第四章--图形的初步认识知识点及评价测试题(含答案)
- 格式:doc
- 大小:197.65 KB
- 文档页数:9
第四章图形的初步认识章末测试〔一〕一.选择题〔共10小题,每题3分〕1.下列立体图形中,是多面体的是〔〕A.B.C D.2.下面的几何体中,主视图为三角形的是〔〕A.B.C.D.3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是〔〕A.B.C.D.4.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形〔〕A.B.C.D.5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是〔〕A.B.C.D.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为〔〕A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短7.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于〔〕A.11cm B.5cm C.11cm或5cm D. 8cm或11cm8.用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″D. 91°3′4″9.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为〔〕A.30°B.45° C.50° D. 60°10.已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是〔〕A.56°34′B.47°34′C.136°34′D. 46°34′二.填空题〔共7小题,每题3分〕11.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是_________.12.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是_________.13.现在是9点21分,钟面上的时针与分针的夹角是_________.14.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.其中,可以用“两点之间,线段最短〞来解释的现象是_________〔填序号〕.15.班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条还任意转动;钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为_________.16.如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有_________种.17.如图是某几何体的三视图与相关数据,则该几何体的侧面积是_________三.解答题〔共9小题〕18.〔6分〕按要求作图:平面上有A,B,C三点,如图所示,画直线AC,射线BC,线段AB,在射线BC上取点D,使BD=AB.19.〔6分〕已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.〔如图所示〕20〔6分〕.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC的长.21.〔7分〕如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.〔1〕求线段MN的长度;〔2〕根据〔1〕的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.22.〔8分〕计算:〔1〕13°29′+78°37″;〔2〕61°39′﹣22°5′32″;〔3〕23°53′×3;〔4〕107°43′÷5.23.〔9分〕已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,〔1〕如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;〔2〕当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.24.〔9分〕如图,∠AOC:∠COD:∠BOD=2:3:4,OE、OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF的度数.25.〔9分〕如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB 与∠COM互补,求∠BON的度数.26.〔9分〕一个角的余角的补角是这个余角的倍,那么这个角的余角是多少度?第四章图形的初步认识章末测试〔一〕参考答案与试题解析一.选择题〔共10小题〕1.下列立体图形中,是多面体的是〔〕A.B.C.D.考点:认识立体图形.分析:多面体指四个或四个以上多边形所围成的立体图形.解答:解:A、只有一个面是曲面;B、有6个面故是多面体;C、有3个面,一个曲面两个平面;D、有2个面,一个曲面,一个平面.故选B.点评:本题考查的是多面体的定义,关键点在于:多面体指四个或四个以上多边形所围成的立体图形.2.下面的几何体中,主视图为三角形的是〔〕A.B.C.D.考点:简单几何体的三视图.专题:常规题型.分析:主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图与可选出答案.解答:解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握主视图所看的位置.3.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是〔〕A.B.C.D.考点:展开图折叠成几何体.分析:由平面图形的折叠与正方体的展开图解题.解答:解:A、折叠后有个侧面重叠,而且上边没有面,不能折成正方体;B、折叠后缺少上底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一下面,所以也不能折叠成一个正方体.故选C.点评:本题考查了展开图折叠成几何体,注意正方体的展开图中每个面都有对面.4.如图,把左边的图形折叠起来,它会变为右面的哪幅立体图形〔〕A.B.C.D.考点:展开图折叠成几何体.分析:根据相邻面、对面的关系,可得答案.解答:解:圆面的临面是长方形,长方形不指向圆,故选;B.点评:本题考查了展开图折成几何体,相邻面间的关系是解题关键.5.小明用如下左图所示的胶漆滚从左到右滚涂墙壁,下列平面图形中符合胶漆滚涂出的图案是〔〕A.B.C. D.考点:认识平面图形.分析:本题可由圆柱体的基本性质入手,结合图中图形进行分析即可.解答:解:由胶漆滚得图形可得,最左边中间为一小黑正方形,胶漆滚从左到右,则最先留下印记的即为中间有一小黑正方形的图形.故选A.点评:本题考查平面图形的基本知识,看清题中图形即可.6.如图,从A地到B地有多条道路,一般地,人们会走中间的直路,而不会走其他的曲折的路,这是因为〔〕A.两点之间线段最短B.两直线相交只有一个交点C.两点确定一条直线D.垂线段最短考点:线段的性质:两点之间线段最短.专题:应用题.分析:此题为数学知识的应用,由题意从A地到B地有多条道路,肯定要尽量选择两地之间最短的路程,就用到两点间线段最短定理.解答:解:图中A和B处在同一条直线上,根据两点之间线段最短,知其路程最短.故选A.点评:此题为数学知识的应用,考查知识点两点之间线段最短.7.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于〔〕A.11cm B.5cm C.11cm或5cm D.8cm或11cm考点:比较线段的长短.专题:分类讨论.分析:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解答:解:由于C点的位置不确定,故要分两种情况讨论:〔1〕当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;〔2〕当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.点评:本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.8.用度、分、秒表示91.34°为〔〕A.91°20′24″B.91°34′C.91°20′4″D.91°3′4″考点:度分秒的换算.分析:根据度分秒的进率,可得答案.解答:解:91.34°=91°+0.34×60′=91°20′+0.4×60″=91°20′24″,故选A.点评:本题考查了度分秒的换算,度化成分乘以60,分化成秒乘以60.9.如图,已知∠AOC=∠BOD=90°,∠AOD=150°,则∠BOC的度数为〔〕A.30°B.45°C.50°D.60°考点:角的计算.专题:计算题.分析:由∠AOC=∠BOD=90°,∠AOD=150°,可求出∠BOC的度数,再根据角与角之间的关系求解.解答:解:∵∠AOC=∠BOD=90°,∠AOD=150°,∴∠BOC=∠AOC+∠BOD﹣∠AOD=180°﹣150°=30°,故选:A.点评:此题考查的知识点是角的计算,注意此题的解题技巧:两个直角相加和∠BOC相比,多加了∠BOC 一次.10.已知∠α与∠β互余,若∠α=43°26′,则∠β的度数是〔〕A.56°34′B.47°34′C.136°34′D.46°34′考点:余角和补角.专题:计算题.分析:若两个角的和为90°,则这两个角互余.解答:解:∠α与∠β互余,若∠α=43°26′,则∠β的度数是90°﹣∠α=90°﹣43°26′=46°34′.故选D.点评:此题属于基础题,较简单,主要记住互为余角的两个角的和为90度.二.填空题〔共7小题〕11.如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.考点:余角和补角.分析:因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD始终相等的角是∠BOC.解答:解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.点评:本题主要考查了余角和补角.用到同角的余角相等.12.如图直线AB、CD相交于点E,EF是∠BED的角平分线,已知∠DEF=70°,则∠AED的度数是40°.考点:角平分线的定义.分析:根据角平分线的定义求出∠DEB的度数,然后根据平角等于180°列式进行计算即可求解.解答:解:∵EF是∠BED的角平分线,∠DEF=70°,∴∠DEB=2∠DEF=2×70°=140°,∴∠AED=180°﹣∠DEB=180°﹣140°=40°.故答案为:40°.点评:本题考查了角平分线的定义,平角等于180°,是基础题,需熟练掌握.13.现在是9点21分,钟面上的时针与分针的夹角是154.5°.考点:钟面角.分析:根据钟表上每2个数字之间相隔30度和时针1分钟走0.5度可得夹角度数.解答:解:时针超过21分所走的度数为21×0.5=10.5°,分针每分钟走6°,分针与9点之间的夹角为:30°×5﹣6°=144°,故此时时钟面上的时针与分针的夹角是144°+10.5°=154.5°.故答案为:154.5°.点评:此题考查了钟面角的计算;用到的知识点为:钟面上每2个数字之间相隔30度;时针1分钟走0.5度,分针每分钟走6°.14.下列三个日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩.其中,可以用“两点之间,线段最短〞来解释的现象是②〔填序号〕.考点:线段的性质:两点之间线段最短.分析:根据线段的性质、垂线的性质、直线的性质分别进行分析.解答:解:①用两根钉子就可以把一根木条固定在墙上,根据两点确定一条直线;②把弯曲的公路改直,就能够缩短路程,根据两点之间线段最短;③体育课上,老师测量某个同学的跳远成绩,根据垂线段最短;故答案为:②.点评:此题主要考查了线段的性质,关键是掌握两点之间,线段最短.15.班长小明在墙上钉木条挂报夹,钉一颗钉子时,木条还任意转动;钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为两点确定一条直线..考点:直线的性质:两点确定一条直线.分析:两个钉子代表两个点,木条代表直线,直接根据直线公理填空即可.解答:解:钉两颗钉子时,木条再也不动了.用数学知识解释这种现象为两点确定一条直线.故应填:两点确定一条直线.点评:理解“两点确定一条直线〞这一直线公理是解决此类实际问题的关键.16.如图,从A地到B地有3条路线可供选择,从B地到C地有2条路线可供选择,则从A地到C地可供选择的方案有6种.考点:直线、射线、线段.专题:方案型.分析:根据题意,结合图形求解即可.解答:解:从A地上面一条路线到C地有2条路线,从A地中间一条路线到C地有2条路线,从A地下面一条路线到C地有2条路线.∴从A地到C地可供选择的方案有2×3=6种.故答案为6.点评:此题在线段的基础上,着重培养学生的观察能力,应注重分类讨论的方法计数,做到不遗漏,不重复.17.如图是某几何体的三视图与相关数据,则该几何体的侧面积是ac考点:由三视图判断几何体;几何体的表面积.分析:根据三视图易得此几何体为圆锥,再根据圆锥侧面积公式=可计算出结果.解答:解:由题意得底面直径为a,母线长为c,∴几何体的侧面积为acπ,故答案为:.点评:此题主要考查了由三视图判断几何体,以与圆锥的侧面积公式的应用,关键是找到等量关系里相应的量.三.解答题〔共9小题〕18.按要求作图:平面上有A,B,C三点,如图所示,画直线AC,射线BC,线段AB,在射线BC上取点D,使BD=AB.考点:直线、射线、线段.专题:作图题.分析:直线是向两方无限延伸的,射线是向一方无限延伸的,线段有2个端点,根据三线的性质画出图形即可.解答:解:如图所示:.点评:此题主要考查了直线、射线、线段,关键是掌握三线的性质.19.已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.〔如图所示〕考点:线段的性质:两点之间线段最短.专题:作图题.分析:显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.解答:解:连接两点与直线的交点即为所求作的点P,这样PA+PB最小,理由是两点之间,线段最短.点评:本题考查了求两点之间的距离,线段最短,比较简单.20.如图,A,B,C,依次为直线L上三点,M为AB的中点,N为MC的中点,且AB=6cm,NC=8cm,求BC 的长.考点:比较线段的长短.分析:因为M为AB的中点,N为MC的中点,则可求AM=BM=AB=3cm,BN=MN﹣BM=5cm,故BC=BN+NC可求.解答:解:∵M为AB的中点,∴AM=BM=AB=3cm,∵N为MC的中点,∴MN=NC=8cm.∴BN=MN﹣BM=5cm,∴BC=BN+NC=5+8=13〔cm〕.答:BC长为13cm.点评:此题主要考查了线段的中点,关键是能根据线段的中点写出正确的表达式,从而求出有关的一些线段的长.21.如图所示,点C在线段AB上,线段AC=6厘米,BC=4厘米,点M,N分别是AC,BC的中点.〔1〕求线段MN的长度;〔2〕根据〔1〕的计算过程和结果,设AC+BC=a,其他条件不变,你能猜测出MN的长度吗?请用一句简洁的话表述你发现的规律.考点:比较线段的长短.专题:计算题.分析:点M是AC的中点,点N是BC的中点,则有MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=〔AC+BC〕=AB.解答:解:〔1〕∵AC=6厘米,BC=4厘米,∴AB=AC+BC=10厘米,又∵点M是AC的中点,点N是BC的中点,∴MC=AM=AC,CN=BN=BC,∴MN=MC+CN=AC+BC=〔AC+BC〕=AB=5厘米;〔2〕由〔1〕中已知AB=10厘米,求出MN=5厘米,分析〔1〕的推算过程可知MN=AB,故当AB=a时,MN=a,从而得到发现的规律:线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半.点评:本题通过计算MN的长度,进而推导了“线段上任一点把线段分成的两部分的中点间的距离等于原线段长度的一半〞.22.计算:〔1〕13°29′+78°37″;〔2〕61°39′﹣22°5′32″;〔3〕23°53′×3;〔4〕107°43′÷5.考点:度分秒的换算.分析:类比于小数的四则运算的计算方法计算,注意满60进一即可.解答:解:〔1〕13°29′+78°37″=91°29′37″;〔2〕61°39′﹣22°5′32″=39°33′28″;〔3〕23°53′×3=71°39′;〔4〕107°43′÷5=21°32′36″.点评:此题考查度分秒之间的换算和计算,注意掌握1°=60′,1′=60″这一基本的换算.23.已知∠AOB=α,过点O任作一射线OC,OM平分∠AOC,ON平分∠BOC,〔1〕如图,当OC在∠AOB内部时,试探寻∠MON与α的关系;〔2〕当OC在∠AOB外部时,其它条件不变,上述关系是否成立?画出相应图形,并说明理由.考点:角的计算;角平分线的定义.分析:〔1〕根据角平分线的性质,可得∠NOC与∠BOC的关系,∠COM与∠COA的关系,根据角的和差,可得答案;〔2〕根据角的和差,可得∠AOC的度数,根据角平分线的性质,可得∠COM的度数,∠CON的度数,根据角的和差,可得答案.解答:解:〔1〕∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=,∠COM=∠COA.∵∠CON+∠COM=∠MON,∴∠MON=〔BOC+AOC〕=α;〔2〕如图:,∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=〔∠AOB+∠BOC〕,∠CON=BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC﹣∠CON=〔AOB+∠BOC〕﹣∠BOC=∠AOB=α.点评:本题考查了角的计算,利用了角平分线的性质,角的和差.24.如图,∠AOC:∠COD:∠BOD=2:3:4,OE、OF分别平分∠AOC和∠BOD,OG平分∠EOF,求∠GOF 的度数.考点:角的计算;角平分线的定义.分析:根据补角和为180°和角平分线的性质即可求得∠EOF的大小,即可解题.解答:解:∵∠AOC:∠COD:∠BOD=2:3:4,∠AOC+∠COD+∠BOD=180°,∴∠AOC=40°,∠BOD=80°,∵OE、OF分别平分∠AOC和∠BOD,∴∠AOE=∠COE=20°,∠BOF+∠DOF=40°,∴∠EOF=180°﹣20°﹣40°=120°,∵OG平分∠EOF,∴∠GOF=60°.点评:本题考查了补角和为180°的性质,考查了角平分线平分角的性质,本题中求∠EOF是解题的关键.25.如图,已知∠AOB在∠AOC内部,∠BOC=90°,OM、ON分别是∠AOB,∠AOC的平分线,∠AOB与∠COM 互补,求∠BON的度数.考点:余角和补角.分析:根据补角的性质,可得∠AOB+∠COM=180°,根据角的和差,可得∠AOB+∠BOM=90°,根据角平分线的性质,可得∠BOM=∠AOB,根据解方程,可得∠AOB的度数,根据角的和差,可得答案.解答:解:由∠AOB与∠COM互补,得∠AOB+∠COM=180°.由角的和差,得∠AOB+BOM+∠COB=180°,∠AOB+∠BOM=90°.由OM是∠AOB的平分线,得∠BOM=∠AOB,即∠AOB+∠AOB=90°.解得∠AOB=60°.由角的和差,得∠AOC=∠BOC+∠AOB=90°+60°=150°.由ON平分∠AOC得,∠AON=∠AOC=×150°=75°,由角的和差,得∠BON=∠AON﹣∠AOB=75°﹣60°=15°.点评:本题考查了余角与补角,利用了补角的性质,角的和差,角平分线的性质.26.一个角的余角的补角是这个余角的倍,那么这个角的余角是多少度?考点:余角和补角.分析:根据一个锐角的余角加加90°等于它的补角,可得方程,根据解方程,可得答案.解答:解:设:这个角的余角是x°,由题意得x+90°=x.解得x=135°,答:这个角的余角是135度.点评:本题考查了余角和补角,利用了一个锐角的余角加加90°等于它的补角.。
人教版七年级上册数学图形的初步认识单元测试题(含答案)-第四章:图形的初步认识一、精心选一选1、正确选项为A。
因为直线AB和直线BA在同一直线上,是同一条直线。
2、正确选项为D。
因为图中有四个角,分别为∠A、∠B、∠C、∠D,且∠A和∠D、∠B和∠C互余,共有三对互余角。
3、正确选项为B。
因为只有图中的第二个图形可以沿着虚线折叠成一个棱柱。
4、正确选项为A。
因为通过同一平面内的任意三点,只能画出一条直线。
5、正确选项为C。
因为20.25度比2018分和2015分30秒都小,所以∠A>∠C>∠B。
6、不能折成正方形的是第二个图片。
7、展开后得到的图形如右图所示。
8、正确选项为A。
因为钝角与锐角的差是一个锐角,不可能是钝角。
9、时针和分针的夹角为75度。
10、∠α余角的补角为116度。
11、∠α与∠γ互补。
12、错误选项为C。
因为OC方向是___°。
13、错误选项为D。
因为所有说法都正确。
14、∠AOD - ∠AOC = ∠COD。
15、绕虚线旋转一周得到的几何体是圆柱体。
二、细心填一填1、直线上的两个点可以确定一条线段。
2、一个角的大小与其两边的长短有关。
3、线段只有两个端点。
4、同角或等角的补角相等。
5、两个锐角的和一定小于直角。
6、OA方向是___°,OB方向是北偏西15°,OC方向是南偏东30°,OD方向是东南方向。
7、正方体展开后可以得到六个正方形。
8、一个角的补角是与其相加和为90度的角。
9、时针和分针的夹角为150度。
10、∠α余角的补角为64度。
11、∠α与∠γ互补。
12、选项A中OA方向应为___°。
13、线段上只有有限个点。
14、∠AOD - ∠AOC = ∠COD。
15、圆锥体。
16.将几何体分类:柱体有(1)圆柱、(2)棱柱;锥体有(3)圆锥、(4)棱锥。
17.已知∠1和∠2互补,且∠2+∠3=180°,则∠1=90°,因为两个互补角的度数和为90°。
第四章 图形的初步认识4.1生活中的立体图形球体点:点动成线 线:线动成面 面:面动成体直线:两点确定一条直 平面图形 线段:两点之间线段最 射线:线段向一方无限 2. 立体图形的面是平的面,像这样的立体图形,又称为多面体。
欧拉公式:顶点 +面数-棱数 =2(V+F-E )4.2 画立体图形 三视图:从正面、上面、侧面(左面或右面)三个不同的方向看一个物体,然后描绘所看 到的图即 视图 这样就把一个物体转化为平面图形。
从正面看到的图形称为正视图 从上面看到的图形称为俯视图 从侧面看到的图形称为侧视图4.3 立体图形的表面展开图多面体是由平面图形围成的立体图形,设想沿着多面体的一些棱将他剪开,可以把多面体 的表面展开成一个平面图形。
圆柱的侧面展开 ----- 长方形 圆锥的侧面展开 ----- 扇形4.4 平面图形 在多边形中,三角形是最基本的图形。
每一个多边形都可以分割成 N-2 个三角形( N 是 多边形的边数)4.5 最基本的图形 --- 点和线一1 过两点有且只有一条直线 2 两点之间线段最短1. 基本几何图形立方体的展开图柱体棱柱 圆柱 立体图形 锥体圆锥 棱锥线短延伸就得到一条射3. 把线段向一方无限延伸所形成的图形叫做射线4. 把线段向两方无限延伸所形成的图形叫做直线5. 把一条线段分成两条相等线段的点,叫做这条线段的中点。
4.6 角1. 角是由两条有公共端点的射线组成的图形。
角平分线:从一个角顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线2 定义:角也可以看成是由一条射线绕着它的端点旋转而成的图形。
射线的端点叫做角的顶点。
起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。
一周角=二平角=四直角一周角=360° —平角=180°1° =60' 1' =60〃3 同角或等角的补角相等4 同角或等角的余角相等5 定理三角形两边的和大于第三边6 推论三角形两边的差小于第三边7 三角形内角和定理三角形三个内角的和等于180°8 推论1 直角三角形的两个锐角互余9 推论2 三角形的一个外角等于和它不相邻的两个内角的和10 推论3 三角形的一个外角大于任何一个和它不相邻的内角11.角的大小比较:度量法和叠合法二.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,有这种关系的两个角,互为邻补角1. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角对顶角的性质:对顶角相等4.7 相交线1. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互垂直.它们的交点叫做垂足垂线的性质:⑴过一点有且只有一条直线与已知直线垂直•⑵连接直线外一点与直线上各点的所在线段中,垂线段最短.2. 直线外一点到这条直线的垂线段的长度,叫做—点至U直线的距离线段AB叫做点A到直线BC的垂线段它的长度就是点A到直线BC的距离3. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做同位角:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做内错角:⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_同旁内角4.8 平行线1. 在同一平面内,不相交的两条直线互相平行.同一平面内的两条直线的位置关系只有相交与平行两种.2. 平行公理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都与第三条直线平行,那么这两直线互相平行平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等两直线平行;⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等两直线平行;⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补两直线平行.3. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ 平行.4. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:两直线平行同位角相等•⑵两条平行直线被第三条直线所截,内错角相等•简单说成:两直线平行•内错角相等⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:两直线平行. 同旁内角互补5. 判断一件事情的语句,叫做命题.命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论.如果题设成立,那么结论一定成立.像这样的命题叫做真命题如果题设成立时,不能保证结论一定成立,像这样的命题叫做假命题.定理都是真命题.6. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称平移.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全相同.⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点•连接各组对应点的线段平行且相等熟悉以下各题:如图,BC AC,CB 8cm, AC 6cm, AB 10cm,那么点A到BC的距离是_13.6cm,点B到AC的距离是8cm,点A、B两点的距离是10cm,点C到AB的距离是4.8cm..设a、b、c为平面上三条不同直线,a)若a//b,b//c,则a与c的位置关系是_平行;b)若a b,b c,则a与c的位置关系是平行;c)若a//b,b c,则a与c的位置关系是_垂直.如图,已知AB、CD、EF相交于点O , AB 丄CD , OG 平分/ AOE,/ FOD = 28 °,求/ COE、/ AOE、/ AOG 的度数.OD、OE分别是如图, AOC与BOC是邻补角,OD与OE的位置关系,并说明理由. ODLOE如图,AB// DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+/ E =/ BCE过点C作CF // AB,贝U B __1__ (两直线平行,内错角相等又••• AB / DE , AB // CF,••• DE// CF (平行于同一直线的两条直线平行•••/ E =/ 2 (两直线平行,内错角相等))B+/E=/1+/2即/ B +/ E = / BCE .⑴如图,已知/ 1 = / 2 求证:a / b.⑵直线a//b,求证: 1 2 .⑴•.•/ 1 = / 2 ,又•.•/ 2 = / 3 (对顶角相等),•/ 1 = / 3「. a/ b (同位角相等两直又•••/ 2 = Z 3 (对顶角相等) 1 = Z 2.阅读理解并在括号内填注理由:如图,已知 AB // CD ,/ 1 = Z 2,试说明 EP // FQ . 证明:••• AB // CD ,•••/MEB =Z MFD (两直线平行,同位角相等又•••/ 1 = Z 2,•/ MEB -Z 1 = Z MFD -Z 2,/ MEP = Z MFQ. EP // FQ (同位角相等两直线平行 ) 已知 DB // FG // EC , A 是 FG 上一点,Z ABD = 60°, ⑴Z BAC 的大小;⑵Z PAG 的大小.第五章 相交线与平行线线平行) ⑵t a // b •••/ 1 = Z 3(两直线平行,同位角相等) Q AD BC, FE BCEF //AD 2 3 1 2.如图,已知 ABC , ADEFB ADB 90oQ DG // BA, 3 1BC 于D , E 为AB 上一点,EF BC 于F , DG // BA 交CA 于G.求证 12.Q AD BC, FE BCEFB ADB 90oEF // AD1 2.Q DG // BA, 3已知:如图Z 1 = Z 2,Z C=Z D ,问Z A 与Z F 相等吗?试说明理 由.Z A =Z F. tZ 1 = Z DGF (对顶角相等)又Z 1 = Z 2 DGF=Z 2「.DB/ EC (同位角相等,两直线平行) •••/ DBA=Z C(两直线平行,同位角相等)又tZ C =Z D •••/ DBA=Z D•DF// AC (内错角相等,两直线平行).「Z A =Z F (两直线平行,,求:D E FAE C1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为 ______________ .2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为 _______________ . 对顶角的性质:______3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互___________垂线的性质:⑴过一点 _____________ 一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中, _________________ .4. 直线外一点到这条直线的垂线段的长度,叫做______________________________ .5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做:⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做 ______________ :⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做 ____________________ .6. 在同一平面内,不相交的两条直线互相_______________ .同一平面内的两条直线的位置关系只有_______ 与 ________ 两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线____________ .推论:如果两条直线都与第三条直线平行,那么 ___________________________ .8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:________________________________________ . ⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:____________________________ .⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行•简单说成:9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线 ______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等•简单说成: _________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:•⑶两条平行直线被第三条直线所截,同旁内角互补•简单说成:11. _______________________________ 判断一件事情的语句,叫做 ___ •命题由 和 两部分组成•题设是已知事项,结论是 ________________________ •命题常可以写成 “如果……那么……” 的 形式,这时“如果”后接的部分是 _________ ,“那么”后接的部分是 _________ •如果题设成立,那么结论一定成立 •像这样的命题叫做 ______________ •如果题设成立时,不能 保证结论一定成立,像这样的命题叫做 _______________ •定理都是真命题• 12・把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称 ______ •图形平移的方向不一定是水平的•平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全 _____ ,⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点 •连接各组对应点的线段 ___________________ • 熟悉以下各题:求/ COE 、/ AOE 、/ AOG 的度数.如图, AOC 与 BOC 是邻补角,OD 、OE 分别是 AOC 与 BOC 的平分线,试判断OD 与OE 的位置关系,并说明理由.13. 如图,BC AC, CB 8cm, AC 6cm, AB 10cm,那么点A 到BC 的距离是 ,点B 到AC 的距离是 14. 15. B 两点的距离是,点C 至U AB 的距离是设a 、b 、c 为平面上三条不同直线,a) b) c)若a//b,b//c ,则a 与c 的位置关系是 若a b,b c ,则a 与c 的位置关系是 若a//b , b c ,贝U a 与c 的位置关系是如图,已知 AB 、CD 、EF 相交于点 O , AB 丄CD , OG 平分/AOE ,/ FOD = 28°,16. A、BB17. 如图,AB // DE,试问/ B、/ E、/ BCE有什么关系.解:/ B+Z E =Z BCE过点C作CF // AB,则B _______ (又••• AB// DE,AB // CF,二____________ (「•Z E =Z ____ (•••Z B +Z E = Z 1 + Z 2 即Z B +Z E = Z BCE .18. ⑴如图,已知Z 1 = Z 2 求证:a // b.⑵直线a//b,求证:12 .19•阅读理解并在括号内填注理由:如图,已知AB// CD , Z 1 = Z 2,试说明EP // FQ. 证明:••• AB // CD ,•Z MEB =Z MFD ( )又T Z 1 = Z 2,•Z MEB -Z 1 = Z MFD -Z 2,即Z MEP =Z ________• EP// ____ .(MA------ Ba/20.已知DB // FG // EC, A 是FG 上一点, Z ABD = 60°, Z ACE = 36 ,AP 平分Z BAC ,求:⑴Z BAC的大小;⑵Z FAG的大小.交CA于G.求证1 2.22.已知:如图/ 仁/2,/ C=Z D,问/ A与/ F相等吗?试说明理由.21.如图,已知ABC, AD BC于D, E为AB上一点,EF BC 于F, DG // BA11。
图形认识初步一、选择题1、小华从正面察看以下图所示的两个物体,看到的是()正面 A 、 B 、C、D、2、假如用□表示 1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下边右图由 6 个立方体叠成的几何体,从正前面察看,可画出的平面图形是()3、指出图中几何体截面的形状()4、以下语句正确的选项是 ( )A. 假如 PA=PB,那么 P 是线段 AB的中点B. 作∠ AOB的均分线 CDC. 连结 A、B 两点得直线 ABD. 反向延伸射线 OP(O为端点 )5、假如线段 AB=2cm,BC= 5cm,那么 A、C 两点的距离是()A.3cm B、 7cm C、 3cm或 7cm D、以上答案都不对6、( 2008 浙江省绍兴市, 4 分)如图,量角器外缘边上有A, P, Q 三点,它们所表示的读数分别是1800, 700, 300,则∠ PAQ 的大小为()A .10oB .20o C.30o D .40o7、两个角 , 它们的比是 6:4, 其差为 36° , 则这两个角的关系是( )A. 互余B. 互补C. 既不互余也不互补D. 不确立8、如图,已知直线AB、 CD订交于点 O,OA 均分∠ EOC,∠ EOC=70°,则∠BOD的度数等于()A、30°B、35°C、20°D、 40°9、假如∠α =3∠β ,∠α =2∠θ ,则必有()E D A B OC1123A A 4A. ∠β = 2∠θ ;B. ∠β = 3∠θ ;C. ∠β = 3∠θ ;D. ∠β =4A 3A 2∠θ ;A 110. 如下图 , 已知∠ AOB=64°,OA 1 均分∠ AOB,OA 2均分∠ AOA 1, OA 3 均分∠ AOA 2,OA 4 均分∠ AOA 3, 则∠ AOA 4的大小为 ( )A.1 °B.2°C.4°D.8°O(5)B二、填空题我1、分别是“我”、“喜”、萍萍同学在一个正方体盒子的每个面都写上一个字,“欢”、“数”、“学”、“课”,其平面睁开图如下图,那么在该正方体盒子喜 欢 数学 课中,和“我”相对的面上的字是.2、圆柱侧面睁开图是 ________, 圆锥侧面睁开图是 ________.图 43、已知线段 AB=acm,点 A 1 均分 AB,A 2 均分 AA 1,A 3 均分 AA 2,, A n 均分 AA n-1 , 则AA n =_______________cm. 4、∠ 1+∠2=180°,∠ 2+∠3=180°,依据 ________,得∠ 1=∠3. 5、如图, OA 的方向是北偏东 15°,OB 的方向是 西偏北 50°。
第四章《图形认识初步》综合复习检测卷(四)一、选择题(每小题3分,共30分)1.下列关于棱柱的说法:①棱柱的所有面都是平面;②棱柱的所有棱长都相等;③棱柱的所以侧面都是长方形或正方形;④棱柱的侧面个数与底面边数相等;⑤棱柱的上、下底面形状、大小相等其中正确的有 ( ).(A )2个 (B )3个 (C )4个 (D )5个2.下列图形中是正方体的表面展开图的是 ( ).(A) (B) (C) (D)3.如图1,点C 是线段AB 的中点,点D 线段BC 的中点,下列等式不正确的是( ).(A )CD=AC-DB (B )CD=AD-BC (C )CD=21AB-BD (D )CD=31AB图14.一个物体的从正面、左面、上面三个方向看是下面三个图形,则该物体形状的名称为 ( )(A) 圆柱 (B) 棱柱(C) 圆锥 (D) 球 正面 左面 上面5.下列判断正确的是 ( ). 图2(A )平角是一条直线 (B )凡是直角都相等(C )两个锐角的和一定是锐角 (D )角的大小与两条边的长短有关6.如图3,∠AOB =∠COD =90°,那么∠AOC=∠BOD ,这是根据 ( ).(A)直角都相等 (B) 同角的余角相等(C)同角的补角相等 (D)互为余角的两个角相等图37. 点M 、O 、N 顺次在同一直线上,射线0C 、0D 在直线MN 同侧,且∠MOC=64°,∠DON=46°,北则∠MOC 的平分线与∠DON 的平分线夹角的度数是 ( ).(A )85° (B )105° (C )125° (D )145°8. 某测绘装置上一枚指针原来指向南偏西50°(如图4), 把这枚指针按逆时针方向旋转41周,则结果指针的指向 ( ). (A )南偏东50º (B )西偏北50º(C )南偏东40º (D )南偏东45° 图49.如图5,每个长方体的六个面上分别写着1~6这六个数,并且任意两个相对的面上所写的两个数之和所写的两个数之和都等于7,靠在一起的长方体中,相连接两个面的数字之和等于8,图中打“?”的面上所写的数字是 ( ).(A )3 (B )5 (C )2 (D )110.计算180°-48°39′40″-67°41′35″的值是 ( ). 图5(A )63°38′45″ (B )58°39′40″ (C )64°39′40″ (D )63°78′65″二、填空题(每小题2分,共20分)11.如图6所示的图形绕虚线旋转一周,所围成的几何体是_____.图6 图7 12.如图7是一个正方体纸盒的展开图,在其中的四个正方形内有数字1、2、3和-3,要在其余正方形内分别填上-1、-2,使得按虚线折成正方体后,相对面上的两个数互为相反数,则A 处应填_____.13.植树时,只要定出_______个树坑的位置,就能确定同一行树坑所在直线,根据是_______.14.如图8是三个几何体的展开图,请写出这三个立体图形_________ __________ ________图815.某工程队在修筑高速公路时,有时需要将弯曲的道路改直,以缩短路程,这样作的理论依据是________.16.如图9,点C是∠AOB的边OA上一点,D、E是OB上两点,则图中共有_____条线段,_____条射线,_____个小于平角的角.图9 图1017.如果一个角的补角是150°,那么这个角的余角是________.18.乘火车从A站出发,沿途经过3个车站可到达B站,那么在A、B两站之间共有____种不同的票价.19.如图10,将一副三角板叠放在一起,使直角的定顶点重合于点0,则∠AOC+∠DOB=_____.20.在直线l上取A、B、C三点,使得AB=4cm,BC=3cm,如果0是线段AC的中点,则线段OB的长度为_________.三、解答题(1-6每小题6分,7-8分每小题7分)21.观察图11中的几何体,画出从正面、左面、上面三个方向看,得到的平面图形。
A B CD A B C D AB C D O七年级数学(上册)第四章《图形的认识》测试卷(含答案)一、选择题:(30分)1、把弯曲的河道改直;能够缩短航程;这样做的道理是( ) A.两点之间;线段最短; B.两点确定一条直线; C. 两点之间;直线最短; D. 两点确定一条线段;23、下列说法正确的个数有( )①端点相同的两条射线是同一条射线;②过两点有且只有一条直线;③射线比直线短;④一条线段两端点之间的点叫做线段中点;A.1个;B.2个;C. 3个;D. 4个; 4、已知∠α=35°;那么∠α的余角等于( )A. 35°;B. 55°;C. 65°;D. 145°; 5、下列四个角最有可能与70°角互补的是( )6、下列算式中正确的是( ) ①33.33°=33°3′3″;②33.33°=33°19′48″; ③50°40′30″=50.43°;④50°40′30″=50.675°;A. ①②;B. ①③;C. ②③;D. ②④; 7、将一个正方体的表面沿某些棱剪开;展成一个平面图形;至少要剪开( )条棱。
A. 3;B. 5;C. 7;D. 9;8、已知点C 是直线AB 上一点;AB=6cm ;BC=2cm ;那么AC 的长是( ) A. 2cm ; B. 4cm ; C. 8cm ; D. 4cm 或 8cm ;9、如图;∠AOD=∠BOC =60°;∠AOB=150°;则∠COD 等于( ) A. 15°; B. 20°; C.25°; D. 30°; 10、一个角的余角与它的补角互补;这个角是( ) A. 30°; B. 45°; C. 60°; D. 90°;162345A B C D O A ·····B C D E B A C D O 123O B A C D E 4123···B A Cαβ二、填空题:(24分) 11、流星从空中划过留下痕迹;说明了 ;打开折扇看到扇面;说明了 ;一枚硬币在光滑的桌面上快速旋转形成了一个球;说明了 。
第四章图形的初步认识单元测试卷(总分:120分,时间:120分钟)一、填空题(每题3分,共30分)1.经过直线外一点P,有______条直线与这条直线平行.2.将线段AB延长到C,使BC=2AB,AB=_______AC.3.如果一个角是10°,用10倍放大镜观察这个角是______度.4.已知∠A=30°,则∠A的补角的度数为_______.5.如图1所示,两条直线a,b被第三条直线c所截,如果a∥b,∠1=70°,•那么∠2=_______.图1 图2 图3 图46.如图2,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=_______.7.把图3折叠成一个正方体,如果相对面的值相等,则一组x,y的值是______.8.如图4,BC=4cm,BD=7cm,D是AC的中点,则AC=_____cm,AB=_____cm.9.如图5,直线AB∥CD,EF交AB于点M,MN⊥EF于点M,MN交CD于点N,若∠BME=•125°,则∠MND=________.图5 图610.如图6,从方框外的图形中挑选合适的图形,将该图形的序号填在方框内的横线上.二、选择题(每题3分,共24分)11.如图测7,能表示点到直线(或线段)的距离的线段有()A.2条 B.3条 C.4条 D.5条图7 图812.如图8所示,从A地到C地,可供选择的方案是走水路、走陆路、走空中,从A地到B地有两条水路、两条陆路,从B地到C地有3条陆路可供选择,走空中,从A地不经B地直线到C地,则从A地到C地可供选择的方案有()A.20种 B.8种 C.5种 D.13种13.如图9,下列能拼成左边的正方体的是_______(•立体图形看不见的面都是白面)14.在时钟上8:30时,时钟上的时针和分针之间的夹角是()A.85° B.75° C.70° D.60°15.如图10将五角星沿着虚线折叠,使得A,B,C,D,E五个点重合,得到的立体图形是()A.棱柱 B.圆锥 C.圆柱 D.棱锥图10 图11 图1216.如图11所示,已知AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠1=50°,则∠2的度数为()A.50° B.60° C.65° D.70°17.如图12,是一个3×3的正方形,则图中∠1+∠2+∠3+…+∠9等于()A.270° B.315° C.360° D.405°18.如图13,是一个小立方块所搭建的几何体的俯视图,•正方形中的数字表示该位置小立方块的个数,则它的正视图是()三、解答下列各题(共37分)19.(10分)如图,CD∥AB,CD∥EF,∠A=105°,∠ACE=51°,求∠E的度数.20.(8分)中学生运动会上在比赛跳远,如图所示,是一名运动员的一次跳远示意图,A,B两点为该名运动员的脚印落点,起跳线为EF,请画图说明如何计算该运动员的跳远成绩,并说明理由.21.(10分)如图,B,C两点把线段MN分成三部分,其比为MB:BC:CN=2:3:•4,P是MN的中点,PC=2cm,求MN的长.22.(9分)如图测4-17所示,已知∠B=∠C,AD∥BC,试说明:AD平分∠CAE.四、探究题(9分)23.如图,照样子把图剪下来,先分别量出图中的角度,并记录∠1=_____,∠2=______,∠3=_______.(1)计算∠1+∠2+∠3=_______;(2)由此猜想出一个结论:________________;(3)设法验证这一结论.五、新情景题(10分)24.如图,有一只蚂蚁从点A出发,按顺时针方向沿图所示的方向爬行,•最后又爬回到A 点,那么蚂蚁在此过程中共转了多少度的角?(为了帮助同学们分析,我们在图中作出线段PQ)六、应用题(10分)25.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,•政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短?并说明根据.答案:1.且只有一 2.133.10 4.150° 5.110° 6.34°7.x=2,y=3或x=3,y=2 8.6 10 9.35° 10.(3)11.D 12.D 13.B 14.B 15.D 16.C 17.D 18.C19.∠E=24°(点拨:因为CD∥AB,所以∠A+∠ACD=180°,又因为CD∥EF,•所以∠E=∠ECD=∠ACD-∠ACE=75°-51°=24°)20.如图所示,过B点作EF的垂线段BO,测量BO的长度即可.理由:由直线外一点向这条直线所做垂线段的长度叫做点到直线的距离.21.MN=36cm.22.∵AD∥BC,∴∠2=∠B,∠1=∠C又∵∠B=∠C,∴∠1=∠2.23.略(1)∠1+∠2+∠3=180°(2)三角形内角和等于180°(3)把三个角剪下拼成一个平角.24.蚂蚁旋转三个圆圈,转了1080°.25.(1)连AD,BC交于H,则H为蓄水池位置.(2)过H作HG⊥EF垂足为G.“两点之间线段最短是确定H位置的根据”,•“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.。
第4章图形的初步认识单元检测一、选择题(本题共10小题,每小题3分,共30分)1.平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条2.在实际生产和生活中,下列四个现象:①用两个钉子把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设天线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ).A.①②B.①③C.②④D.③④3.平面上有三点A,B,C,如果AB=8,AC=5,BC=3,那么( ).A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.点C可能在直线AB上,也可能在直线AB外4.下列各角中,是钝角的是( ).A.14周角 B.23周角 C.23平角 D.14平角5.如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′6.在下列说法中,正确的个数是( ).①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上十二点整时,时针和分针形成的角是周角;④钟表上差一刻六点时,时针和分针形成的角是直角;⑤钟表上九点整时,时针和分针形成的角是直角.A.1 B.2 C.3 D.47.如图,C是AB的中点,D是BC的中点,下面等式不正确的是( ).A.CD=AC-DB B.CD=AD-BCC.CD=12AB-BD D.CD=13AB8.如图,C,D是线段AB上两点,若CB=4 cm,DB=7 cm,且D是AC的中点,则AC的长等于( ).A.3 cm B.6 cm C.11 cm D.14 cm9.A,B,C,D,E五个景点之间的路线如图所示.若每条路线的里程a(km)及行驶的平均速度b(km/h)用(a,b)表示,则从景点A到景点C用时最少....的路线是( ).A.A→E→C B.A→B→C C.A→E→B→C D.A→B→E→C10.如图所示,云泰酒厂有三个住宅区,A,B,C各区分别住有职工30人,15人,10人,且这三点在金斗大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该厂的接送车打算在这个路段上只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在( ).A.点A B.点B C.AB之间D.BC之间二、填空题(本题共4小题,每小题4分,共16分)11.如图所示,线段AB比折线AMB__________,理由是:____________________.12.如图,点C是线段AB上的点,点D是线段BC的中点,若AB=10,AC=6,则CD=__________.13.现在是9点20分,此时钟面上的时针与分针的夹角是__________.14.如图所示,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山——济南——淄博——潍坊——青岛,那么要为这次列车制作的火车票有__________种.三、解答题(本题共4小题,共54分)15.(12分)计算:(1)将24.29°化为度、分、秒;(2)将36°40′30″化为度.16.(7分)请以给定的图形“”(两个圆,两个三角形,两条线段)构思独特而且又有意义的图形,并且写上一句贴切的解说词.17.(8分)已知线段a,b(如图),画出线段x,使x=a+2b.18.(8分)已知在平面内,∠AOB=70°,∠BOC=40°,求∠AOC的度数.19.(9分)如图,已知AB和CD的公共部分BD=13AB=14CD.线段AB,CD的中点E,F之间的距离是10cm,求AB,CD的长.20.(10分)某摄制组从A市到B市有一天的路程,由于堵车,中午才赶到一个小镇,只行驶了原计划的三分之一(原计划行驶到C地),过了小镇,汽车赶了400千米,傍晚才停下来休息,司机说,再走从C地到这里路程的二分之一就到达目的地了,问A,B两市相距多少千米?参考答案1答案:D2答案:D3答案:A4答案:C 点拨:因为23平角=23×180°=120°,所以23平角是钝角,故选C.5答案:A 点拨:∠1=180°-26°30′=153°30′.6答案:C 点拨:说法①④错误.7答案:D8答案:B9答案:D 点拨:分别计算各选项中的用时可知,从景点A到景点C用时最少的线路是A→B→E→C,故选D.10答案:A11答案:短两点之间,线段最短12答案:2 点拨:∵AB=10,AC=6,∴BC=AB-AC=10-6=4.又∵点D是线段BC的中点,∴CD=12BC=2.13答案:160°点拨:可画出钟表的示意图帮助解答(如图).观察图可知,9点20分时,时针和分针的夹角是5个大格加时针从9点开始转过的角度,所以9点20分时,时针和分针的夹角是5×30°+20×0.5°=160°.14答案:10 点拨:由泰山到青岛的某一次列车的车票的种数是:泰山——济南,泰山——淄博,泰山——潍坊,泰山——青岛;济南——淄博,济南——潍坊,济南——青岛;淄博——潍坊,淄博——青岛;潍坊——青岛,共10种.15解:(1)先将0.29°化为17.4′,再将0.4′化为24″.24.29°=24°+0.29×60′=24°+17′+0.4×60″=24°+17′+24″=24°17′24″.(2)先将30″化为0.5′,再将40.5′化为0.675°.∵1′=160⎛⎫︒⎪⎝⎭,1″=160⎛⎫'⎪⎝⎭,∴30″=160⎛⎫'⎪⎝⎭×30=0.5′,40.5′=160⎛⎫︒⎪⎝⎭×40.5=0.675°.∴36°40′30″=36.675°.16解:以下答案供参考.17答案:略18解:(1)当∠BOC在∠AOB的外部时,如图1所示,∠AOC=∠AOB+∠BOC=70°+40°=110°;(2)当∠BOC在∠AOB的内部时,如图2所示,∠AOC=∠AOB-∠BOC=70°-40°=30°.故∠AOC 的度数为110°或30°.19解:设BD =x cm ,则AB =3x cm ,CD =4x cm. 因为E ,F 分别是线段AB ,CD 的中点, 所以EB =12AB =1.5x ,FD =12CD =2x . 又EF =10 cm ,EF =EB +FD -BD ,所以1.5x +2x -x =10. 解得x =4.所以3x =12,4x =16.所以AB 长12 cm ,CD 长16 cm.20解:如图,设小镇为D ,傍晚汽车在E 处休息,由题意知,DE =400千米,AD =12DC ,EB =12CE ,AD +EB =12(DC +CE )=12DE =12×400=200(千米). 所以AB =AD +EB +DE =600(千米).答:A ,B 两市相距600千米.。
⎧⎨⎩⎧⎨⎩第四章 图形的初步认识知识点及评价测试题一、立体图形与平面图形立体图形:棱柱、棱锥、圆柱、圆锥、球等。
1、几何图形 平面图形:三角形、四边形、圆等。
主(正)视图---------从正面看 2、几何体的三视图 侧(左、右)视图-----从左(右)边看俯视图---------------从上面看(1)会判断简单物体(直棱柱、圆柱、圆锥、球)的三视图。
(2)能根据三视图描述基本几何体或实物原型。
3、立体图形的平面展开图(1)同一个立体图形按不同的方式展开,得到的平现图形不一样的。
(2)了解直棱柱、圆柱、圆锥、的平面展开图,能根据展开图判断和制作立体模型。
4、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
二、直线、射线、线段(一).直线、射线、线段的区别与联系: 基本概念(二).直线、线段性质:经过两点有一条直线,并且只有一条直线;或者说两点确定一条直线;1、线段的性质 两点的所有连线中,线段最短。
简单地:两点之间,线段最短。
2.画线段的方法(1)度量法(2)用尺规作图法3、线段的大小比较方法(1)度量法(2)叠合法4、点与直线的位置关系二、角(一).角的意义:1、角:由公共端点的两条射线所组成的图形叫做角。
2、角的表示法(四种):3、角的度量单位及换算4、角的分类有公共端点的两条射线组成的图形叫做角,公共端点是角的顶点,这两条射线是角的两条边,角也可以看做由一条射线绕着它的端点旋转而形成的图。
注意:表示角时,一定要对照几何图形,注意不能漏掉角的符号,切记用三个大写字母表示一个角时,顶点字母一定要写在中间;同一顶点处有多个角时,切不可用顶点字母来表示。
(二).角的度量:1°=60′ 1′=60″1直角=90° 1平角=180 ° 1周角=360°(三).角的大小的比较:(1)叠合法,使两个角的顶点及一边重合,另一边在重合边的同旁进行比较;(2)度量法。
(四).画角利用三角尺画出15的整数倍的角,利用量角器画出任何给定度数的角(1)借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角。
(2)借助量角器能画出给定度数的角。
(3)用尺规作图法。
(五).角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
(七)时针和分针所成的角度钟表一周为360°,每一个大格为30°,每一个小格为6°.(每小时,时针转过30°,即一个大格,分针转过360°,即一周;每分钟,分针转过6°即一个小格)(七)方位角:表示方向的角,经常用于航空、航海、测绘中。
注意:用角度表示方向,一般以正北、正南为基准,向东或向西旋转的角度表示方向,如“北偏东40°”,不要写成“东偏北50°”一、精心选一选(每小题4分,共32分)1.小明从正面观察下图所示的两个物体,看到的是()正面A B C D 2.如图,下列图形中,不是正方体展开图的是()A B3.正方体的截面不可能构成的平面图形是()A.矩形B.六边形C.三角形D.七边形4. 下列图形中,能够相交的是 ( )5.如果两个角互为补角,而其中一个角比另一个角的4倍少30°,•那么这两个角是( ) A .42°,138°或40°,130°; B .42°,138°;C .30°,150°;D .以上答案都不对6. 已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的 距离是( )A .8cmB .2cm 或6cmC .8cm 或2cmD .4cm7.平面内两两相交的6条直线,交点个数最少为m 个,最多为n 个,则m +n 等于( )A .12B .16C .20D .228.已知在线段上依次添加1点、2点、3点……原线段上所成线段的总条数,如下表:若在原线段上添n 个点,则原线段上所有线段总条数为( ) A .n+2 B .1+2+3+…+n+n+1 C.n+1 D.2)1)(2(++n n二、用心填一填 (小题4分,共24分)9.计算:547290512380'''+'''=____ 。
10.时钟表面5点30分时,时针与分针所夹角的度数是__________。
11.如图,在∠AOE 的内部从O 引出3条射线,那么图中共有_______个角;如果引出5条射线,有_______个角;如果引出条射线,有_______个角。
11题 12题 13题12.如图,将一副直角三角板叠在一起,使直角顶点重合于点O ,则∠AOB +∠DOC =_______13.如图,已知矩形ABCD 中,AB =2,BC =4,把矩形绕着一边旋转一周,则围成的几何体的体积为_____。
14.已知A 、B 是直线L 外两点,则AB 的垂直平分线与直线L 的交点的个数是 。
三、用心解一解 (每小题8分,共24分)15.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB ; (2)作射线BC ; (3)画线段CD ;(4)连接AD,并将其反向延长至E ,使DE=2AD ; (5)找到一点F ,使点F 到A 、B 、C 、D 四点距离和最短。
B A16.如图,已知∠AOB =90 o ,∠AOC 是60 o,OD 平分∠BOC ,OE 平分∠AOC 。
求∠DOE 。
(5分)(2)若∠AOB=α,∠AOC=β(β为锐角),其他条件不变,求∠DOE 的度数; (3)从上面的结果中你能看出什么规律吗?17.如图:已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC 。
(1)求∠DOE 的度数(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 还是∠BOC 、∠AOC 的平分线?问此时∠DOE 的度数是否与(1)中相同?通过此过程,你总结出怎样的结论?四、专心做一做(每小题10分,共20分)18、右图,直线AB 、CD 相交于点O ,OE 平分∠AOD ,∠FOC =90°,∠1=40°,求∠2和∠3的度数.19. 猜一猜,做一做如图,点C 在线段AB 上,AC = 8 cm ,CB = 6 cm ,点M 、N 分别是AC 、BC 的中点。
(1)求线段MN 的长;ABCMN(2)若C 为线段AB 上任一点,满足AC + CB = a cm ,其它条件不变,你能猜想MN 的长 度吗?并说明理由;(3)若C 在线段AB 的延长线上,且满足AC-BC = b cm ,M 、N 分别为AC 、BC 的中点,你 能猜想MN 的长度吗?请画出图形,写出你的结论,并说明理由。
_ O_ E_ D_ C _ B_ A评价测试题答案一、精心选一选(每小题4分,共32分)1.小明从正面观察下图所示的两个物体,看到的是( C )正面A B C D2.如图,下列图形中,不是正方体展开图的是( B )A B3.正方体的截面不可能构成的平面图形是(D )A.矩形B.六边形C.三角形D.七边形因为正方体一共有六个面,所以截面经过正方体的三个面得到三角形,例如切下正方体一个角过正方体的4个面得到四边形,例如截面经过互相平行的四条棱得到矩形截面经过正方体六个面,得到六边形4. 下列图形中,能够相交的是 ( D )5.如果两个角互为补角,而其中一个角比另一个角的4倍少30°,•那么这两个角是( B ) A .42°,138°或40°,130°; B .42°,138°;C .30°,150°;D .以上答案都不对分别设两角为 ∠A ∠B ∵两角互补 ∴ ∠A+∠B=180°∴∠A=180°-∠B∵一个角比另一个角的4倍少30°∴4∠A-∠B=30° 或 4∠B-∠A=30° ∴4(180°-∠B )-∠B =30° 或 4∠B-(180°-∠B)=30° ∴∠B=138°或42° ∠A=42°或138° ∴两角度数分别为138° 42°6. 已知点A 、B 、C 都是直线l 上的点,且AB=5cm ,BC=3cm ,那么点A 与点C 之间的距离是( C )A .8cmB .2cm 或6cmC .8cm 或2cmD .4cm 解:∵点A 、B 、C 都是直线l 上的点, ∴有两种情况:①当B 在AC 之间时,AC=AB+BC ,而AB=5cm ,BC=3cm ,∴AC=AB+BC=8cm ; ②当C 在AB 之间时,此时AC=AB-BC ,而AB=5cm ,BC=3cm ,∴AC=AB-BC=2cm . 点A 与点C 之间的距离是8或2cm . 故选C .7.平面内两两相交的6条直线,交点个数最少为m 个,最多为n 个,则m +n 等于(B )A .12B .16C .20D .22 两两相交,显然,都交于同一点时,交点个数最少,m=1 没有任意三条线交于同一点时,交点最多这时,对任意一条直线,与5条直线都相交,有5个交点,因此,6条直线就应该有6*5=30个交点,但“a 与b 交”和“b 与a 交”是同一件事,因此是同一交点,所以,总交点数n=6*5/2=15 所以,m+n=15+1=168.已知在线段上依次添加1点、2点、3点……原线段上所成线段的总条数,如下表:若在原线段上添n 个点,则原线段上所有线段总条数为( D ) A .n+2 B .1+2+3+…+n+n+1 C.n+1 D.2)1)(2(++n n添加1点,原线段上所成线段的总条数为3;3=2×3÷2 添加2点,原线段上所成线段的总条数为6;6=3×4÷2 添加3点,原线段上所成线段的总条数为10;10=4×5÷2 ……添加n 点,原线段上所成线段的总条数为 (n+1)×(n+2)÷2二、用心填一填 (小题4分,共24分)9.计算:547290512380'''+'''=____ 。