定10.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连结EF,则△AEF的面积是( )A.4√3B.3√3C.2√3D.√311.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=10912.若点P1(x1,y1),P2(x2,y2)在反比例函数y=kx(k>0)的图象上,且x1=-x2,则( )A.y1<y2B.y1=y2C.y1>y2D.y1=-y213.二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则( )A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是14.二次函数y=x2+x+c的图象与x轴有两个交点A(x1,0),B(x2,0),且x1<x2,点P(m,n)是图象上一点,那么下列判断正确的是( )A.当n<0时,m<0B.当n>0时,m>x2C.当n<0时,x1<m<x2D.当n>0时,m<x115.如图,☉O的半径为2,AB、CD是互相垂直的两条直径,点P是☉O上任意一点(P与A、B、C、D不重合),过点P作PM⊥AB于点M,PN⊥CD于点N,点Q是MN的中点,当点P沿着圆周转过45°时,点Q走过的路径长为( )A.π4B.π2C.π6D.π3第Ⅱ卷(非选择题,共90分)二、填空题:本大题共5小题,每小题4分,共20分.16.若一元二次方程ax 2-bx-2 015=0有一根为x=-1,则a+b= . 17.如果a b =c d =ef =k(b+d+f ≠0),且a+c+e=3(b+d+f),那么k= .18.在一个不透明的袋中装有除颜色外其余均相同的n 个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:摸球试验次数 100 1 000 5 000 10 000 50 000 100 000 摸出黑球次数 46 487 2 506 5 008 24 996 50 007根据列表,可以估计出n 的值是 .19.如图,点P 、Q 是反比例函数y=kx 图象上的两点,PA ⊥y 轴于点A,QN ⊥x 轴于点N,作PM ⊥x 轴于点M,QB ⊥y 轴于点B,连结PB 、QM,△ABP 的面积记为S 1,△QMN 的面积记为S 2,则S 1 S 2.(填“>”或“<”或“=”)20.已知△ABC 的边BC=4 cm,☉O 是其外接圆,且半径也为4 cm,则∠A 的度数是 .三、解答题:本大题共8小题,共70分.解答时写出必要的文字说明、证明过程或演算步骤.21.(本小题满分10分,每题5分) (1)计算:2-1-√3tan 60°+(π-2 015)0+|-12|;(2)解方程:x 2-1=2(x+1).22.(本小题满分5分)如图,在图中求作☉P,使☉P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(本小题满分6分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练.球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况;(2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大?24.(本小题满分8分)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH 的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.25.(本小题满分9分)如图,四边形ABCD中,AB∥CD,AB≠CD,BD=AC.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点.求证:线段EF与线段GH互相垂直平分.26.(本小题满分10分)如图,A(-4,12),B(-1,2)是一次函数y1=ax+b与反比例函数y2=mx图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)根据图象直接回答:在第二象限内,当x取何值时,y1-y2>0?(2)求一次函数解析式及m的值;(3)P是线段AB上一点,连结PC,PD,若△PCA和△PDB面积相等,求点P的坐标.27.(本小题满分10分)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D,以AB上一点O为圆心作☉O,使☉O经过点A和点D.(1)判断直线BC与☉O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求☉O的半径;②设☉O与AB边的另一个交点为E,求线段BD、BE与劣弧DE所围成的阴影部分的面积.(结果保留根号和π)28.(本小题满分12分)已知二次函数y=ax2的图象经过点(2,1).(1)求二次函数y=ax2的解析式;(2)一次函数y=mx+4的图象与二次函数y=ax2的图象交于A(x1,y1)、B(x2,y2)两点.①当m=3时(图①),求证:△AOB为直角三角形;2时(图②),△AOB的形状,并证明;②试判断当m≠32(3)根据第(2)问,说出一条你能得到的结论.(不要求证明)答案全解全析:一、选择题1.C 根据二次函数的定义:形如y=ax 2+bx+c(a 、b 、c 为常数,且a ≠0)的函数叫做二次函数,结合各选项知,选C.2.B 左视图为,主视图为,俯视图为,故选B.评析 本题主要考查物体的三视图,属容易题.3.A 根据二次函数y=a(x-h)2+k(a ≠0)的图象的对称轴为直线x=h,知只有A 选项符合题意. 4.D 设AB=k(k>0),则BC=2k,∵∠B=90°,∴AC=√AB 2+BC 2=√5k,∴cos A=ABAC =√5k =√55,故选D.5.B 设点A 的坐标为(x,y),由位似图形的性质知,x 1=y 2=52,得x=2.5,y=5,则点A 的坐标为(2.5,5).故选B.6.C 变形得x 2-8x=1,x 2-8x+16=1+16,(x-4)2=17,故选C. 7.D 对角线相等的平行四边形是矩形,故D 错误,选D.8.A 分k>0和k<0两种情况讨论:当k>0时,反比例函数的图象经过第一、三象限,一次函数的图象经过第一、三、四象限,没有符合题意的选项;当k<0时,反比例函数的图象经过第二、四象限,一次函数的图象经过第一、二、四象限,故选A. 9.B 根据同弧所对的圆周角相等,得到∠ACB=∠AOB=90°,故选B.10.B 连结AC,在菱形ABCD 中,AB=BC,∵∠B=60°,∴△ABC 是等边三角形,∵AE ⊥BC,∴AE=2√3,∠EAC=30°,同理可得AF=2√3,∠CAF=30°,则△EAF 为等边三角形,∴S △AEF =√34×(2√3)2=3√3.故选B.11.B 设原价为1,则某天跌停后是0.9,根据题意可列方程为0.9(1+x)2=1,即(1+x)2=109,故选B.12.D 由题意,得xy=k,因为k 是定值,所以当x 1=-x 2时,y 1=-y 2,故选D. 13.A 由题意得点C 的坐标为(0,c), ∵OA=OC,∴点A 的坐标为(-c,0).将(-c,0)代入二次函数解析式,得ac 2-bc+c=0, ∵c ≠0,∴ac -b+1=0, 即ac+1=b.故选A.14.C 由已知得,函数图象开口向上,对称轴在y 轴左侧,画出草图(如图),当n>0时,m<x 1或m>x 2;当n<0时,x 1<m<x 2.故选C.15.A 连结OP.∵∠PMO=∠PNO=∠MON=90°,∴四边形MPNO 为矩形,∵Q 为MN 的中点,∴Q 在OP 上,且OQ=12OP=1.∵点P 沿圆周转过45°,∴点Q 也沿相应的圆周转过45°,∴点Q 走过的路径长为45×1×π180=π4. 二、填空题16.答案 2 015解析 将x=-1代入方程得a+b-2 015=0,则a+b=2 015. 17.答案 3解析 由题意得a=bk,c=dk,e=fk,则a+c+e=k(b+d+f)=3(b+d+f),故k=3. 18.答案 10解析 当试验次数越多时,频率越接近概率,由题表得,概率为0.5,故n=10. 19.答案 =解析 由反比例函数的性质得,S矩形APMO=S矩形BONQ.同时减去公共部分后,所得两个矩形的面积仍相等,即2S △ABP =2S △MNQ ,故S 1=S 2. 20.答案 30°解析 ∵OB=OC=BC=4 cm,∴△OBC 为等边三角形, ∴∠BOC=60°,故∠A=30°.三、解答题21.解析 (1)2-1-√3tan 60°+(π-2 015)0+|-1| =1-3+1+1=1-3+1 =-1.(2)x 2-1=2(x+1)可化为x 2-2x-3=0,解得x 1=-1,x 2=3.22.解析☉P 为所求作的圆. 23.解析 (1)如图:(2)P(三次传球后,球回到甲脚下)=28=14. (3)P(三次传球后,球回到甲脚下)=28, P(三次传球后,球传到乙脚下)=38, 因为38>28,所以球传到乙脚下的概率大.24.解析 (1)平行.(2)如图,连结CG,AE,过点E 作EM ⊥AB 于M,过点G 作GN ⊥CD 于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5. 所以AM=10-2=8,由平行投影可知AM ME =CNNG ,即810=CD -35, 解得CD=7,即电线杆的高度为7米.25.证明 (1)过点B 作BM ∥AC 交DC 的延长线于点M, ∵AB ∥CD,∴四边形ABMC 为平行四边形. ∴AC=BM=BD,∴∠BDC=∠M=∠ACD. 在△ACD 和△BDC 中,{AC =BD,∠ACD =∠BDC,CD =DC,∴△ACD ≌△BDC, ∴AD=BC.(2)连结EH,HF,FG,GE,∵E,F,G,H 分别是AB,CD,AC,BD 的中点,∴HE ∥AD,且HE=12AD,FG ∥AD,且FG=12AD,EH=12AD,EG=12BC, ∴HE ∥FG 且HE=FG,∴四边形HFGE 为平行四边形. 由(1)知,AD=BC, ∴HE=EG,∴▱HFGE 为菱形,∴线段EF 与线段GH 互相垂直平分.26.解析 (1)在第二象限内,当-4<x<-1时,y 1-y 2>0. (2)∵反比例函数y 2=mx 的图象过A (-4,12), ∴m=-4×12=-2,∵一次函数y 1=ax+b 的图象过A (-4,12),B(-1,2),∴{-4a +b =12,-a +b =2,解得{a =12,b =52, ∴y 1=12x+52. (3)设P (t,12t +52),过P 作PM ⊥x 轴,PN ⊥y 轴,∴PM=12t+52,PN=-t,∵S △PCA =S △PDB ,∴12AC ·CM=12BD ·DN,即12×12(t+4)=12×1×(2-12t -52),解得t=-52, ∴P (-52,54).27.解析 (1)相切.理由如下:如图,连结OD,∵AD 平分∠BAC,∴∠1=∠2,∵OA=OD,∴∠1=∠3,∴∠2=∠3,∴OD ∥AC.又∠C=90°,∴OD ⊥BC,∴BC 与☉O 相切.(2)①∵AC=3,∠B=30°,∴AB=6.设OA=OD=r,∴OB=2r.∴2r+r=6,解得r=2,即☉O 的半径是2.②由①得OD=2,OB=4,∴BD=2√3.S 阴影=12×2√3×2-60π×22360=2√3-2π3. 28.解析 (1)∵二次函数y=ax 2的图象过点(2,1),∴1=4a,∴a=1,∴二次函数的解析式为y=14x 2.(2)①证明:当m=32时,{y =32x +4,y =14x 2,解得{x 1=-2,y 1=1,{x 2=8,y 2=16,∴A(-2,1),B(8,16).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=1,OC=2,OD=8,BD=16.∴AC OC =OD BD =12,又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.②△AOB 为直角三角形,证明如下:当m ≠3时,{y =mx +4,y =14x 2,解得{x 1=2m -2√m 2+4,y 1=(m -√m 2+4)2,{x 2=2m +2√m 2+4,y 2=(m +√m 2+4)2,∴A(2m -2√m 2+4,(m-√m 2+4)2),B(2m+2√m 2+4,(m+√m 2+4)2).分别过A,B 作AC ⊥x 轴,BD ⊥x 轴,∴AC=(m -√m 2+4)2,OC=-(2m-2√m 2+4),BD=(m+√m 2+4)2,OD=2m+2√m 2+4, ∴AC OC =OD BD =-m -√m 2+42, 又∵∠ACO=∠ODB,∴△ACO ∽△ODB,∴∠AOC=∠OBD.又∵∠OBD+∠BOD=90°,∴∠AOC+∠BOD=90°,∴∠AOB=90°,∴△AOB 为直角三角形.(3)如:一次函数y=mx+4的图象与二次函数y=ax2的图象的交点为A,B,则△AOB恒为直角三角形等.。
2015年甘肃省武威四中中考数学一模试卷一、选择题:(每题3分,共36分)1.(3分)计算(﹣5a3)2的结果是()A.﹣10a5B.10a6C.﹣25a5D.25a62.(3分)下列计算正确的是()A.•=B.+=C.=3D.÷=2 3.(3分)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k =()A.3B.﹣1.5C.﹣3D.﹣64.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.2a﹣b=0D.当x>0时,y随x的增大而减小5.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:46.(3分)已知x=﹣1是方程x2+mx+1=0的一个实数根,则m的值是()A.0B.1C.2D.﹣27.(3分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.8.(3分)已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()A.10πB.12πC.15πD.20π9.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sin B的值是()A.B.C.D.10.(3分)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2B.1:3C.2:3D.11:20 11.(3分)如图所示是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.21612.(3分)近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A.(1+x)2=2000B.2000(1+x)2=3600C.(3600﹣2000)(1+x)=3600D.(3600﹣2000)(1+x)2=3600二、填空题:(每题3分,共24分)13.(3分)使在实数范围内有意义的x应满足的条件是.14.(3分)方程方程x2=x的解是;2﹣的倒数是;分解因式:x2﹣9=.15.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是cm.17.(3分)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是米.19.(3分)如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.20.(3分)已知⊙O1和⊙O2的半径分别为3cm和5cm,两圆的圆心距d是方程x2﹣12x+36=0的根,则两圆的位置关系是.三、计算题:(20分)21.(10分)求下列各式的值:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°(2)﹣•+2sin45°.22.(10分)解下列方程:(1)x2+4x+1=0(2)=﹣1.四、解答题:(40分)23.(7分)某药品经过两次提价,每瓶零售价由100元提到144元.已知两次提价的百分率相同,求两次提价的百分率.24.(8分)如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)25.(8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.26.(8分)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.27.(9分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.2015年甘肃省武威四中中考数学一模试卷参考答案与试题解析一、选择题:(每题3分,共36分)1.(3分)计算(﹣5a3)2的结果是()A.﹣10a5B.10a6C.﹣25a5D.25a6【解答】解:(﹣5a3)2=25a6.故选:D.2.(3分)下列计算正确的是()A.•=B.+=C.=3D.÷=2【解答】解:A、•=,故选项正确;B、不是同类二次根式,不能合并,故选项错误;C、=2,故选项错误;D、÷≠2,应该等于,故选项错误.故选:A.3.(3分)如图,矩形ABOC的面积为3,反比例函数y=的图象过点A,则k =()A.3B.﹣1.5C.﹣3D.﹣6【解答】解:依题意,有|k|=3,∴k=±3,又∵图象位于第二象限,∴k<0,∴k=﹣3.故选:C.4.(3分)已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的是()A.ac>0B.方程ax2+bx+c=0的两根是x1=﹣1,x2=3C.2a﹣b=0D.当x>0时,y随x的增大而减小【解答】解:A、∵抛物线开口向下,与y轴交于正半轴,∴a<0,c>0,ac<0,故A错误;B、∵抛物线对称轴是x=1,与x轴交于(3,0),∴抛物线与x轴另一交点为(﹣1,0),即方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故B正确;C、∵抛物线对称轴为x=﹣=1,∴b=﹣2a,∴2a+b=0,故C错误;D、∵抛物线对称轴为x=1,开口向下,∴当x>1时,y随x的增大而减小,故D错误.故选:B.5.(3分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A.1:2B.2:3C.1:3D.1:4【解答】解:∵△ABC中,AD、BE是两条中线,∴DE是△ABC的中位线,∴DE∥AB,DE=AB,∴△EDC∽△ABC,∴S△EDC :S△ABC=()2=.故选:D.6.(3分)已知x=﹣1是方程x2+mx+1=0的一个实数根,则m的值是()A.0B.1C.2D.﹣2【解答】解:把x=﹣1代入方程x2+mx+1=0得:1﹣m+1=0,解得:m=2,故选:C.7.(3分)如图,桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A.B.C.D.【解答】解:从左边看时,圆柱和长方体都是一个矩形,圆柱的矩形竖放在长方体矩形的中间.故选:C.8.(3分)已知圆锥的底面半径为3,高为4,则圆锥的侧面积为()A.10πB.12πC.15πD.20π【解答】解:∵圆锥的底面半径为3,高为4,∴圆锥母线长度为:5,圆锥的底面周长是:2×3π=6π.∴圆锥的侧面面积=×6π×5=15π.故选:C.9.(3分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,则sin B的值是()A.B.C.D.【解答】解:连接DC.根据直径所对的圆周角是直角,得∠ACD=90°.根据同弧所对的圆周角相等,得∠B=∠D.∴sin B=sin D==.故选:A.10.(3分)如图,梯形ABCD的对角线AC、BD相交于O,G是BD的中点.若AD=3,BC=9,则GO:BG=()A.1:2B.1:3C.2:3D.11:20【解答】解:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴DO:BO=AD:BC=3:9,∴DO=BD,BO=BD,∵G是BD的中点,∴BG=GD=BD,∴GO=DG﹣OD=BD﹣BD=BD,∴GO:BG=1:2.故选:A.11.(3分)如图所示是某几何体的三视图,则该几何体的体积是()A.18B.54C.108D.216【解答】解:观察三视图知:该几何体为六棱柱,底面正六边形的变成为6,高为2,故其体积为:(6+12)×3×2=108,故选:C.12.(3分)近年来,全国房价不断上涨,某县2010年4月份的房价平均每平方米为3600元,比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x,则关于x的方程为()A.(1+x)2=2000B.2000(1+x)2=3600C.(3600﹣2000)(1+x)=3600D.(3600﹣2000)(1+x)2=3600【解答】解:依题意得(3600﹣2000)(1+x)(1+x)=3600,即(3600﹣2000)(1+x)2=3600.故选:D.二、填空题:(每题3分,共24分)13.(3分)使在实数范围内有意义的x应满足的条件是x≥1.【解答】解:∵有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.14.(3分)方程方程x2=x的解是x1=0,x2=1;2﹣的倒数是2+;分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2=x,移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.2﹣的倒数是:==2+.x2﹣9=(x+3)(x﹣3).故答案为:x1=0,x2=1;2+;(x+3)(x﹣3).15.(3分)若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.【解答】解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.16.(3分)如图,将边长为6的正方形ABCD折叠,使点D落在AB边的中点E 处,折痕为FH,点C落在点Q处,EQ与BC交于点G,则△EBG的周长是12cm.【解答】解:由翻折的性质得,DF=EF,设EF=x,则AF=6﹣x,∵点E是AB的中点,∴AE=BE=×6=3,在Rt△AEF中,AE2+AF2=EF2,即32+(6﹣x)2=x2,解得x=,∴AF=6﹣=,∵∠FEG=∠D=90°,∴∠AEF+∠BEG=90°,∵∠AEF+∠AFE=90°,∴∠AFE=∠BEG,又∵∠A=∠B=90°,∴△AEF∽△BGE,∴==,即==,解得BG=4,EG=5,∴△EBG的周长=3+4+5=12.故答案为:12.17.(3分)一个布袋中装有3个红球和4个白球,这些除颜色外其它都相同.从袋子中随机摸出一个球,这个球是白球的概率为.【解答】解:∵布袋中装有3个红球和4个白球,∴从袋子中随机摸出一个球,这个球是白球的概率为:=.故答案为:.18.(3分)如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是6米.【解答】解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴=,∵CD=1m,BC=1.8m,DE=1.5m,∴=,解得:x=6.所以甲的影长是6米.19.(3分)如图,已知△ABC内接于⊙O,∠C=45°,AB=4,则⊙O的半径为.【解答】解:连接OA,OB∵∠C=45°∴∠AOB=90°又∵OA=OB,AB=4∴OA=2.20.(3分)已知⊙O1和⊙O2的半径分别为3cm和5cm,两圆的圆心距d是方程x2﹣12x+36=0的根,则两圆的位置关系是相交.【解答】解:∵x2﹣12x+36=0,∴(x﹣6)2=0,解得:x1=x2=6,∵两圆的圆心距d是方程x2﹣12x+36=0的根,∴两圆的圆心距d=6,∵⊙O1和⊙O2的半径分别为3cm和5cm,∴半径和为8cm,半径差为2cm,∴两圆的位置关系是相交.故答案为:相交.三、计算题:(20分)21.(10分)求下列各式的值:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°(2)﹣•+2sin45°.【解答】解:(1)|﹣2|+20090﹣(﹣)﹣1+3tan30°=2﹣+1+3+3×=2﹣+1+3+=6;(2)﹣•+2sin45°=2﹣3+2×=2﹣3+=0.22.(10分)解下列方程:(1)x2+4x+1=0(2)=﹣1.【解答】解:(1)x2+4x+4=3,(x+2)2=3,x=﹣2±,x1=﹣2+,x2=﹣2﹣;(2)方程两边同时乘(x﹣2)(x+3),6(x+3)=x(x﹣2)﹣(x﹣2)(x+3)x=﹣,当x=﹣时,(x﹣2)(x+3)≠0,∴原方程的解为:x=﹣.四、解答题:(40分)23.(7分)某药品经过两次提价,每瓶零售价由100元提到144元.已知两次提价的百分率相同,求两次提价的百分率.【解答】解:设该药品平均每次提价的百分率为x,根据题意得:100(1+x)2=144,解得:x1=0.2,x2=﹣2.2,经检验x2=﹣2.2不符合题意,∴x=0.2=20%,答:两次提价的百分率20%.24.(8分)如图,李明同学在东西方向的滨海路A处,测得海中灯塔P在北偏东60°方向上,他向东走400米至B处,测得灯塔P在北偏东30°方向上,求灯塔P到滨海路的距离.(结果保留根号)【解答】解:过点P作PC⊥AB,垂足为C.(1分)由题意,得∠P AB=30°,∠PBC=60°.∵∠PBC是△APB的一个外角,∴∠APB=∠PBC﹣∠P AB=30°.(3分)∴∠P AB=∠APB,(4分)故AB=PB=400.(6分)在Rt△PBC中,∠PCB=90°,∠PBC=60°,PB=400,∴PC=PB•sin60°=400×=米.(10分)25.(8分)如图,点E是矩形ABCD中CD边上一点,△BCE沿BE折叠为△BFE,点F落在AD上.(1)求证:△ABF∽△DFE;(2)若sin∠DFE=,求tan∠EBC的值.【解答】(1)证明:∵四边形ABCD是矩形∴∠A=∠D=∠C=90°,∵△BCE沿BE折叠为△BFE,∴∠BFE=∠C=90°,∴∠AFB+∠DFE=180°﹣∠BFE=90°,又∵∠AFB+∠ABF=90°,∴∠ABF=∠DFE,∴△ABF∽△DFE,(2)解:在Rt△DEF中,sin∠DFE==,∴设DE=a,EF=3a,DF==2a,∵△BCE沿BE折叠为△BFE,∴CE=EF=3a,CD=DE+CE=4a,AB=4a,∠EBC=∠EBF,又由(1)△ABF∽△DFE,∴===,∴tan∠EBF==,tan∠EBC=tan∠EBF=.26.(8分)在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作⊙O交AC于点E,连结DE并延长,与BC的延长线交于点F.且BD=BF.(1)求证:AC与⊙O相切.(2)若BC=6,AB=12,求⊙O的面积.【解答】证明:(1)连接OE,∵OD=OE,∴∠ODE=∠OED,∵BD=BF,∴∠ODE=∠F,∴∠OED=∠F,∴OE∥BF,∴∠AEO=∠ACB=90°,∴AC与⊙O相切;(2)解:由(1)知∠AEO=∠ACB,又∠A=∠A,∴△AOE∽△ABC,∴,设⊙O的半径为r,则,解得:r=4,∴⊙O的面积π×42=16π.27.(9分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A (1,4)和点B(m,﹣2),(1)求这两个函数的关系式;(2)观察图象,写出使得y1>y2成立的自变量x的取值范围;(3)如果点C与点A关于x轴对称,求△ABC的面积.【解答】解:(1)∵函数y1=的图象过点A(1,4),即4=,∴k=4,即y1=,又∵点B(m,﹣2)在y1=上,∴m=﹣2,∴B(﹣2,﹣2),又∵一次函数y2=ax+b过A、B两点,即,解之得.∴y2=2x+2.综上可得y1=,y2=2x+2.(2)要使y1>y2,即函数y1的图象总在函数y2的图象上方,如图所示:当x<﹣2 或0<x<1时y1>y2.(3)由图形及题意可得:AC=8,BD=3,=AC×BD=×8×3=12.∴△ABC的面积S△ABC。
甘肃省武威市2015年中考数学试题一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.64的立方根是()A.4B.±4C.8D.±82.中国航空母舰“辽宁号”的满载排水量为67500吨,将数67500用科学记数法可表示为()A.0.675³105B.6.75³104C.67.5³103D.675³1023.若∠A=34°,则∠A的补角为()A.56°B.146°C. 156°D.166°4.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C. (-a2)3=-a6D.3a2²2a3=6a65.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()6.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机抽样,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y7.近年来某县加大了对教育经费的投入,2013年投入2500万元,2015年将投入3600万元,设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3600B.2500(1+x)2=3600C.2500(1+x%)2=3600D.2500(1+x)+2500(1+x)2=36008.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°9.如图,D、E分别是△ABC的边AB、BC上的点,且DE//AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为()A.31 B.41 C. 91 D.16110.如图,矩形ABCD 中,AB=3,BC=5,点P 是BC 边上的一个动点(点P 与点B ,C 都不重合),现将△PCD 沿直线PD 折叠,使点C 落到点F 处;过点P 作∠BPF 的角平分线交AB 于点E.设BP=x ,BE=y,则下列图象中,能表示y 与x 的函数关系的图象大致是( )二、填空题:本大题共8小题,每小题3分,共24分.11.分解因式:x 3y-2x 2y+xy= 12.分式方程352+=x x 的解是 13.在函数y=xx 1+中,自变量x 的取值范围是 14.定义新运算:对于任意实数a,b 都有:a ⊕b=a (a-b)+1,其中等式右边是通常的加法、减法及乘法运算,如2⊕5=2³(2-5)+1=2³(-3)+1=-5,那么不等式3⊕x<13的解集是 15.已知α、β均为锐角,且满足|sin α-21|+()21tan -β=0,则α+β=16.关于x 的方程kx 2-4x-32=0有实数根,则k 的取值范围是 17.如图,半圆O 的直径AE=4,点B ,C ,D 均在半圆上,若AB=BC ,CD=DE ,连接OB ,OD ,则图中阴影部分的面积为18.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第二个三角形数,6是第三个三角形数,…,依此类推,那么第9个三角形数是 ,2016是第 个三角形数.三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤.19.(4分)计算:(π-5)0+4+(-1)2015-3tan60°.20.(4分)先化简,再求值:⎪⎭⎫⎝⎛+-÷-+-13111222x x x x ,其中x=0.21.(6分)如图,已知在△ABC 中,∠A=90°,(1)请用圆规和直尺作出⊙P,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.(6分)如图①所示,将直尺摆放在三角板ABC上,使直尺与三角板的边分别交于点D,E,F,G,量得∠CGD=42°。
(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的顶点B,交AC边于点H,如图②所示.点H,B在直尺上的读数分别为4,13.4,求BC的长(结果保留两位小数).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)23.(6分)有三张卡片(形状、大小、颜色、质地都相同),正面分别写上整式x2+1,-x2-2,3,将这三张卡片背面向上洗匀,从中任意抽取一张卡片,记卡片上的整式为A,再从剩下的卡片中任意抽取一张,记卡片上的整式为B ,于是得到代数式BA.(1)请用画树状图或列表的方法,写出代数式BA所有可能的结果;(2)求代数式BA恰好是分式的概率.四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.24.(7分)某班同学响应“阳光体育运动”号召,利用课外时间积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行训练,训练后进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出了如下统计图表:请你根据图表中的信息回答下列问题:(1)训练后篮球定时定点投篮人均进球数为 个;(2)选择长跑训练的人数占全班人数的百分比是 ,该班共有学生 人;(3)根据测试数据,参加篮球定时定点投篮的学生训练后比训练前人均进球数增加了25%,求参加训练之前的人均进球类数.25.(7分)如图,平行四边形ABCD 中,AB=3cm,BC=5cm,∠B=60°,G 是CD 的中点,E 是边AD 上的动点,EG 的延长线与BC 的延长线交于点F ,连接CE ,DF. (1)求证:四边形CEDF 是平行四边形;(2)①当AE= cm 时,四边形CEDF 是矩形; ②当AE= cm 时,四边形CEDF 是菱形; (直接写出答案,不需要说明理由)26.(8分)如图,在平面直角坐标系中,菱形ABCD 的顶点C 与原点O 重合,点B 在y 轴的正半轴上,点A 在函数y=xk(k>0,x>0)的图象上,点D 的坐标为(4,3).(1)求k 的值;(2)若将菱形ABCD 沿x 轴正方向平移,当菱形的顶点D 落在函数y=xk(k>0,x>0)的图象上时,求菱形ABCD 沿x 轴正方向平移的距离.27.(8分)已知△ABC 内接于⊙O ,过点A 作直线EF.(1)如图①所示,若AB 为⊙O 的直径,要使EF 成为⊙O 的切线,还需要添加的一个条件是(要求写出两种情况): 或者 .(2)如图②所示,如果AB 是不过圆心O 的弦,且∠CAE=∠B ,那么EF 是⊙O 的切线吗?试证明你的判断.28.(10分)如图,在平面直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x 轴交于点M.(1)求此抛物线的解析式和对称轴;(2)在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.武威市2015年初中毕业、高中招生考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共8小题,每小题3分,共24分. 11.2(1)xy x -12.x =2 13.x ≥-1且0x ≠ 14.x >-115.75° 16.k ≥6- 17.π 18.45,63 (第1空1分,第2空2分)三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明,证明过程或演算步骤. 19.(4分)解:原式=12133+--⨯ 3分=231-=- 4分20.(4分)解:原式=2(1)13()(1)(1)11x x x x x x -+-+-++÷=2(1)1(1)(1)2x x x x x -+⋅+-- 2分=12x x --3分 当10,.2x ==时原式 4分21.(6分)解:(1)如图所示,则⊙P 为所求作的圆.(注:作图2分,答语1分) 3分 (2)∵ ∠B =60°,BP 平分∠ABC ,∴ ∠ABP =30°, 4分 ∵ tan ∠ABP =APAB , ∴ AP =3,5分题号 1 2 3 4 5 6 7 8 9 10 答案ABBCADBDDCABAB ∴ S ⊙P =3π.6分22.(6分)解:(1)∵ ∠CGD =42°,∠C =90°, ∴ ∠CDG =90°- 42°=48°, ∵ DG ∥EF , ∴CEF CDG ∠=∠=48°; 3分(2)∵ 点H ,B 的读数分别为4,13.4, ∴ 13.449.4HB =-=, 4分∴ cos429.40.74 6.96(m)BC HB ︒=≈⨯≈5分答:BC 的长为6.96m .6分23.(6分)解:(1)画树状图: 列表:第一次第二次x 2+1 - x 2-23x 2+12221x x --+ 231x + - x 2-2 2212x x +--232x --3213x + 223x --4分(2)代数式A B 所有可能的结果共有6种,其中代数式AB是分式的有4种:2212x x +--,2221x x --+,231x +,232x --, 所以P ( 是分式) 4263==. 6分 四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明,证明过程或演算步骤.(注:解法合理、答案正确均可得分)开 始2212x x +--213x + 2221x x --+ 223x -- 231x + 232x -- x 2+1 - x 2-23- x 2-23 x 2+13x 2+1- x 2-2第一次第二次A B24.(7分)解:(1) 5 2分(2)10%, 40 (每空1分) 4分(3)设参加训练之前的人均进球数为x 个,则x (1+25%)=5,解得 x =4, 6分 即参加训练之前的人均进球数是4个. 7分25.(7分)(1)证明:∵ 四边形ABCD 是平行四边形,∴ CF ∥ED ,∴ ∠FCG =∠EDG ,∵ G 是CD 的中点,∴ CG =DG ,在△FCG 和△EDG 中,FCG EDG CG DGCGF DGE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ △FCG ≌△EDG (ASA ) 2分 ∴ FG =EG ,∵ CG =DG ,∴ 四边形CEDF 是平行四边形; 3分(2)① 解:当AE =3.5cm 时,四边形CEDF 是矩形. 5分 ② 当AE =2cm 时,四边形CEDF 是菱形. 7分26.(8分)解:(1)过点D 作x 轴的垂线,垂足为F ,∵ 点D 的坐标为(4,3), ∴ OF =4,D F =3,∴ OD =5, ∴ AD =5, 2分 ∴ 点A 坐标为(4,8), 3分 ∴ k =xy =4×8=32,∴ k =32; 4分(2)将菱形ABCD 沿x 轴正方向平移,使得点D 落在函数32y x=(x >0)的图象D '点处,过点D '做x 轴的垂线,垂足为F '.∵ DF =3, ∴ 3,D F ''=∴ 点D '的纵坐标为3, 5分 ∵ 点D '在32y x=的图象上∴ 3 =32x ,解得x =323, 6分 即323220,4,333F OF F '=∴'=-= ∴ 菱形ABCD 平移的距离为203. 8分 27.(8分)解:(1)∠BAE =90° 2分 ∠CAE =∠B 4分(2)EF 是⊙O 的切线. 5分 证明:作直径AM ,连接CM ,则 ∠ACM =90°,∠M =∠B , 6分∴ ∠M +∠CAM =∠B +∠CAM =90°,∵ ∠CAE =∠B ,∴ ∠CAM +∠CAE =90°, 7分∴ AE ⊥AM ,∵ AM 为直径,∴ EF 是⊙O 的切线. 8分28.(10分)解:(1)根据已知条件可设抛物线的解析式为(1)(5)y a x x =--, 把点A (0,4)代入上式,解得 45a =, 1分 ∴ 224424416(1)(5)4(3)55555y x x x x x =--=-+=-- 2分 ∴ 抛物线的对称轴是 3x =; 3分 (2)存在;P 点坐标为(3,85). 如图,连接AC 交对称轴于点P ,连接BP,AB ,∵ 点B 与点C 关于对称轴对称,∴PB =PC ,∴ AB +AP +PB =AB +AP +PC =AB +AC ,∴ 此时△PAB 的周长最小. 5分设直线AC 的解析式为 y k x b =+,把A (0,4),C (5,0)代入y kx b =+,得 450b k b =⎧⎨+=⎩, 解得 454k b ⎧=-⎪⎨⎪=⎩, E C A F O MB∴ 445y x =-+, ∵ 点P 的横坐标为3, ∴ 483455y =-⨯+=, ∴ P (3,85). 6分 (3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如图,设N 点的横坐标为t ,此时点N (2424455t t t -+,)(0<t <5), 7分 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作 AD ⊥NG ,垂足为D ,由(2)可知直线AC 的解析式为 445y x =-+, 把x t =代入445y x =-+得 445y t =-+, 则G (t ,445t -+), 此时,NG =22442444(4)45555t t t t t -+--+=-+ 8分 ∵ AD +CF =OC =5,∴ S △NAC =S △ANG +S △CGN =12NG ﹒AD +12NG ﹒CF =12NG ﹒OC =22214525(4)52102()2522t t t t t ⨯-+⨯=-+=--+ ∴ 当52t =时,△NAC 面积的最大值为252, 9分 由 52t =,得 24244355y t t =-+=-, ∴ N (52,3-) 10分。