西北工业大学 计算方法课件 第五章 曲线拟合的最小二乘法 西工大 nwpu
- 格式:ppt
- 大小:621.50 KB
- 文档页数:21
最小二乘法的曲线拟合曲线拟合是在给定一组离散数据的情况下,通过一个函数来逼近这些数据的过程。
最小二乘法是一种常用的拟合方法,它通过最小化实际观测值与拟合值之间的误差平方和,来确定最佳的曲线拟合。
在进行最小二乘法的曲线拟合之前,我们首先需要明确拟合的目标函数形式。
根据实际问题的不同,可以选择线性拟合函数、多项式拟合函数或者其他非线性拟合函数。
然后,我们通过求解最小二乘问题的优化方程,来得到拟合函数的系数。
最小二乘法的核心思想是将拟合问题转化为一个优化问题。
我们需要定义一个损失函数,用来衡量观测值与拟合值之间的差异。
常见的损失函数有平方损失函数、绝对损失函数等。
在最小二乘法中,我们选择平方损失函数,因为它能够更好地反映误差的大小。
具体来说,我们假设待拟合的数据点为{(x1,y1),(x2,y2),...,(xn,yn)},拟合函数为f(x)。
则拟合问题可表示为以下优化方程:min Σ(yi-f(xi))^2通过求解优化方程,即求解拟合函数的系数,我们可以得到最佳的曲线拟合。
最小二乘法的优势在于它能够考虑所有观测值的误差,并且具有较好的稳定性和可靠性。
在实际应用中,最小二乘法的曲线拟合被广泛应用于各个领域。
例如,在物理学中,可以利用最小二乘法来分析实验数据,拟合出与实际曲线相符合的函数。
在经济学中,最小二乘法可以用来估计经济模型中的参数。
在工程领域,最小二乘法可以用于信号处理、图像处理等方面。
总而言之,最小二乘法是一种常用的曲线拟合方法,通过最小化观测值与拟合值之间的误差平方和,来确定最佳的拟合函数。
它具有简单、稳定、可靠的特点,在各个领域都有广泛的应用。
实验三函数逼近与曲线拟合、问题的提出:函数逼近是指“对函数类A中给定的函数f(x),记作f(x)・A,要求在另一类简的便于计算的函数类B中求函数p(x)・A,使p(x)与f (x)的误差在某中度量意义下最小”函数类A通常是区间[a,b]上的连续函数,记作C[a,b],称为连续函数空间,而函数类B通常为n次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。
主要内容有:(1)最佳一致逼近多项式(2)最佳平方逼近多项式(3 )曲线拟合的最小二乘法实验要求:1、构造正交多项式;2、构造最佳一致逼近;3、构造最佳平方逼近多项式;4、构造最小二乘法进行曲线拟合;5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差;6、探讨新的方法比较结果。
三、实验目的和意义:1、学习并掌握正交多项式的MATLAB编程;2、学习并掌握最佳一致逼近的MATLAB实验及精度比较;3、学习并掌握最佳平方逼近多项式的MATLAB实验及精度比较;4、掌握曲线拟合的最小二乘法;5、最小二乘法也可用于求解超定线形代数方程组;6、探索拟合函数的选择与拟合精度之间的关系;四、算法步骤:1、正交多项式序列的生成{ \ ( X)}o •:设\ ( X)是[a,b]上首项系数数,如果多项式序列{ \ ( X)}o:满足关系式则称多项式序列{ \(X)}o:为在[a,b]上带权的n次正交多项式。
1 )输入函数「(x)和数据a,b;2) 分别求(x n, j(x)),C j (x), j(x))的内积;. . n 2 (X n,®j(X)), ,3) 按公式①;:o(X)=1, -(X) =X n j j(X)计算;:n(X),生成正交多项式;j鼻Wj(x),W j(x))流程图:开始a n=0的n次多项式,r(x)为[a,b]上权函;Q j秋A 0, jb(j, k)」(x) j(x) k(x)d(X> =a「(x)正交,称;:n (x)为[a,b]上带权「(x)cz>结束2、最佳一致逼近多项式f(x) C[a,b],若存在 R*(x) H n 使得.:(f,P ;^E n ,则称 P ; (x)是 f (x)在[a,b]上的最佳一致逼近多项式或最小偏差逼近多项式,简称最佳逼近多项式。
曲线拟合--最小二乘法1:已知平面上四个点:(0,1)、(1,2.1)、(2,2.9)和(3,3.2),求出一条直线拟合这四个点,使得偏差平方和变为极小。
解:设直线方程为:0 1 0 01 2.1 1 2.12 2.9 4 5.83 3.2 9 9.6Sum=6 Sum=9.2 Sum=14 Sum=17.5 代入正规方程:,编程求解上方程组:>> eq1='14*A+6*B=17.5';>>eq2='6*A+4*B=9.2';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A)0.74>> disp(B)1.19所以直线方程为:2:已知数据如下表所示1 2 4 610 5 2 1试求(1)用抛物线拟合这些数据使得偏差平方和最小;(2)用型如的函数来拟合这些数据使得偏差平方和最小。
(3)比较这两种拟合结果。
解:(1)设抛物线方程为:1 10 1 1 1 10 102 5 4 8 16 10 20 4 2 16 64 256 8 326 1 36 216 1296 6 36 Sum=13 Sum=18 Sum=57 Sum=289 Sum=1569 Sum=34 Sum=98代入正规方程:得到系数A,B,C的方程组:编程求解上方程组:>>eq1='1569*A+289*B+57*C=98';>>eq2='289*A+57*B+13*C=34';>>eq3='57*A+13*B+4*C=18';>> [A,B,C]=solve(eq1,eq2,eq3,'A,B,C');>> disp(A); disp(B); disp(C)102/199-1048/1992848/199>> A=102/199; disp(A) 0.5126>> B=-1048/199; disp(B) -5.2663>> C=2848/199; disp(C) 14.3116所以得到抛物线的方程为:(2)设函数1 10 1 1 102 5 1/2 1/4 5/24 2 1/4 1/16 1/26 1 1/6 1/36 1/6Sum=13 Sum=18 Sum=23/12 Sum=193/144 Sum=79/6 得到系数A,B的方程组:编程求解上方程组:>> eq1='4*A+23*B/12=18';>>eq2='23*A/12+193*B/144=79/6';>> [A,B]=solve(eq1,eq2,'A,B');>> disp(A); disp(B)-160/243872/81>> A=-160/243; disp(A)-0.6584>> B=827/81; disp(B)10.2099所以得到的函数为:(3)比较(1)和(2)两种方法拟合的方程:编程画出抛物线的图像为:>> x=-2:0.1:12;>> y=0.5126*x.^2-5.2663*x+14.3116;plot(x,y);grid on(a)再编程画出的图像为:>> x=-2:0.1:12;>> y=-0.6584+10.2099*(x.^(-1));>> plot(x,y);grid on>> x=-1:0.01:1;>> y=-0.6584+10.2099*(x.^(-1));plot(x,y);grid on(b)比较两图像可知,图像(b)在点(0,0)处不连续。
最小二乘法曲线拟合算法
最小二乘法是一种常见的曲线拟合算法,其原理是通过计算样本点与拟合曲线的误差平方和最小化,得到最佳的曲线拟合结果。
以下是最小二乘法曲线拟合算法的步骤:
步骤一:选择合适的拟合函数。
通常情况下,拟合函数的选择取决于数据集的特性和需要得到的拟合效果。
例如,对于线性拟合,拟合函数可采用一次多项式函数y=kx+b;对于非线性拟合,拟合函数可能需要采用高次多项式函数或指数函数等。
步骤二:确定误差函数。
误差函数的目的是衡量样本点与拟合曲线的偏差程度。
最常用的误差函数是均方误差,即将每个样本点的实际值与相应拟合函数的输出值之间的平方误差求和,得到样本点的一般均方误差。
公式为:E = Σ(yi-f(xi))^2。
步骤三:最小化误差函数。
最小二乘法的核心就是通过求解误差函数的最小值来得到最佳的拟合曲线。
最小化误差函数可以采用梯度下降法或牛顿法等优化算法进行求解。
步骤四:得到最佳的拟合曲线。
在得到最小化误差函数的解后,即可获得最佳的拟合曲线,该曲线可用于对数据集进行预测、分类或回归等任务。
步骤五:评估拟合效果。
为了验证最佳拟合曲线的精度和泛化能力,需要将新的数据样本输入到该曲线中进行预测,并通过各种评估指标(例如均方根误差、相关系数等)来评估拟合效果。
最小二乘法曲线拟合算法是数据分析领域中的重要算法之一,可用于各种领域中的数据拟合和模型预测任务,例如气象科学、金融投资、信号处理等。
在应用过程中,需要根据实际情况灵活选择拟合函数和误差函数,同时对拟合结果进行合理的评估和优化,以获得更好的预测效果。