[真卷]2016年山东省济宁市微山县付村一中中考数学一模试卷
- 格式:doc
- 大小:1.12 MB
- 文档页数:20
济宁市初三中考数学第一次模拟试卷一、选择题(本大题共12小题,共48分)1.若分式的值为零,则x的值是()A. 1B.C.D. 22.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.3.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.5.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差6.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.7.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.8.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.9.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.10.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化11.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.12.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A(-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)13.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>14.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.15.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.16.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.17.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.18.在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按这样的规律进行下去,第2016个正方形的面积是______.三、解答题(本大题共7小题,共78分)19.先化简,再求值:(-)÷(-1),其中a为不等式组的整数解.20.如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C 位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.(1)若轮船照此速度与航向航行,何时到达海岸线?(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:≈1.4,≈1.7)21.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(-2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上是否存在点E,使|AE-BE|有最大值?如果存在,请求出点E坐标;若不存在,请说明理由.22.为满足市场需求,某超市在中秋节来临前夕,购进一种品牌月饼,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(2)为稳定物价,有关管理部门限定:这种月饼的每盒售价不得高于58元.如果超市想要每天获得6000元的利润,那么超市每天销售月饼多少盒?23.如图,平行四边形ABCD中,CG⊥AB于点G,∠ABF=45°,F在CD上,BF交CD于点E,连接AE,AE⊥AD.(1)若BG=1,BC=,求EF的长度;(2)求证:CE+BE=AB.24.如图1,抛物线y=ax2+bx+c经过平行四边形ABCD的顶点A(0,3)、B(-1,0)、D(2,3),抛物线与x轴的另一交点为E.经过点E的直线l将平行四边形ABCD分割为面积相等的两部分,与抛物线交于另一点F.点P为直线l上方抛物线上一动点,设点P的横坐标为t.(1)求抛物线的解析式;(2)当t何值时,△PFE的面积最大?并求最大值的立方根;(3)是否存在点P使△PAE为直角三角形?若存在,求出t的值;若不存在,说明理由.25.如图,直角△ABC中,∠BAC=90°,D在BC上,连接AD,作BF⊥AD分别交AD于E,AC于F.(1)如图1,若BD=BA,求证:△ABE≌△DBE;(2)如图2,若BD=4DC,取AB的中点G,连接CG交AD于M,求证:①GM=2MC;②AG2=AF•AC.答案和解析1.【答案】A【解析】解:∵分式的值为零,∴|x|-1=0,x+1≠0,解得:x=1.故选:A.直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.此题主要考查了分式的值为零,正确把握相关定义是解题关键.2.【答案】A【解析】解:0.00000156m,这个数据用科学记数法可表示为1.56×10-6m.故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【答案】C【解析】解:()-1+tan30°•sin60°=2+=2+=故选:C.根据实数的运算,即可解答.本题考查了实数的运算,解决本题的关键是熟记实数的运算.4.【答案】B【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.结合选项根据轴对称图形与中心对称图形的概念求解即可.本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.【答案】D【解析】解:A、甲的众数为7,乙的众数为8,故原题说法错误;B、甲的中位数为7,乙的中位数为4,故原题说法错误;C、甲的平均数为6,乙的平均数为5,故原题说法错误;D、甲的方差为4.4,乙的方差为6.4,甲的方差小于乙的方差,故原题说法正确;故选:D.根据一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;对于n个数x1,x2,…,x n,则x¯=(x1+x2+…+x n)就叫做这n个数的算术平均数;s2=[(x1-)2+(x2-)2+…+(x n-)2]进行计算即可.此题主要考查了众数、中位数、方差和平均数,关键是掌握三种数的概念和方差公式.6.【答案】A【解析】解:∵在△ABC中,∠ACB=90°,AC=BC=4,∴∠A=∠B,由折叠的性质得到:△AEF≌△DEF,∴∠EDF=∠A,∴∠EDF=∠B,∴∠CDE+∠BDF+∠EDF=∠BFD+∠BDF+∠B=180°,∴∠CDE=∠BFD.又∵AE=DE=3,∴CE=4-3=1,∴在直角△ECD中,sin∠CDE==,∴sin∠BFD=.故选:A.由题意得:△AEF≌△DEF,故∠EDF=∠A;由三角形的内角和定理及平角的知识问题即可解决.主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用全等三角形的性质、三角形的内角和定理等知识来解决问题.7.【答案】C【解析】解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6-,BM=6-,∵△OMN的面积为10,∴6×6-×6×-6×-×(6-)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,故选:C.由正方形OABC的边长是6,得到点M的横坐标和点N的纵坐标为6,求得M(6,),N (,6),根据三角形的面积列方程得到M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,根据勾股定理即可得到结论.本题考查了反比例函数的系数k的几何意义,轴对称-最小距离问题,勾股定理,正方形的性质,正确的作出图形是解题的关键.8.【答案】C【解析】解:如图,∵A、B、D、C四点共圆,∴∠GBC=∠ADC=50°,∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°-50°=40°,延长AE交⊙O于点M,∵AO⊥CD,∴,∴∠DBC=2∠EAD=80°.故选:C.根据四点共圆的性质得:∠GBC=∠ADC=50°,由垂径定理得:,则∠DBC=2∠EAD=80°.本题考查了四点共圆的性质:圆内接四边形的任意一个外角等于它的内对角,还考查了垂径定理的应用,属于基础题.9.【答案】D【解析】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选:D.由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD的面积即可求出.本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.10.【答案】C【解析】解:连接CD,∵∠ACB=90°,CA=CB,∴DC=BD=2,∠BDC=90°,∠B=∠DCA=45°,∴∠BDH=∠CDG,在△BDH和△CDG中,,∴△BDH≌△CDG,∴图中阴影部分的面积=-×2×2=2π-4,故选:C.连接CD,证明△BDH≌△CDG,利用扇形面积公式、三角形面积公式计算即可.本题考查的是扇形面积的计算、全等三角形的判定和性质、等腰直角三角形的性质,债务扇形面积公式是解题的关键.11.【答案】C【解析】解:∵四边形ABCD是正方形,∴AC=BD=2,OB=OD=BD=,①当P在OB上时,即0≤x≤,∵EF∥AC,∴△BEF∽△BAC,∴EF:AC=BP:OB,∴EF=2BP=2x,∴y=EF•BP=×2x×x=x2;②当P在OD上时,即<x≤2,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2-x):,∴EF=2(2-x),∴y=EF•BP=×2(2-x)×x=-x2+2x,这是一个二次函数,根据二次函数的性质可知:二次函数的图象是一条抛物线,开口方向取决于二次项的系数.当系数>0时,抛物线开口向上;系数<0时,开口向下.所以由此图我们会发现,EF的取值,最大是AC.当在AC的左边时,EF=2BP;所以此抛物线开口向上,当在AC的右边时,抛物线就开口向下了.故选:C.分析,EF与x的关系,他们的关系分两种情况,依情况来判断抛物线的开口方向.此题的关键是利用三角形的面积公式列出二次函数解析式解决问题.12.【答案】B【解析】解:(1)-=2,∴4a+b=0,所以此选项不正确;(2)由图象可知:当x=-3时,y<0,即9a-3b+c<0,9a+c<3b,所以此选项不正确;(3)∵抛物线开口向下,∴a<0,∵4a+b=0,∴b=-4a,把(-1,0)代入y=ax2+bx+c得:a-b+c=0,a+4a+c=0,c=-5a,∴5a+7b+2c=5a-7×(-4a)+2×(-5a)=-33a>0,∴所以此选项正确;(4)由对称性得:点C(,y3)与(0.5,y3)对称,∵当x<2时,y随x的增大而增大,且-3<-<0.5,∴y1<y2<y3;所以此选项正确;(5)∵a<0,c>0,∵方程a(x+1)(x-5)=c的两根为x1和x2,故x1>-1或x2<5,所以此选项不正确;∴正确的有2个,故选:B.(1)根据抛物线的对称轴为直线x=-=2,则有4a+b=0;(2)观察函数图象得到当x=-3时,函数值小于0,则9a-3b+c<0,即9a+c<3b;(3)由(1)得b=-4a,由图象过点(-1,0)得:c=-5a,代入5a+7b+2c中,根据a的大小可判断结果是正数还是负数,(4)根据当x<2时,y随x的增大而增大,进行判断;(5)由方程a(x+1)(x-5)=c的两根为x1和x2,由图象可知:x>-1或x<5可得结论.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线是轴对称图形,明确抛物线的增减性与对称轴有关,并利用数形结合的思想综合解决问题.13.【答案】m≥0且m≠1【解析】解:根据题意得m-1≠0且△=(-2)2-4(m-1)×(-1)≥0.解得m≥0且m≠1.故答案为m≥0且m≠1.利用一元二次方程的定义和判别式的意义得到m-1≠0且△=(-2)2-4(m-1)×(-1)≥0,然后解不等式求出它们的公共部分即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14.【答案】10【解析】解:分式方程+=4的解为且x≠1,∵关于x的分式方程=4的解为正数,∴且≠1,∴a<6且a≠2.解不等式①得:y<-2;解不等式②得:y≤a.∵关于y的不等式组的解集为y<-2,∴a≥-2.∴-2≤a<6且a≠2.∵a为整数,∴a=-2、-1、0、1、3、4、5,(-2)+(-1)+0+1+3+4+5=10.故答案为:10.根据分式方程的解为正数即可得出a<6且a≠2,根据不等式组的解集为y<-2,即可得出a≥-2,找出-2≤a<6且a≠2中所有的整数,将其相加即可得出结论.本题考查了分式方程的解以及解一元一次不等式,根据分式方程的解为正数结合不等式组的解集为y<-2,找出-2≤a<6且a≠2是解题的关键.15.【答案】9+9【解析】解:如图,作AD⊥BC,BH⊥水平线,由题意得:∠ACH=75°,∠BCH=30°,AB∥CH,∴∠ABC=30°,∠ACB=45°,∵AB=3×12=36m,∴AD=CD=18m,BD=AB•cos30°=18m,∴BC=CD+BD=(18+18)m,∴BH=BC•sin30°=(9+9)m.故答案为:9+9.作AD⊥BC,BH⊥水平线,根据题意确定出∠ABC与∠ACB的度数,利用锐角三角函数定义求出AD与BD的长,由CD+BD求出BC的长,即可求出BH的长.此题考查了解直角三角形的应用-仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.16.【答案】【解析】解:连接OD,作EH⊥BC,如图,∵EF为直径,∴∠A=90°,∵∠B+∠C=90°,∠B+∠BEH=90°,∴∠BEH=∠C,∵直线l与⊙相切于点D,∴OD⊥BC,而EH⊥BC,EF∥BC,∴四边形EHOD为正方形,∴EH=OD=OE=HD=5,∴BH=BD-HD=7,在Rt△BEH中,tan∠BEH==,∴tan∠ACB=.故答案为.连接OD,作EH⊥BC,如图,先利用圆周角定理得到∠A=90°,再利用等角的余角相等得到∠BEH=∠C,接着根据切线的性质得到OD⊥BC,易得四边形EHOD为正方形,则EH=OD=OE=HD=5,所以BH=7,然后根据正切的定义得到tan∠BEH=,从而得到tan∠ACB的值.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了正切的定义.17.【答案】①②③④【解析】解:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°,∴∠CAD=∠AFG,在△FGA和△ACD中,,∴△FGA≌△ACD(AAS),∴AC=FG,①正确;∵BC=AC,∴FG=BC,∵∠ACB=90°,FG⊥CA,∴FG∥BC,∴四边形CBFG是矩形,∴∠CBF=90°,S△FAB=FB•FG=S四边形CBFG,②正确;∵CA=CB,∠C=∠CBF=90°,∴∠ABC=∠ABF=45°,③正确;∵∠FQE=∠DQB=∠ADC,∠E=∠C=90°,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD•FE=AD2=FQ•AC,④正确;故答案为:①②③④.由正方形的性质得出∠FAD=90°,AD=AF=EF,证出∠CAD=∠AFG,由AAS证明△FGA≌△ACD,得出AC=FG,①正确;证明四边形CBFG是矩形,得出S△FAB=FB•FG=S四边形CBFG,②正确;由等腰直角三角形的性质和矩形的性质得出∠ABC=∠ABF=45°,③正确;证出△ACD∽△FEQ,得出对应边成比例,得出D•FE=AD2=FQ•AC,④正确.本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.18.【答案】5×()4030【解析】解:∵点A的坐标为(1,0),点D的坐标为(0,2),∴OA=1,OD=2,BC=AB=AD=∵正方形ABCD,正方形A1B1C1C,∴∠OAD+∠A1AB=90°,∠ADO+∠OAD=90°,∴∠A1AB=∠ADO,∵∠AOD=∠A1BA=90°,∴△AOD∽△A1BA,∴,∴,∴A1B=,∴A1B1=A1C=A1B+BC=,同理可得,A2B2==()2,同理可得,A3B3=()3,同理可得,A2015B2015=()2015,∴S第2016个正方形的面积=S正方形C2015C2015B2015A2015=[()2015]2=5×()4030,故答案为5×()4030先利用勾股定理求出AB=BC=AD,再用三角形相似得出A1B=,A2B2=()2,找出规律A2015B2015=()2015,即可.此题是正方形的性质题,主要考查正方形的性质,勾股定理,相似三角形的性质和判定,解本题的关键是求出几个正方形的边长,找出规律.19.【答案】解:原式=[-]=•=,∵不等式组的解为<a<5,其整数解是2,3,4,a不能等于0,2,4,∴a=3,当a=3时,原式==1.【解析】先算减法,把除法变成乘法,求出结果,求出不等式组的整数解,代入求出即可.本题考查了解一元一次不等式组、不等式组的整数解和分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.20.【答案】解:(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A 作AF⊥l于F,如图所示.∵∠BEC=∠AFC=90°,∠EBC=60°,∠CAF=30°,∴∠ECB=30°,∠ACF=60°,∴∠BCA=90°,∵BC=12,AB=36×=24,∴AB=2BC,∴∠BAC=30°,∠ABC=60°,∵∠ABC=∠BDC+∠BCD=60°,∴∠BDC=∠BCD=30°,∴BD=BC=12,∴时间t==小时=20分钟,∴轮船照此速度与航向航向,上午11:00到达海岸线.(2)∵BD=BC,BE⊥CD,∴DE=EC,在RT△BEC中,∵BC=12海里,∠BCE=30°,∴BE=6海里,EC=6≈10.2海里,∴CD=20.4海里,∵20海里<20.4海里<21.5海里,∴轮船不改变航向,轮船可以停靠在码头.【解析】(1)延长AB交海岸线l于点D,过点B作BE⊥海岸线l于点E,过点A作AF⊥l于F,首先证明△ABC是直角三角形,再证明∠BAC=30°,再求出BD的长即可角问题.(2)求出CD的长度,和CN、CM比较即可解决问题.本题考查方向角、解直角三角形等知识,解题的关键是添加辅助线构造直角三角形,由数量关系推出∠BAC=30°,属于中考常考题型.21.【答案】解:(1)过点A作AD⊥x轴于点D,如图1所示.∵点A的坐标为(n,6),点C的坐标为(-2,0),∴AD=6,CD=n+2.又∵tan∠ACO=2,∴==2,∴n=1,∴点A的坐标为(1,6).∵点A在反比例函数的图象上,∴m=1×6=6,∴反比例函数的解析式为y=.将A(1,6),C(-2,0)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=2x+4.(2)联立一次函数及反比例函数解析式成方程组,得:,解得:,,∴点B的坐标为(-3,-2).(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,此时|AE-BE|取得最大值,如图2所示.∵点B的坐标为(-3,-2),∴点B′的坐标为(-3,2).设直线AB′的解析式为y=ax+c(a≠0),将A(1,6),B′(-3,2)代入y=ax+c,得:,解得:,∴直线AB′的解析式为y=x+5.当y=0时,x+5=0,解得:x=-5,∴在x轴上存在点E(-5,0),使|AE-BE|取最大值.【解析】(1)过点A作AD⊥x轴于点D,由点A,C的坐标结合tan∠ACO=2可求出n的值,进而可得出点A的坐标,根据点A的坐标利用反比例函数图象上点的坐标特征可求出m的值,进而可得出反比例函数解析式,再根据点A,C的坐标,利用待定系数法可求出一次函数的解析式;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组可求出点B的坐标;(3)作点B关于x轴的对称点B′,连接AB′交x轴于点E,利用两边之差小于第三边可得出此时|AE-BE|取得最大值,由点B的坐标可得出点B′的坐标,根据点A,B′的坐标,利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征可求出当|AE-BE|取得最大值时点E的坐标.本题考查了解直角三角形、反比例函数图象上点的坐标特征、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及三角形的三边关系,解题的关键是:(1)通过解直角三角形求出点A的坐标;(2)联立一次函数及反比例函数解析式成方程组,通过解方程组求出点B的坐标;(3)利用三角形三边关系,确定当|AE-BE|取得最大值时点E的位置.22.【答案】解:(1)由题意得销售量=700-20(x-45)=-20x+1600,P=(x-40)(-20x+1600)=-20x2+2400x-64000=-20(x-60)2+8000,∵x≥45,a=-20<0,∴当x=60时,P最大值=8000元即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(2)由题意,得-20(x-60)2+8000=6000,解得x1=50,x2=70.∵每盒售价不得高于58元,∴x2=70(舍去),∴-20×50+1600=600(盒).答:如果超市想要每天获得6000元的利润,那么超市每天销售月饼600盒.【解析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量与每盒售价x(元)之间的函数关系式,然后根据利润=1盒月饼所获得的利润×销售量列式整理,再进行配方从而可求得答案;(2)先由(1)中所求得的P与x的函数关系式,根据这种月饼的每盒售价不得高于58元,且每天销售月饼的利润等于6000元,求出x的值,再根据(1)中所求得的销售量与每盒售价x(元)之间的函数关系式即可求解.本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒月饼所获得的利润×销售量,求得销售量与x之间的函数关系式是解题的关键.23.【答案】解:(1)∵CG⊥AB,∴∠AGC=∠CGB=90°,∵BG=1,BC=,∴CG==3,∵∠ABF=45°,∴BG=EG=1,∴CE=2,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GCD=∠BGC=90°,∠EFG=∠GBE=45°,∴CF=CE=2,∴EF=CE=2;(2)如图,延长AE交BC于H,∵四边形ABCD是平行四边形,∴BC∥AD,∴∠AHB=∠HAD,∵AE⊥AD,∴∠AHB=∠HAD=90°,∴∠BAH+∠ABH=∠BCG+∠CBG=90°,∴∠GAE=∠GCB,在△BCG与△EAG中,∠∠°∠∠,∴△BCG≌△EAG(AAS),∴AG=CG,∴AB=BG+AG=CE+EG+BG,∵BG=EG=BE,∴CE+BE=AB.【解析】(1)根据勾股定理得到CG==3,推出BG=EG=1,得到CE=2,根据平行四边形的性质得到AB∥CD,于是得到结论;(2)延长AE交BC于H,根据平行四边形的性质得到BC∥AD,根据平行线的性质得到∠AHB=∠HAD,推出∠GAE=∠GCB,根据全等三角形的性质得到AG=CG,于是得到结论.本题考查了平行四边形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.24.【答案】解:(1)由题意可得,解得,∴抛物线解析式为y=-x2+2x+3;(2)∵A(0,3),D(2,3),∴BC=AD=2,∵B(-1,0),∴C(1,0),∴线段AC的中点为(,),∵直线l将平行四边形ABCD分割为面积相等两部分,∴直线l过平行四边形的对称中心,∵A、D关于对称轴对称,∴抛物线对称轴为x=1,∴E(3,0),设直线l的解析式为y=kx+m,把E点和对称中心坐标代入可得,解得,∴直线l的解析式为y=-x+,联立直线l和抛物线解析式可得,解得或,∴F(-,),如图1,作PH⊥x轴,交l于点M,作FN⊥PH,∵P点横坐标为t,∴P(t,-t2+2t+3),M(t,-t+),∴PM=-t2+2t+3-(-t+)=-t2+t+,∴S△PEF=S△PFM+S△PEM=PM•FN+PM•EH=PM•(FN+EH)=(-t2+t+)(3+)=-(t-)2+×,∴当t=时,△PEF的面积最大,其最大值为×,∴最大值的立方根为=;(3)由图可知∠PEA≠90°,∴只能有∠PAE=90°或∠APE=90°,①当∠PAE=90°时,如图2,作PG⊥y轴,∵OA=OE,∴∠OAE=∠OEA=45°,∴∠PAG=∠APG=45°,∴PG=AG,∴t=-t2+2t+3-3,即-t2+t=0,解得t=1或t=0(舍去),②当∠APE=90°时,如图3,作PK⊥x轴,AQ⊥PK,则PK=-t2+2t+3,AQ=t,KE=3-t,PQ=-t2+2t+3-3=-t2+2t,∵∠APQ+∠KPE=∠APQ+∠PAQ=90°,∴∠PAQ=∠KPE,且∠PKE=∠PQA,∴△PKE∽△AQP,∴=,即=,即t2-t-1=0,解得t=或t=<-(舍去),综上可知存在满足条件的点P,t的值为1或.【解析】(1)由A、B、C三点的坐标,利用待定系数法可求得抛物线解析式;(2)由A、C坐标可求得平行四边形的中心的坐标,由抛物线的对称性可求得E点坐标,从而可求得直线EF的解析式,作PH⊥x轴,交直线l于点M,作FN⊥PH,则可用t表示出PM 的长,从而可表示出△PEF的面积,再利用二次函数的性质可求得其最大值,再求其最大值的立方根即可;(3)由题意可知有∠PAE=90°或∠APE=90°两种情况,当∠PAE=90°时,作PG⊥y轴,利用等腰直角三角形的性质可得到关于t的方程,可求得t的值;当∠APE=90°时,作PK⊥x 轴,AQ⊥PK,则可证得△PKE∽△AQP,利用相似三角形的性质可得到关于t的方程,可求得t的值.本题为二次函数的综合应用,涉及待定系数法、平行四边形的性质、二次函数的性质、三角形的面积、直角三角形的性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数示的应用,在(2)中用t表示出△PEF的面积是解题的关键,在(3)中分两种情况,分别利用等腰直角三角形和相似三角形的性质得到关于t的方程是解题的关键.本题考查知识点较多,综合性较强,计算量较大,难度较大.25.【答案】证明:(1)在Rt△ABE和Rt△DBE中,,∴△ABE≌△DBE;(2)①过G作GH∥AD交BC于H,∵AG=BG,∴BH=DH,∵BD=4DC,设DC=1,BD=4,∴BH=DH=2,∵GH∥AD,∴==,∴GM=2MC;②过C作CN⊥AC交AD的延长线于N,则CN∥AG,∴△AGM∽△NCM,∴=,由①知GM=2MC,∴2NC=AG,∵∠BAC=∠AEB=90°,∴∠ABF=∠CAN=90°-∠BAE,∴△ACN∽△BAF,∴=,∵AB=2AG,∴=,∴2CN•AG=AF•AC,∴AG2=AF•AC.【解析】(1)根据全等三角形的判定定理即可得到结论;(2)①过G作GH∥AD交BC于H,由AG=BG,得到BH=DH,根据已知条件设DC=1,BD=4,得到BH=DH=2,根据平行线分线段成比例定理得到==,求得GM=2MC;②过C作CN⊥AD交AD的延长线于N,则CN∥AG,根据相似三角形的性质得到=,由①知GM=2MC,得到2NC=AG,根据相似三角形的性质得到结论.本题考查了相似三角形的判定与性质,全等三角形的判定中学数学一模模拟试卷一、选择题(本大题共12小题,共48分)26.若分式的值为零,则x的值是()A. 1B.C.D. 227.人体内某种细胞的形状可近似看做球状,它的直径是0.00000156m,这个数据用科学记数法可表示为()A. B. C. D.28.计算:()-1+tan30°•sin60°=()A. B. 2 C. D.29.下面的图形中,既是轴对称图形又是中心对称图形的是()A. B.C. D.30.为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲、乙两组数据,如下表:关于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差31.如图,在△ABC中,∠ACB=90°,AC=BC=4,将△ABC折叠,使点A落在BC边上的点D处,EF为折痕,若AE=3,则sin∠BFD的值为()A. B. C. D.32.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.B. 10C.D.33.如图,四边形ABCD为⊙O的内接四边形.延长AB与DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.B.C.D.34.如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A. B. C. D.35.如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在EF上,下列关于图中阴影部分的说法正确的是()A. 面积为B. 面积为C. 面积为D. 面积随扇形位置的变化而变化36.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为()A.B.C.D.37.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x=2,下列结论:(1)2a+b=0;(2)9a+c>3b;(3)5a+7b+2c>0;(4)若点A (-3,y1)、点B(-,y2)、点C(,y3)在该函数图象上,则y1<y2<y3;(5)若方程a(x+1)(x-5)=c的两根为x1和x2,且x1<x2,则x1<-1<5<x2,其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24分)38.关于x的一元二次方程(m-1)x2-2x-1=0有两个实数根,则实数m的取值范围是______.>39.若数a使关于x的分式方程+=4的解为正数,且使关于y,不等式组的解集为y<-2,则符合条件的所有整数a的和为______.40.某兴趣小组借助无人飞机航拍,如图,无人飞机从A处飞行至B处需12秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为3米/秒,则这架无人飞机的飞行高度为(结果保留根号)______米.41.如图,直线l与⊙相切于点D,过圆心O作EF∥l交⊙O于E、F两点,点A是⊙O上一点,连接AE,AF,并分别延长交直线于B、C两点;若⊙的半径R=5,BD=12,则∠ACB的正切值为______.42.如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是______.。
山东省济宁市汶上一中2016年中考数学一模试卷一、选择题(每题3分,共30分)1.如下图的几何体是由一些立方块搭成的,那么那个几何体的左视图是()A.B.C.D.2.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.以下事件是必然事件的为()A.相等的圆周角所对的弧相等B.方程x2﹣x+1=0有两个不等实根C.同一个角的正弦值和余弦值的和等于1D.圆的切线垂直于过切点的半径4.一小球被抛出后,距离地面的高度h (米)和飞行时刻t (秒)知足下面函数关系式:h=﹣5(t﹣1)2+6,那么小球距离地面的最大高度是()A.1米B.5米C.6米D.7米5.济宁市某经济开发区,今年一月份工业产值达10亿元,第一季度总产值为75亿元,二、三月平均每一个月增加率是多少,假设设平均每一个月的增加率为x,依照题意,可列方程为()A.10(1+x)2=75 B.10+10(1+x)+10(1+x)2=75C.10(1+x)+10(1+x)2=75 D.10+10(1+x)2=756.如图,在平面直角坐标系xOy中,直线y=x通过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,取得△CBD,假设点B的坐标为(4,0),那么点C的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣2,2)D.(﹣2,4)7.如图,小颖利用一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为(即小颖的眼睛距地面的距离),那么这棵树高是()A.4m B. m C.(5+)m D.( +)m8.某气球充满必然质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如下图,当气球内的气压大于140kPa时,气球将爆炸,为了平安起见,气体体积应()A.不大于m3B.不小于m3C.不大于m3D.不小于m39.以下说法正确的有()(1)如图(a),能够利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),能够利用直角曲尺检查工件是不是为半圆形;(3)如图(c),两次利用丁字尺(CD所在直线垂直平分线段AB)能够找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角度数,等于从P点看A点时仰角的度数.A.1个B.2个C.3个D.4个10.如图是二次函数y=ax2+bx+c图象的一部份,其对称轴为x=﹣1,且过点(﹣3,0).以下说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④假设(﹣5,y1),(,y2)是抛物线上两点,那么y1>y2.其中说法正确的选项是()A.①② B.②③ C.①②④D.②③④二、填空题(每题3分,共15分)11.A、B、C、D、E五张卡片上别离写有tan30°,﹣2,π,4,五个实数,从中任取一张卡片,那么取到的数是无理数的概率为______.12.若是方程x2﹣4x+3=0的两根别离是Rt△ABC的两条直角边,△ABC最小的角为∠A,那么tanA的值为______.13.如下图,一条河的两岸有一段是平行的,河宽36米,在河的南岸边每隔几米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边24米的点P处看北岸,发觉北岸相邻的两根电线杆恰好被南岸的两棵树遮住,而且在这两棵树之间还有三棵树,那么每两棵树间的距离______米.14.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么以下结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④CD2>BD•AD,正确的有______.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.别离过这些点作x轴与y轴的垂线,图中所组成的阴影部份的面积从左到右依次为S1,S2,S3,那么S1+S2+S3=______.三、解答题16.(1)计算:(1﹣)0﹣tan60°+(﹣)﹣1(2)解方程:3(x﹣1)2=x(x﹣1)17.如图①所示,将直尺摆放在三角板上,使直尺与三角板的边别离交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的极点B,交AC边于点H,如图②所示,点H,B在直尺上的读数别离为4,,求BC的长(结果保留两位小数).(参考数据:sin42°≈,cos42°≈,tan42°≈)18.甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为﹣7,﹣1,3.乙袋中的三张卡片上所标的数值为﹣2,1,6.先从甲袋中随机掏出一张卡片,用x表示掏出的卡片上的数值,再从乙袋中随机掏出一张卡片,用y表示掏出的卡片上的数值,把x,y别离作为点A的横坐标和纵坐标.(1)用适当的方式写出点A(x,y)的所有情形;(2)求点A落在反比例函数y=﹣图象上的概率.19.如图,在边长为1的正方形组成的网格中成立直角坐标系,△AOB的极点均在格点上,点O为原点,点A,B的坐标别离是(3,2)、B(1,3).(1)将△AOB向下平移3个单位后取得△A1O1B1,那么点B1的坐标为______;(2)将△AOB绕点O逆时针旋转90°后取得△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为______;(3)在(2)中的旋转进程中,线段OA扫过的图形的面积______.20.“孟子居”是邹城市闻名特色老零嘴小吃,在大学校园深受欢迎,产品畅销省内外,现有一个产品销售点在经销时发觉:若是每箱产品盈利10元,天天可售出60箱;假设每箱产品涨价1元,日销售量将减少3箱.(1)现该销售点天天盈利648元,同时又要顾客取得实惠,那么每箱产品应涨价多少元?(2)假设该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?并求出可取得的最高利润.21.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判定直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,假设AC=2,⊙O的半径是3,求∠BEC的正切值.22.(11分)(2016•微山县校级一模)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,并在抛物线的对称轴上找一点P,使三角形PBD的周长最小,求出点D和点P的坐标;(3)在直线CD下方的抛物线上是不是存在一点E,使得△DCE的面积最大,假设有求出点E的坐标及面积的最大值.2016年山东省济宁市汶上一中中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如下图的几何体是由一些立方块搭成的,那么那个几何体的左视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】依照左视图的概念即可作出判定.【解答】解:如下图的几何体的左视图是A.应选A.【点评】此题题考查了简单组合体的三视图,正确把握观看角度是解题关键.2.以下图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的概念和中心对称图形的概念回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.应选:D.【点评】此题要紧考查的是轴对称图形和中心对称图形,把握轴对称图形和中心对称图形的特点是解题的关键.3.以下事件是必然事件的为()A.相等的圆周角所对的弧相等B.方程x2﹣x+1=0有两个不等实根C.同一个角的正弦值和余弦值的和等于1D.圆的切线垂直于过切点的半径【考点】随机事件.【分析】依照事件发生的可能性大小判定相应事件的类型即可.【解答】解:A.相等的圆周角所对的弧相等是随机事件;B.方程x2﹣x+1=0有两个不等实根是不可能事件;C.同一个角的正弦值和余弦值的和等于1是随机事件;D.圆的切线垂直于过切点的半径是必然事件,应选:D.【点评】此题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在必然条件下,必然发生的事件.不可能事件是指在必然条件下,必然不发生的事件,不确信事件即随机事件是指在必然条件下,可能发生也可能不发生的事件.4.一小球被抛出后,距离地面的高度h (米)和飞行时刻t (秒)知足下面函数关系式:h=﹣5(t﹣1)2+6,那么小球距离地面的最大高度是()A.1米B.5米C.6米D.7米【考点】二次函数的应用.【分析】第一明白得题意,先把实际问题转化成数学问题后,明白解此题确实是求出h=﹣5(t﹣1)2+6的极点坐标即可.【解答】解:∵高度h和飞行时刻t 知足函数关系式:h=﹣5(t﹣1)2+6,∴当t=1时,小球距离地面高度最大,∴h=﹣5×(1﹣1)2+6=6米,应选C.【点评】解此题的关键是把实际问题转化成数学问题,利用二次函数的性质就能够求出结果,二次函数y=ax2+bx+c的极点坐标是(﹣,)当x等于﹣时,y的最大值(或最小值)是.5.济宁市某经济开发区,今年一月份工业产值达10亿元,第一季度总产值为75亿元,二、三月平均每一个月增加率是多少,假设设平均每一个月的增加率为x,依照题意,可列方程为()A.10(1+x)2=75 B.10+10(1+x)+10(1+x)2=75C.10(1+x)+10(1+x)2=75 D.10+10(1+x)2=75【考点】由实际问题抽象出一元二次方程.【分析】此题是增加率问题,一样用增加后的量=增加前的量×(1+增加率),设平均每一个月的增加率为x,先用x表示出二月份的产值,再依照题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:设平均每一个月的增加率为x,那么二月份的产值为:10(1+x)亿元,三月份的产值为:10(1+x)(1+x)=10(1+x)2亿元,依照题意,得10+10(1+x)+10(1+x)2=75.应选B.【点评】此题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够别离表示出二、三月份的产值,难度不大.6.如图,在平面直角坐标系xOy中,直线y=x通过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°,取得△CBD,假设点B的坐标为(4,0),那么点C的坐标为()A.(﹣2,2)B.(﹣4,2)C.(﹣2,2)D.(﹣2,4)【考点】坐标与图形转变-旋转;一次函数图象上点的坐标特点.【分析】作CH⊥x轴于H点,如图,先求出A点坐标取得AB=4,再利用旋转的性质取得BC=BA=4,∠ABC=60°,那么∠CBH=30°,然后依照含30度的直角三角形三边的关系,在Rt△CBH中计算出CH和BH,从而可取得C点坐标.【解答】解:作CH⊥x轴于H点,如图,当x=4时,y=x=4,那么A(4,4),∴AB=4,∵△ABO绕点B逆时针旋转60°,取得△CBD,∴BC=BA=4,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=2,BH=CH=6,∴OH=BH﹣OB=6﹣4=2,∴C点坐标为(﹣2,2).应选A.【点评】此题考查了坐标与图形变换﹣旋转:图形或点旋转以后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决此题的关键是旋转的性质的熟练运用.7.如图,小颖利用一个锐角是30°的三角板测量一棵树的高度,已知她与树之间的水平距离BE为5m,AB为(即小颖的眼睛距地面的距离),那么这棵树高是()A.4m B. m C.(5+)m D.( +)m【考点】解直角三角形的应用.【分析】过A作AD⊥CE于D,依照题意得出AD=BE=5m,然后在Rt△ACD中利用锐角三角函数的概念求出CD的长,由CE=CD+DE即可得出结论.【解答】解:过A作AD⊥CE于D,∵AB⊥BE,DE⊥BE,AD⊥CE,∴四边形ABED是矩形,∵BE=5m,AB=,∴AD=BE=5m,DE=AB=.在Rt△ACD中,∵∠CAD=30°,AD=5m,∴CD=AD•tan30°=5×=,∴CE=CD+DE=+=(+)m.答:这棵树高是(+)m.应选D.【点评】此题考查的是解直角三角形在实际生活中的应用,作出辅助线,熟知锐角三角函数的概念是解答此题的关键.8.某气球充满必然质量的气体后,当温度不变时,气球内的气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如下图,当气球内的气压大于140kPa时,气球将爆炸,为了平安起见,气体体积应()A.不大于m3B.不小于m3C.不大于m3D.不小于m3【考点】反比例函数的应用.【分析】依照题意有:当温度不变时,气球内的气体的气压P是气体体积V的反比例函数,其图象过点(,120),故可求其解析式;故当气球内的气压不大于140kPa时,气体体积应不小于m3.【解答】解:设球内气体的气压P(kPa)和气体体积V(m3)的关系式为P=,∵图象过(,120)∴P==,∴当P≤140kPa时,V≥m3.应选B.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确信两个变量之间的函数关系.然后再依照题意确信变量的取值范围.9.以下说法正确的有()(1)如图(a),能够利用刻度尺和三角板测量圆形工件的直径;(2)如图(b),能够利用直角曲尺检查工件是不是为半圆形;(3)如图(c),两次利用丁字尺(CD所在直线垂直平分线段AB)能够找到圆形工件的圆心;(4)如图(d),测倾器零刻度线和铅垂线的夹角度数,等于从P点看A点时仰角的度数.A.1个B.2个C.3个D.4个【考点】切线的性质;垂径定理的应用;圆周角定理;解直角三角形的应用-仰角俯角问题.【分析】依照圆的切线性质和圆周角定理、弦的垂直平分线的性质和同角的余角相等和仰角的概念逐项分析即可.【解答】解:(1)依照切线的性质可知两平行切线之间的线段为圆的直径,故此说法正确;(2)依照圆中,直径所对的圆周角为90°,故正确;(3)符合圆心的几何确信方式,故正确;(4)依照仰角的概念和同角的余角相等可知此操作正确;应选D.【点评】此题考查大体的测量理论,要求学生依照几何知识,结合实际操作,做出判定.10.如图是二次函数y=ax2+bx+c图象的一部份,其对称轴为x=﹣1,且过点(﹣3,0).以下说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④假设(﹣5,y1),(,y2)是抛物线上两点,那么y1>y2.其中说法正确的选项是()A.①② B.②③ C.①②④D.②③④【考点】二次函数图象与系数的关系.【分析】依照图象得出a>0,b=2a>0,c<0,即可判定①②;把x=2代入抛物线的解析式即可判定③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),依照当x>﹣1时,y随x的增大而增大即可判定④.【解答】解:∵二次函数的图象的开口向上,∴a>0,∵二次函数的图象y轴的交点在y轴的负半轴上,∴c<0,∵二次函数图象的对称轴是直线x=﹣1,∴﹣=﹣1,∴b=2a>0,∴abc<0,∴①正确;2a﹣b=2a﹣2a=0,∴②正确;∵二次函数y=ax2+bx+c图象的一部份,其对称轴为x=﹣1,且过点(﹣3,0).∴与x轴的另一个交点的坐标是(1,0),∴把x=2代入y=ax2+bx+c得:y=4a+2b+c>0,∴③错误;∵二次函数y=ax2+bx+c图象的对称轴为x=﹣1,∴点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),依照当x>﹣1时,y随x的增大而增大,∵<3,∴y2<y1,∴④正确;应选:C.【点评】此题考查了二次函数的图象与系数的关系的应用,题目比较典型,要紧考查学生的明白得能力和辨析能力.二、填空题(每题3分,共15分)11.A、B、C、D、E五张卡片上别离写有tan30°,﹣2,π,4,五个实数,从中任取一张卡片,那么取到的数是无理数的概率为.【考点】概率公式;无理数.【分析】先依照无理数的概念取得tan30°,π,4这三个数为无理数,然后依照概率公式求解.【解答】解:5个数中有3个无理数,因此从中任取一张卡片,那么取到的数是无理数的概率=.故答案为.【点评】此题考查了概率公式:随机事件A的概率P(A)=事件A可能显现的结果数除以所有可能显现的结果数.解决此题的关键是利用无理数的概念确信哪些数为无理数.12.若是方程x2﹣4x+3=0的两根别离是Rt△ABC的两条直角边,△ABC最小的角为∠A,那么tanA的值为.【考点】根与系数的关系;锐角三角函数的概念.【分析】先利用因式分解法解方程取得x1=1,x2=3,那么∠A所对的边为1,∠B对的边为3,然后依照正切的概念求解.【解答】解:∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,∴x1=1,x2=3,∵△ABC最小的角为∠A,∴∠A所对的边为1,∠B对的边为3,∴tanA=.故答案为.【点评】此题考查了根与系数的关系:假设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了因式分解法解一元二次方程和锐角三角函数的概念.13.如下图,一条河的两岸有一段是平行的,河宽36米,在河的南岸边每隔几米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边24米的点P处看北岸,发觉北岸相邻的两根电线杆恰好被南岸的两棵树遮住,而且在这两棵树之间还有三棵树,那么每两棵树间的距离 5 米.【考点】相似三角形的应用.【分析】依照题意,河两岸平行,故可得△ABP∽△DPC,依照相似三角形对应高的比等于相似比,列出方程,求解即可.【解答】解:如图,过点P作PE⊥DC,交AB于点F,设每两棵树间的距离xm,依照题意可得:∵AB∥CD∴△ABP∽△DPC,∴=,∴=,解得:x=5,故答案为:5.【点评】此题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.14.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连接AC、BC、OC,那么以下结论中:①PC2=PA•PB;②PC•OC=OP•CD;③OA2=OD•OP;④CD2>BD•AD,正确的有①②③.【考点】相似三角形的判定与性质;切线的性质.【分析】①证明△PBC∽△PCA,即可取得结论,这事实上是圆的切割线定理,正确;②依照切线的性质定理,得OC⊥PC,求出△OCD∽△OPC,得出比例式即可,正确;③依照相似三角形的性质得出比例式,即可得出答案,正确;④证△BDC∽△CDA,即可得出答案,错误.【解答】解:①∵PC与⊙O相切于点C,∴∠PCB=∠A,∠P=∠P,∴△PBC∽△PCA,∴PC2=PA•PB;②∵OC⊥PC,PC切⊙O于C,∴∠PCO=∠CDO=90°,∵∠COD=∠POC,∴△OCD∽△OPC,∴=,∴PC•OC=OP•CD;③∵△OCD∽△OPC,∴=,∴OC2=OD•OP,∵OA=OC,∴OA2=OD•OP;④∵AB为直径,∴∠BCA=90°,∵CD⊥AB,∴∠BDC=∠ADC=90°,∴∠B+∠BCD=∠BCD+∠ACD=90°,∴∠B=∠ACD,∴△BDC∽△CDA,∴=,∴CD2=BD•AD,∴①②③正确;④错误;故答案为:①②③.【点评】此题考查了切线的性质,相似三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:圆的切线垂直于过切点的半径.15.如图,在反比例函数y=(x>0)的图象上,有点P1,P2,P3,P4,它们的横坐标依次为1,2,3,4.别离过这些点作x轴与y轴的垂线,图中所组成的阴影部份的面积从左到右依次为S1,S2,S3,那么S1+S2+S3= .【考点】反比例函数系数k的几何意义.【分析】依照反比例函数的几何意义,可知图中所组成的阴影部份的总面积正好是从点P1向x轴、y轴引垂线组成的长方形面积减去最下方的长方形的面积,据此作答.【解答】解:由题意,可知点P1、P2、P3、P4坐标别离为:(1,2),(2,1),(3,),(4,).解法一:∵S1=1×(2﹣1)=1,S2=1×(1﹣)=,S3=1×(﹣)=,∴S1+S2+S3=1++=.解法二:∵图中所组成的阴影部份的总面积正好是从点P1向x轴、y轴引垂线组成的长方形面积减去最下方的长方形的面积,∴1×2﹣×1=.故答案为:.【点评】此题要紧考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是常常考查的一个知识点;那个地址表现了数形结合的思想,做此类题必然要正确明白得k的几何意义.三、解答题16.(1)计算:(1﹣)0﹣tan60°+(﹣)﹣1(2)解方程:3(x﹣1)2=x(x﹣1)【考点】解一元二次方程-因式分解法;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】(1)依照非零的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,特殊角三角函数值,可得答案;(2)依照因式分解法,可得方程的解.【解答】解:(1)原式=1﹣﹣2=﹣1﹣;(2)移项,得3(x﹣1)2﹣x(x﹣1)=0,因式分解,得(x﹣1)[3(x﹣1)﹣x]=0于是,得(x﹣1)(2x﹣3)=0x﹣1=0或2x﹣3=0,解得x1=1,x2=.【点评】此题考查了解一元二次方程,因式分解是解题关键.17.如图①所示,将直尺摆放在三角板上,使直尺与三角板的边别离交于点D,E,F,G,已知∠CGD=42°(1)求∠CEF的度数;(2)将直尺向下平移,使直尺的边缘通过三角板的极点B,交AC边于点H,如图②所示,点H,B在直尺上的读数别离为4,,求BC的长(结果保留两位小数).(参考数据:sin42°≈,cos42°≈,tan42°≈)【考点】解直角三角形.【分析】(1)先依照直角三角形的两锐角互为求出∠CDG的度数,再依照两直线平行,同位角相等求出∠DEF,然后依照三角形的一个外角等于与它不相邻的两个内角的和即可求出∠EFA;(2)依照度数求出HB的长度,再依照∠CBH=∠CGD=42°,利用42°的余弦值进求解.【解答】解:(1)∵∠CGD=42°,∠C=90°,∴∠CDG=90°﹣42°=48°,∵DG∥EF,∴∠CEF=∠CDG=48°;(2)∵点H,B的读数别离为4,,∴HB=﹣4=(m),∴BC=HBcos42°≈×≈(m).答:BC的长为.【点评】此题考查了解直角三角形与平行线的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,综合性较强,但难度不大,认真分析图形并认真计算即可.18.甲,乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的三个数值为﹣7,﹣1,3.乙袋中的三张卡片上所标的数值为﹣2,1,6.先从甲袋中随机掏出一张卡片,用x表示掏出的卡片上的数值,再从乙袋中随机掏出一张卡片,用y表示掏出的卡片上的数值,把x,y别离作为点A的横坐标和纵坐标.(1)用适当的方式写出点A(x,y)的所有情形;(2)求点A落在反比例函数y=﹣图象上的概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特点.【分析】(1)列表得出所有等可能的情形数即可;(2)判定落在双曲线上点的情形数,求出所求的概率即可.【解答】解:(1)列表如下:所有等可能的情形有9种;(2)落在双曲线y=﹣上的点有:(3,﹣2),(﹣1,6)共2个,∴点A落在反比例函数y=﹣图象上的概率=.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情形数与总情形数之比.19.如图,在边长为1的正方形组成的网格中成立直角坐标系,△AOB的极点均在格点上,点O为原点,点A,B的坐标别离是(3,2)、B(1,3).(1)将△AOB向下平移3个单位后取得△A1O1B1,那么点B1的坐标为(1,0);(2)将△AOB绕点O逆时针旋转90°后取得△A2OB2,请在图中作出△A2OB2,并求出这时点A2的坐标为(﹣2,3);(3)在(2)中的旋转进程中,线段OA扫过的图形的面积π.【考点】作图-旋转变换;作图-平移变换.【分析】(1)利用网格特点和点平移的规律取得点A1、B1、O1,的坐标,然后描点取得△A1B1O1;(2)利用网格特点和旋转的性质画出点A、B对应点A2、B2,那么可取得△A2B2O,再写出点A2的坐标;(3)线段OA扫过的图形是以O为圆心,OA为半径,圆心角为90度的扇形,那么利用扇形面积公式可计算出线段OA扫过的图形的面积.【解答】解:(1)如图,△A1O1B1为所作,点B1的坐标为(1,0);(2)如图,△A2OB2为所作,点A2的坐标为(﹣2,3);(3)OA==,因此在(2)中的旋转进程中,线段OA扫过的图形的面积==π.故答案为(1,0),(﹣2,3),π.【点评】此题考查了作图﹣旋转变换:依照旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此能够通过作相等的角,在角的边上截取相等的线段的方式,找到对应点,按序连接得出旋转后的图形.也考查了平移变换.20.“孟子居”是邹城市闻名特色老零嘴小吃,在大学校园深受欢迎,产品畅销省内外,现有一个产品销售点在经销时发觉:若是每箱产品盈利10元,天天可售出60箱;假设每箱产品涨价1元,日销售量将减少3箱.(1)现该销售点天天盈利648元,同时又要顾客取得实惠,那么每箱产品应涨价多少元?(2)假设该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?并求出可取得的最高利润.【考点】二次函数的应用;一元二次方程的应用.【分析】(1)设每箱产品应涨价x元,列出方程即可解决问题.(2)设利润为y元,构建二次函数,利用二次函数的性质解决问题.【解答】解:(1)设每箱产品应涨价x元,那么天天能够销售(60﹣3x)箱,每箱的利润(10+x)元,由题意:(60﹣3x)(10+x)=648,整理得x2﹣10x+16=0,解得x=2或x=8,∵要顾客取得实惠,∴x=2.答:每箱产品应涨价2元.(2)设利润为y元,那么y=(60﹣3x)(10+x)=﹣3x2+30x+600,∵x=﹣=5成心义,∴x=5时,利润最大,现在y=675.答:每箱产品应涨价5元获利最高,最高利润为675元.【点评】此题考查二次函数的应用、一元二次方程等知识,解题的关键是学会构建一元二次方程和二次函数解决实际问题,学会利用二次函数的性质,解决最值问题,属于中考常考题型.21.如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)判定直线CD和⊙O的位置关系,并说明理由.(2)过点B作⊙O的切线BE交直线CD于点E,假设AC=2,⊙O的半径是3,求∠BEC的正切值.【考点】切线的性质;直线与圆的位置关系;解直角三角形.【分析】(1)连接OD,证明OD⊥CE,因此需证明∠CDA+∠ODA=90°;(2)依照已知条件在Rt△CDO中,由勾股定理求得:CD=4,又CE切⊙O于D,EB切⊙O于B,由切线长定理得DE=EB,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,那么(a+x)2=x2+(5+3)2,解得:x=6,即 BE=6,然后由正切函数的概念解得∠BEC的正切值.【解答】解:(1)直线CD与⊙O的位置关系是相切.理由:连接OD,如下图:∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即:OD⊥CE,∴直线CD 是⊙O的切线.即:直线CD 与⊙O的位置关系是相切.(2)∵AC=2,⊙O的半径是3,∴OC=2=3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4.∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,有勾股定理得:CE2=BE2+BC2,那么(a+x)2=x2+(5+3)2,解得:x=6,即 BE=6,∴tan∠BEC=,即:tan∠BEC=.【点评】此题考查了切线的性质、直线与圆的位置关系、解直角三角形,解题的关键是①把握直线与圆的三种位置关系及其判定方式,②把握圆的切线的性质及勾股定理的应用、正切函数的概念.22.(11分)(2016•微山县校级一模)如图,已知二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x轴的另一个交点为D,并在抛物线的对称轴上找一点P,使三角形PBD的周长最小,求出点D和点P的坐标;(3)在直线CD下方的抛物线上是不是存在一点E,使得△DCE的面积最大,假设有求出点E的坐标及面积的最大值.【考点】二次函数综合题.【分析】(1)由A、B、C三点的坐标,利用待定系数法即可求出二次函数的解析式;(2)将y=0代入二次函数解析式,解关于x的方程,求出点D的坐标.连接AB与抛物线的对称轴交于点P,点P即为所求,依照点A、B点的坐标可求出直线AB的解析式,依照二次函数的解析式可找出对称轴的解析式,将其代入直线AB的解析式中即可求出点P的坐标;(3)假设存在,过点E作EF∥y轴,交直线CD于点F.由点C、D的坐标利用待定系数法即可求出直线CD的解析式,设出点E的坐标,由此即可得出点F的坐标,利用分割图形求面积法找出S△DCE关于x的二次解析式,利用二次函数的性质即可解决最值问题.【解答】解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,﹣1)和C(4,5)三点,。
2016年中考数学模拟试卷7(济宁市有答案和解释)2016年山东省济宁市中考数学模拟试卷(七)一、选择题:本大题共l0小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求. 1.在0,2,(�3)0,�5这四个数中,最大的数是() A.0 B.2 C.(�3)0 D.�5 2.在下列单项式中,与2xy是同类项的是() A.2x2y2 B.3y C.xy D.4x 3.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1 4.若代数式在实数范围内有意义,则x的取值范围是() A.x≥�2 B.x>�2 C.x≥2 D.x≤2 5.当1<a<2时,代数式 +|1�a|的值是() A.�1 B.1 C.2a�3 D.3�2a 6.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为()A.6 B.6 C.9 D.3 7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,表是这l0户居民2016年4月份用电量的调查结果:居民 1 2 3 4 月用电量(度/户) 30 42 50 那么关于这10户居民月用电量(单位:度),下列说法错误的是() A.中位数是50 B.众数是51 C.方差是42 D.平均数为46.8 8.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为() A.236π B.136π C.132π D.120π 9.如图,在等腰△ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是() A. B. C. D. 10.如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为() A.13 B. C. D.12 二、填空题:本大题共5小题,每小题3分,共15分• 11.分解因式:m3n�4mn= . 12.计算:(�3)2017•(�)2016= . 13.如图,已知点A(0,1),B(0,�1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠B AC等于度. 14.点A(�l,1)是反比例函数y= 的图象上一点,则m的值为. 15.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为(用含n的代数式表示,n为正整数).三、解答题:本大题共7小题,共55分. 16.先化简,再求值:• ,其中a=5. 17.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性. 18.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线. 19.如图所示,港口B位于港口O 正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h 的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离. 20.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下: x 30 32 34 36 y 40 36 32 28 (1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x 的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大? 21.如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF= ,求AB的长. 22.如图,抛物线y=�x2+bx+c交x轴于点A(�3,0)和点B,交y轴于点C (0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC 上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值. 2016年山东省济宁市中考数学模拟试卷(七)参考答案与试题解析一、选择题:本大题共l0小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项符合题目要求. 1.在0,2,(�3)0,�5这四个数中,最大的数是() A.0 B.2 C.(�3)0 D.�5 【考点】实数大小比较;零指数幂.【分析】先利用a0=1(a≠0)得(�3)0=1,再利用两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小即可得出结果.【解答】解:在0,2,(�3)0,�5这四个数中,最大的数是2,故选B.【点评】本题考查了有理数的大小比较和零指数幂,掌握有理数大小比较的法则和a0=1(a≠0)是解答本题的关键. 2.在下列单项式中,与2xy是同类项的是() A.2x2y2 B.3y C.xy D.4x 【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,同类项与字母的顺序无关,与系数无关.【解答】解:与2xy 是同类项的是xy.故选:C.【点评】此题考查同类项,关键是根据同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,还有注意同类项与字母的顺序无关,与系数无关. 3.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值() A.11 B.5 C.2 D.1 【考点】三角形三边关系.【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【解答】解:根据三角形的三边关系可得:AB�BC<AC<AB+BC,∵AB=6,BC=4,∴6�4<AC<6+4,即2<AC<10,则边AC的长可能是5.故选:B.【点评】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键. 4.若代数式在实数范围内有意义,则x的取值范围是() A.x≥�2 B.x>�2 C.x≥2 D.x≤2 【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:根据题意得:x�2≥0,解得x≥2.故选:C.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数. 5.当1<a<2时,代数式 +|1�a|的值是() A.�1 B.1 C.2a�3 D.3�2a 【考点】二次根式的性质与化简.【分析】利用a的取值范围,进而去绝对值以及开平方得出即可.【解答】解:∵1<a<2,∴ +|1�a| =2�a+a�1 =1.故选:B.【点评】此题主要考查了二次根式的性质与化简,正确开平方得出是解题关键. 6.如图,在△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为() A.6 B.6 C.9 D.3 【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】根据线段垂直平分线上的点到线段两端距离相等可得AD=BD,可得∠DAE=30°,易得∠ADC=60°,∠CAD=30°,则AD 为∠BAC的角平分线,由角平分线的性质得DE=CD=3,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,得结果.【解答】解:∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=90°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,∴BC=9,故选C.【点评】本题主要考查了垂直平分线的性质,角平分线上的点到角的两边距离相等的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键. 7.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,表是这l0户居民2016年4月份用电量的调查结果:居民 1 2 3 4 月用电量(度/户) 30 42 50 那么关于这10户居民月用电量(单位:度),下列说法错误的是() A.中位数是50 B.众数是51 C.方差是42 D.平均数为46.8 【考点】方差;算术平均数;中位数;众数.【分析】根据表格中的数据,求出平均数,中位数,众数,极差与方差,即可做出判断.【解答】解:10户居民2015年4月份用电量为30,42,42,50,50,50,51,51,51,51,中位数为50;众数为51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,方差为 [(30�46.8)2+2(42�46.8)2+3(50�46.8)2+4(51�46.8)2]=42.96,故选:C.【点评】此题考查了方差,中位数,众数,以及极差,熟练掌握各自的求法是解本题的关键. 8.如图是某几何体的三视图,根据图中所标的数据求得该几何体的体积为() A.236πB.136πC.132π D.120π【考点】由三视图判断几何体.【分析】根据给出的几何体的三视图可知几何体是由大小两个圆柱组成,从而根据三视图的特点得知高和底面直径,代入体积公式计算即可.【解答】解:由三视图可知,几何体是由大小两个圆柱组成,故该几何体的体积为:π×22×2+π×42×8 =8π+128π=136π.故选:B.【点评】本题考查的是由三视图判断几何体的形状并计算几何体的体积,由该三视图中的数据确定圆柱的底面直径和高是解本题的关键,本题体现了数形结合的数学思想. 9.如图,在等腰△ABC中,直线l 垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l 与△ABC的边相交于E、F两点.设线段EF的长度为y,平移时间为t,则下图中能较好反映y与t的函数关系的图象是()A. B. C. D.【考点】动点问题的函数图象.【专题】数形结合.【分析】作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得∠B=∠C,BD=CD=m,当点F从点B运动到D 时,如图1,利用正切定义即可得到y=tanB•t(0≤t≤m);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC•CF=�tan B•t+2mtanB(m≤t≤2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断.【解答】解:作AD⊥BC于D,如图,设点F运动的速度为1,BD=m,∵△ABC为等腰三角形,∴∠B=∠C,BD=CD,当点F从点B运动到D时,如图1,在Rt△BEF中,∵tanB= ,∴y=tanB•t(0≤t≤m);当点F从点D 运动到C时,如图2,在Rt△CEF中,∵tanC= ,∴y=tanC•CF =tanC•(2m�t) =�tanB•t+2mtanB(m≤t≤2m).故选B.【点评】本题考查了动点问题的函数图象:利用三角函数关系得到两变量的函数关系,再利用函数关系式画出对应的函数图象.注意自变量的取值范围. 10.如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC 沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为() A.13 B. C. D.12 【考点】翻折变换(折叠问题).【专题】计算题.【分析】利用三线合一得到G 为BC的中点,求出GC的长,过点A作AG⊥BC于点G,在直角三角形AGC中,利用锐角三角函数定义求出AG的长,再由E为AC中点,求出EC的长,进而求出FC的长,利用勾股定理求出EF的长,在直角三角形DEF中,利用勾股定理求出x的值,即可确定出BD的长.【解答】解:过点A作AG⊥BC于点G,∵AB=AC,BC=24,tanC=2,∴ =2,GC=BG=12,∴AG=24,∵将△ABC沿直线l翻折后,点B落在边AC 的中点处,过E点作EF⊥BC于点F,∴EF= AG=12,∴ =2,∴FC=6,设BD=x,则DE=x,∴DF=24�x�6=18�x,∴x2=(18�x)2+122,解得:x=13,则BD=13.故选A.【点评】此题主要考查了翻折变换的性质以及勾股定理和锐角三角函数关系,根据已知表示出DE的长是解题关键.二、填空题:本大题共5小题,每小题3分,共15分• 11.分解因式:m3n�4mn= mn(m�2)(m+2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式mn,再利用平方差公式分解因式得出即可.【解答】解:m3n�4mn =mn(m2�4)=mn(m�2)(m+2).故答案为:mn(m�2)(m+2).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确运用平方差公式是解题关键. 12.计算:(�3)2017•(�)2016= �3 .【考点】幂的乘方与积的乘方.【分析】直接利用幂的乘方运算法则将原式变形,进而利用积的乘方运算法则求出答案.【解答】解:(�3)2017•(�)2016 =(�3)×(�3)2016×(�)2016 =�3×[(�3)×(�)]2016 =�3×1 =�3.故答案为:�3.【点评】此题主要考查了幂的乘方与积的乘方,正确掌握运算法则是解题关键. 13.如图,已知点A(0,1),B(0,�1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则∠BAC等于60 度.【考点】垂径定理;坐标与图形性质;等边三角形的判定与性质;勾股定理.【分析】求出OA、AC,通过余弦函数即可得出答案.【解答】解:∵A(0,1),B(0,�1),∴AB=2,OA=1,∴AC=2,在Rt△AOC 中,cos∠BAC= = ,∴∠BAC=60°,故答案为60.【点评】本题考查了垂径定理的应用,关键是求出AC、OA的长. 14.点A(�l,1)是反比例函数y= 的图象上一点,则m的值为�2 .【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(�l,1)代入反比例函数y= ,求出m的值即可.【解答】解:∵点A(�l,1)是反比例函数y= 的图象上一点,∴m+1=1×(�1)=�1,解得m=�2.故答案为:�2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键. 15.在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…Sn,则Sn的值为22n�3 (用含n的代数式表示,n为正整数).【考点】一次函数图象上点的坐标特征;正方形的性质.【专题】压轴题;规律型.【分析】根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第二个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出Sn的值.【解答】方法一:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=�1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴S1= ×1×1= ,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2= ×(21)2=21 同理得:A3C2=4=22,…,S3= ×(22)2=23 ∴Sn= ×(2n�1)2=22n�3 故答案为:22n�3.方法二:∵y=x+1,正方形A1B1C1O,∴OA1=OC1=1,A2C1=2,B1C1=1,∴A2B1=1,S1= ,∵OC2=1+2=3,∴A3C2=4,B2C2=2,∴A3B2=2,S2=2,∴q= =4,∴Sn= .【点评】本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.三、解答题:本大题共7小题,共55分. 16.先化简,再求值:• ,其中a=5.【考点】分式的化简求值.【专题】计算题.【分析】原式约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式= • = ,当a=5时,原式= .【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 17.某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.【考点】折线统计图;中位数;方差.【专题】计算题.【分析】(1)根据折线统计图得出A,B两种品牌冰箱的销售台数,分别求出中位数与方差即可;(2)根据(1)的结果比较即可得到结果.【解答】解:(1)A品牌冰箱月销售量从小到大的排列为:13,14,15,16,17, B品牌冰箱月销售量从小到大排列为:10,14,15,16,20,∴A品牌冰箱月销售量的中位数为15台,B品牌冰箱月销售量的中位数为15台,∵ = =15(台);= =15(台),则SA2= =2,SB2= =10.4;(2)∵SA2<SB2,∴A 品牌冰箱的月销售量稳定.【点评】此题考查了折线统计图,中位数,以及方差,熟练掌握各自的求法是解本题的关键. 18.如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.(1)求BC的长;(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O 的切线.【考点】切线的判定;含30度角的直角三角形;圆周角定理.【分析】(1)根据圆周角定理求得∠ADB=90°,然后解直角三角形即可求得BD,进而求得BC即可;(2)要证明直线DE是⊙O的切线只要证明∠EDO=90°即可.【解答】证明:(1)解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ABC=30°,AB=4,∴BD=2 ,∵D是BC的中点,∴BC=2BD=4 ;(2)证明:连接OD.∵D 是BC的中点,O是AB的中点,∴DO是△ABC的中位线,∴OD∥AC,则∠EDO=∠CED 又∵DE⊥AC,∴∠CED=90°,∠EDO=∠CED=90°∴DE是⊙O的切线.【点评】此题主要考查了切线的判定以及含30°角的直角三角形的性质.解题时要注意连接过切点的半径是圆中的常见辅助线. 19.如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.【考点】解直角三角形的应用-方向角问题.【分析】(1)要求B到C的时间,已知其速度,则只要求得BC的路程,再利用路程公式即可求得所需的时间;(2)过C作CD⊥OA,垂足为D,设相会处为点E.求出OC=OB•cos30°=60 ,CD= OC=30 ,OD=OC•cos30°=90,则DE=90�3v.在直角△CDE中利用勾股定理得出CD2+DE2=CE2,即(30 )2+(90�3v)2=602,解方程求出v=20或40,进而求出相遇处与港口O的距离.【解答】解:(1)∵∠CBO=60°,∠COB=30°,∴∠BCO=90°.在Rt△BCO中,∵OB=120,∴BC= OB=60,∴快艇从港口B到小岛C的时间为:60÷60=1(小时);(2)过C作CD⊥OA,垂足为D,设相会处为点E.则OC=OB•cos30°=60 ,CD= OC=30 ,OD=OC•cos30°=90,∴DE=90�3v.∵CE=60,CD2+DE2=CE2,∴(30 )2+(90�3v)2=602,∴v=20或40,∴当v=20km/h时,OE=3×20=60km,当v=40km/h时,OE=3×40=120km.【点评】此题考查了解直角三角形的应用�方向角问题,锐角三角函数的定义,勾股定理等知识,理解方向角的定义,得出∠BCO=90°是解题的关键,本题难易程度适中. 20.某商店购进一种商品,每件商品进价30元.试销中发现这种商品每天的销售量y(件)与每件销售价x(元)的关系数据如下: x 30 32 34 36 y 40 36 32 28 (1)已知y与x满足一次函数关系,根据上表,求出y与x之间的关系式(不写出自变量x的取值范围);(2)如果商店销售这种商品,每天要获得150元利润,那么每件商品的销售价应定为多少元?(3)设该商店每天销售这种商品所获利润为w(元),求出w与x之间的关系式,并求出每件商品销售价定为多少元时利润最大?【考点】二次函数的应用.【分析】(1)根据待定系数法解出解析式即可;(2)根据题意列出方程解答即可;(3)根据题意列出函数解析式,利用函数解析式的最值解答即可.【解答】解:(1)设该函数的表达式为y=kx+b,根据题意,得,解得:.故该函数的表达式为y=�2x+100;(2)根据题意得,(�2x+100)(x�30)=150,解这个方程得,x1=35,x2=45,故每件商品的销售价定为35元或45元时日利润为150元;(3)根据题意,得 w=(�2x+100)(x�30) =�2x2+160x�3000 =�2(x�40)2+200,∵a=�2<0 则抛物线开口向下,函数有最大值,即当x=40时,w的值最大,∴当销售单价为40元时获得利润最大.【点评】此题考查二次函数的应用,关键是根据题意列出方程和函数解析式,利用函数解析式的最值分析. 21.如图,矩形纸片ABCD,将△AMP和△BPQ分别沿PM和PQ折叠(AP>AM),点A和点B都与点E重合;再将△CQD沿DQ折叠,点C落在线段EQ上点F处.(1)判断△AMP,△BPQ,△CQD和△FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM=1,sin∠DMF= ,求AB的长.【考点】翻折变换(折叠问题);相似三角形的判定;解直角三角形.【分析】(1)由矩形的性质得∠A=∠B=∠C=90°,由折叠的性质和等角的余角相等,可得∠BPQ=∠AMP=∠DQC,所以△AMP∽△BPQ∽△CQD;(2)先证明MD=MQ,然后根据sin∠DMF= = ,设DF=3x,MD=5x,表示出AP、BP、BQ,再根据△AMP∽△BPQ,列出比例式解方程求解即可.【解答】解:(1)△AMP∽△BPQ∽△CQD,∵四边形ABCD是矩形,∴∠A=∠B=∠C=90°,根据折叠的性质可知:∠APM=∠EPM,∠EPQ=∠BPQ,∴∠APM+∠BPQ=∠EPM+∠EPQ=90°,∵∠APM+∠AMP=90°,∴∠BPQ=∠AMP,∴△AMP∽△BPQ,同理:△BPQ∽△CQD,根据相似的传递性,△AMP∽△CQD;(2)∵AD∥BC,∴∠DQC=∠MDQ,根据折叠的性质可知:∠DQC=∠DQM,∴∠MDQ=∠DQM,∴MD=MQ,∵AM=ME,BQ=EQ,∴BQ=MQ�ME=MD�AM,∵sin∠DMF= = ,∴设DF=3x,MD=5x,∴BP=PA=PE= ,BQ=5x�1,∵△AMP∽△BPQ,∴ ,∴ ,解得:x= (舍)或x=2,∴AB=6.【点评】本题主要考查了相似三角形的判定与性质、矩形的性质、翻折的性质以及锐角三角函数的综合运用,在求AB长的问题中,关键是恰当的设出未知数表示出一对相似三角形的对应边列比例式. 22.如图,抛物线y=�x2+bx+c交x轴于点A(�3,0)和点B,交y轴于点C(0,3).(1)求抛物线的函数表达式;(2)若点P在抛物线上,且S△AOP=4SBOC,求点P的坐标;(3)如图b,设点Q是线段AC上的一动点,作DQ⊥x轴,交抛物线于点D,求线段DQ长度的最大值.【考点】二次函数综合题.【专题】压轴题.【分析】(1)把点A、C的坐标分别代入函数解析式,列出关于系数的方程组,通过解方程组求得系数的值;(2)设P点坐标为(x,�x2�2x+3),根据S△AOP=4S△BOC列出关于x的方程,解方程求出实用精品文献资料分享x的值,进而得到点P的坐标;(3)先运用待定系数法求出直线AC 的解析式为y=x+3,再设Q点坐标为(x,x+3),则D点坐标为(x,x2+2x�3),然后用含x的代数式表示QD,根据二次函数的性质即可求出线段QD长度的最大值.【解答】解:(1)把A(�3,0),C(0,3)代入y=�x2+bx+c,得,解得.故该抛物线的解析式为:y=�x2�2x+3.(2)由(1)知,该抛物线的解析式为y=�x2�2x+3,则易得B(1,0).∵S△AOP=4S△BOC,∴ ×3×|�x2�2x+3|=4× ×1×3.整理,得(x+1)2=0或x2+2x�7=0,解得x=�1或x=�1±2 .则符合条件的点P的坐标为:(�1,4)或(�1+2 ,�4)或(�1�2 ,�4);(3)设直线AC的解析式为y=kx+t,将A(�3,0),C(0,3)代入,得,解得.即直线AC的解析式为y=x+3.设Q点坐标为(x,(�3≤x≤0),则D点坐标为(x,�x2�2x+3), QD=(�x2�2x+3)x+3),�(x+3)=�x2�3x=�(x+ )2+ ,∴当x=�时,QD有最大值.【点评】此题考查了待定系数法求二次函数、一次函数的解析式,二次函数的性质以及三角形面积、线段长度问题.此题难度适中,解题的关键是运用方程思想与数形结合思想.。
2019年山东省济宁市微山县付村一中中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个2.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm4.一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B. C.﹣4 D.25.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π6.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.7.在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5° B.135°C.112.5°D.45°8.如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.9.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.10.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.2二、填空题:本大题共5小题,每小题3分,共15分11.若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是.12.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为.13.已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=.14.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.15.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.三、解答题:本大题共6小题,共35分16.对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.18.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.20.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.21.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.2019年山东省济宁市微山县付村一中中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.2.如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解答】解:∵∠1=∠2∴∠DAE=∠BAC∴A,C,D都可判定△ABC∽△ADE选项B中不是夹这两个角的边,所以不相似,故选B.3.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm【考点】垂径定理;勾股定理.【分析】先根据垂径定理求出OA、AM的长,再利用勾股定理求OM.【解答】解:由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED⊥AB于点M,则ED=10cm,AB=8cm,由垂径定理知:点M为AB中点,∴AM=4cm,∵半径OA=5cm,∴OM2=OA2﹣AM2=25﹣16=9,∴OM=3cm.故选:A.4.一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B. C.﹣4 D.2【考点】一元二次方程的解.【分析】将x=﹣2代入方程ax2+bx+c=0中的左边,得到4a﹣2b+c,由4a﹣2b+c=0得到方程左右两边相等,即x=﹣2是方程的解.【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.5.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π【考点】等腰梯形的性质;切线的性质;弧长的计算.【分析】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,由等腰梯形的性质可得到BM=AM=2,从而可求得∠BAD的度数,再根据弧长公式即可求得长.【解答】解:连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为,故选A.6.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当x=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.7.在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5° B.135°C.112.5°D.45°【考点】圆内接四边形的性质;解一元一次方程.【分析】根据四边形ABCD是⊙O的内接四边形,得出∠A+∠C=180°,∠B+∠D=180°,设∠A=2a,∠B=3a,∠C=6a,得出2a+6a=180°,求出a的值,求出∠B的度数,即可求出答案.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A:∠B:∠C=2:3:6,设∠A=2a,∠B=3a,∠C=6a,则2a+6a=180°,∴a=22.5°,∴∠B=3a=67.5°,∴∠D=180°﹣∠B=112.5°.故选C.8.如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.【考点】专题:正方体相对两个面上的文字.【分析】让朝上一面的数字恰好等于朝下一面上的数字的3倍的情况数除以总情况数即为朝上一面的数字恰好等于朝下一面上的数字的3倍的概率.【解答】解:抛掷这个立方体,共6种情况,其中2,6;1,3;4,5是相对的面,6朝上,3朝上共2种情况,可使朝上一面的数字恰好等于朝下一面上的数字的3倍,故其概率为:,故选:B.9.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.10.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF等于()A.B.1 C.D.2【考点】相似三角形的判定与性质;解一元一次方程;角平分线的性质;勾股定理;矩形的性质.【分析】根据矩形的性质得到AD=BC=5,∠D=∠B=∠C=90°,根据三角形的角平分线的性质得到DF=EF,由勾股定理求出AE、BE,证△ABE∽△ECF,得出=,代入求出即可.【解答】解:∵四边形ABCD是矩形,∴AD=BC=5,∠D=∠B=∠C=90°,∵AF平分∠DAE,EF⊥AE,∴DF=EF,由勾股定理得:AE2=AF2﹣EF2,AD2=AF2﹣DF2,∴AE=AD=5,在△ABE中由勾股定理得:BE==3,∴EC=5﹣3=2,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴=,∴=,∴CF=.故选C.二、填空题:本大题共5小题,每小题3分,共15分11.若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是k≤.【考点】根的判别式.【分析】由于方程左边为完全平方式,则右边必须为非负数,即1﹣2k≥0,然后解不等式即可.【解答】解:根据题意得1﹣2k≥0,解得k≤.故答案为k≤.12.若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为﹣3.【考点】根与系数的关系.【分析】由方程x2﹣3x﹣1=0的两根为x1、x2,根据一元二次方程根与系数的关系,即可求得x1+x2=3,x1x2=﹣1,又由=,代入求解即可求得答案.【解答】解:∵方程x2﹣3x﹣1=0的两根为x1、x2,∴x1+x2=3,x1x2=﹣1,∴==﹣3.故答案为:﹣3.13.已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=﹣.【考点】关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得,将两式相加得出a+b 的值.【解答】解:由题意得:,则5a+5b=﹣6,a+b=﹣.故答案为:﹣.14.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为(2,).【考点】位似变换;坐标与图形性质.【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,根据此题是线段AC的中点P 变换后在第一象限对应点的坐标进而得出答案.【解答】解:∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为:(2,).故答案为:(2,).15.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.【考点】平面展开-最短路径问题;等边三角形的性质;圆锥的计算.【分析】求出圆锥底面圆的周长,则以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB 为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC=90°,连接BP,根据勾股定理求出BP即可.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP===3,故答案为:3.三、解答题:本大题共6小题,共35分16.对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.【考点】整式的混合运算—化简求值.【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可.【解答】解:=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1∵x2﹣3x+1=0,∴x2﹣3x=﹣1.∴原式=﹣2(x2﹣3x)﹣1=2﹣1=1.故的值为1.17.如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据直线y=kx+3与y轴分别交于B点,以及tan∠OAB=,即可得出A点坐标,从而得出一次函数的解析式;(2)根据△AOC的面积是4,得出三角形的高,即可求出C点的坐标.【解答】解:(1)∵直线y=kx+3与y轴交于B点,∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.18.某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A 处测得宣传牌底部D的仰角为45°,沿山坡向上走到B处测得宣传牌底部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】过B分别作AE、DE的垂线,设垂足为F、G.分别在Rt△ABF和Rt△ADE中,通过解直角三角形求出BF、AF、DE的长,进而可求出EF即BG的长;在Rt△CBG中,∠CBG=30°,求出CG的长;根据CD=CG+GE﹣DE即可求出宣传牌的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE﹣DE=5+5+5﹣15=(5﹣5)m.答:宣传牌CD高约(5﹣5)米.19.如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.【考点】切线的判定;作图-旋转变换.【分析】(1)把三角形ABC绕A旋转120°就能得到图形.(2)连接MQ,过M点作MF⊥DE,由AN=3,AC=4,求出NE的长;在Rt△MFQ中,利用勾股定理可求出QF,根据垂径定理知QF就是弧长PQ的一半.(3)过M作AD的垂线设垂足为H,然后证MH与⊙M半径的大小关系即可;连接AM、MN,由于AE是⊙M的切线,故MN⊥AE,在Rt△AMN中,通过解直角三角形,易求得∠MAN=30°,由此可证得AM是∠DAE的角平分线,根据角平分线的性质即可得到MH=MN,由此可证得⊙M与AD相切.【解答】解:(1)如图Rt△ADE就是要画的图形(2)连接MQ,过M点作MF⊥DE,垂足为F,由Rt△ABC可知,AC=AB,根据翻折变换的知识得到AC=AE=4,NE=AE﹣AN=4﹣3=1,在Rt△MFQ中,解得FQ=,故弦PQ的长度2.(3)AD与⊙M相切.证明:过点M作MH⊥AD于H,连接MN,MA,则MN⊥AE,且MN=,在Rt△AMN中,tan∠MAN==,∴∠MAN=30°,∵∠DAE=∠BAC=60°,∴∠MAD=30°,∴∠MAN=∠MAD=30°,∴MH=MN,∴AD与⊙M相切.20.阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=2,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.【考点】根的判别式.【分析】(1)直接利用求根公式计算即可;(2)参照(1)中的解法解题即可.【解答】解:(1)2x2﹣7x+6=0,∵△=49﹣48=1>0,∴x=,∴x1=2,x2=,∴满足要求的矩形B存在.故答案为2,;(2)设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2﹣3x+2=0,∵△=9﹣16<0,∴不存在矩形B.21.如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.【考点】等腰三角形的判定;全等三角形的判定与性质;勾股定理;正方形的判定.【分析】(1)利用已知条件,可证出△BCE≌△DCF(SAS),即CE=CF.(2)借助(1)的全等得出∠BCE=∠DCF,∴∠GCF=∠BCE+∠DCG=90°﹣∠GCE=45°,即∠GCF=∠GCE,又因为CE=CF,CG=CG,∴△ECG≌△FCG,∴EG=GF,∴GE=DF+GD=BE+GD.(3)过C作CG⊥AD,交AD延长线于G,先证四边形ABCG是正方形(有一组邻边相等的矩形是正方形).再设DE=x,利用(1)、(2)的结论,在Rt△AED中利用勾股定理可求出DE.【解答】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.2019年10月22日。
2016年山东省济宁市中考数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者1 2 3 4 5编号成绩/分 96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,889.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x的取值范围是.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.2016年山东省济宁市中考数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【考点】有理数大小比较.【分析】根据有理数大小比较的法则解答.【解答】解:∵在0,﹣2,1,这四个数中,只有﹣2是负数,∴最小的数是﹣2.故选B.2.下列计算正确的是()A.x2•x3=x5B.x6+x6=x12 C.(x2)3=x5D.x﹣1=x【考点】负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式利用同底数幂的乘法,合并同类项,幂的乘方及负整数指数幂法则计算,即可作出判断.【解答】解:A、原式=x5,正确;B、原式=2x6,错误;C、原式=x6,错误;D、原式=,错误,故选A3.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A.20°B.30°C.35°D.50°【考点】平行线的性质.【分析】由垂线的性质和平角的定义求出∠3的度数,再由平行线的性质即可得出∠2的度数.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠3=180°﹣90°﹣∠1=35°,∵a∥b,∴∠2=∠3=35°.故选:C.4.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A.B.C. D.【考点】简单几何体的三视图.【分析】观察几何体,找出左视图即可.【解答】解:如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是,故选D5.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【考点】圆心角、弧、弦的关系.【分析】先由圆心角、弧、弦的关系求出∠AOC=∠AOB=50°,再由圆周角定理即可得出结论.【解答】解:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选C.6.已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【考点】代数式求值.【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故选:A.7.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A.16cm B.18cm C.20cm D.21cm【考点】平移的性质.【分析】先根据平移的性质得到CF=AD=2cm,AC=DF,而AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD,然后利用整体代入的方法计算即可【解答】解:∵△ABE向右平移2cm得到△DCF,∴EF=AD=2cm,AE=DF,∵△ABE的周长为16cm,∴AB+BE+AE=16cm,∴四边形ABFD的周长=AB+BE+EF+DF+AD=AB+BE+AE+EF+AD=16cm+2cm+2cm=20cm.故选C.8.在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者1 2 3 4 5编号成绩/分96 88 86 93 86那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【考点】众数;中位数.【分析】找出五位同学演讲成绩出现次数最多的分数即为众数,将分数按照从小到大的顺序排列,找出中位数即可.【解答】解:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,则这五位同学演讲成绩的众数与中位数依次是86,88,故选D9.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【考点】概率公式;利用轴对称设计图案.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选B.10.如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【考点】反比例函数与一次函数的交点问题.【分析】过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,设OA=a,BF=b,通过解直角三角形分别找出点A、F的坐标,结合反比例函数图象上点的坐标特征即可求出a、b的值,通过分割图形求面积,最终找出△AOF的面积等于梯形AMNF的面积,利用梯形的面积公式即可得出结论.【解答】解:过点A 作AM ⊥x 轴于点M ,过点F 作FN ⊥x 轴于点N ,如图所示.设OA=a ,BF=b ,在Rt △OAM 中,∠AMO=90°,OA=a ,sin ∠AOB=,∴AM=OA •sin ∠AOB=a ,OM==a ,∴点A 的坐标为(a , a ).∵点A 在反比例函数y=的图象上, ∴a ×a==48, 解得:a=10,或a=﹣10(舍去).∴AM=8,OM=6.∵四边形OACB 是菱形,∴OA=OB=10,BC ∥OA ,∴∠FBN=∠AOB .在Rt △BNF 中,BF=b ,sin ∠FBN=,∠BNF=90°,∴FN=BF •sin ∠FBN=b ,BN==b , ∴点F 的坐标为(10+b , b ).∵点B 在反比例函数y=的图象上, ∴(10+b )×b=48,解得:b=,或b=(舍去). ∴FN=,BN=﹣5,MN=OB+BN ﹣OM=﹣1.S △AOF =S △AOM +S 梯形AMNF ﹣S △OFN =S 梯形AMNF =(AM+FN )•MN=(8+)×(﹣1)=×(+1)×(﹣1)=40.故选D .二、填空题:本大题共5小题,每小题3分,共15分11.若式子有意义,则实数x 的取值范围是 x ≥1 .【考点】二次根式有意义的条件.【分析】根据二次根式的性质可以得到x﹣1是非负数,由此即可求解.【解答】解:依题意得x﹣1≥0,∴x≥1.故答案为:x≥1.12.如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:AH=CB等(只要符合要求即可),使△AEH≌△CEB.【考点】全等三角形的判定.【分析】开放型题型,根据垂直关系,可以判断△AEH与△CEB有两对对应角相等,就只需要找它们的一对对应边相等就可以了.【解答】解:∵AD⊥BC,CE⊥AB,垂足分别为D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°﹣∠AHE,又∵∠EAH=∠BAD,∴∠BAD=90°﹣∠AHE,在Rt△AEH和Rt△CDH中,∠CHD=∠AHE,∴∠EAH=∠DCH,∴∠EAH=90°﹣∠CHD=∠BCE,所以根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故填空答案:AH=CB或EH=EB或AE=CE.13.如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,D F=5,那么的值等于.【考点】平行线分线段成比例.【分析】首先求出AD的长度,然后根据平行线分线段成比例定理,列出比例式即可得到结论.【解答】解:∵AG=2,GD=1,∴AD=3,∵AB∥CD∥EF,∴=,故答案为:.14.已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是80km/h.【考点】分式方程的应用.【分析】设这辆汽车原来的速度是xkm/h,由题意列出分式方程,解方程求出x的值即可.【解答】解:设这辆汽车原来的速度是xkm/h,由题意列方程得:,解得:x=80经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.故答案为:80.15.按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【考点】规律型:数字的变化类.【分析】把整数1化为,可以发现后一个数的分子恰是前面数的分母,分析即可求解.【解答】解:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是3,故答案为:.三、解答题:本大题共7小题,共55分16.先化简,再求值:a(a﹣2b)+(a+b)2,其中a=﹣1,b=.【考点】整式的混合运算—化简求值.【分析】原式利用单项式乘以多项式,以及完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣2ab+a2+2ab+b2=2a2+b2,当a=﹣1,b=时,原式=2+2=4.17.2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【考点】条形统计图;折线统计图.【分析】(1)将销售总额减去2012、2014、2015年的销售总额,求出2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.【解答】解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.18.某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【考点】解直角三角形的应用-坡度坡角问题.【分析】(1)由新坡面的坡度为1:,可得tanα=tan∠CAB==,然后由特殊角的三角函数值,求得答案;(2)首先过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB的长,则可求得答案.【解答】解:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.19.某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【考点】一元二次方程的应用.【分析】(1)设年平均增长率为x,根据:2014年投入资金给×(1+增长率)2=2016年投入资金,列出方程组求解可得;(2)设今年该地有a户享受到优先搬迁租房奖励,根据:前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万,列不等式求解可得.【解答】解:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.20.如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【考点】正方形的性质.【分析】(1)根据正方形的性质以及勾股定理即可求得;(2)根据等腰三角形三线合一的性质证得CE⊥AF,进一步得出∠BAF=∠BCN,然后通过证得△ABF≌△CBN得出AF=CN,进而证得△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.【解答】解:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.21.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【考点】一次函数综合题.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.22.如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)利用轴对称求最短路径的方法,首先通过B点关于l的对称点B′来确定P点位置,再求出直线B′E的解析式,进而得出P点坐标;(3)可以先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D 点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG直线解析式可求出点Q坐标.【解答】解:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x ﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).2016年6月25日。
2014年高中阶段招生考试数学模拟试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,70分;共100分.考试时间为120分钟.2.答第Ⅰ卷前务必每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.3.答第Ⅱ卷时,将密封线内的项目填写清楚,在题号所示答题区域作答,答题作图时,先用2B铅笔试画,无误后用黑色签字笔描黑.4.填空题请直接将答案填写在答题卡上,解答题应写出文字说明、证明过程、或演算步骤. 第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,满分30分.在每小题给出得四个选项中,只有一个符合题意要求.1.0.49的算术平方根是()A.0.7 B.-0.7 C.±0.7 D.02.合并同类项,正确的是()A.3a+3b=6ab B.3y2-2y2=1 C.-23ab+23ba=0 D.2x2+x3=5x53.下列说法中,错误的是()A.3-3-ππ=B.3是无理数 C.2的相反数是-2 D.13的倒数是34.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个 B.2个 C.3个 D.4个5.为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间的说法错误的是()A.众数是9 B.中位数是9 C.平均数是9 D.锻炼时间不低于9小时的有14人4题图5题图6. 已知方程2210x x--=,此方程()A.无实数根 B. 两根之和为-2 C.两根之积为-1 D.一根为27.已知△ABC 的各边长度分别为3cm ,4cm ,5cm ,则这个三角形外接圆的半径为( ) A .2cm B .2.4cm C .2.5cm D .6cm 8. 一次函数y1=kx+b 与y2=x+a 的图象如图,则下列结 论中①k <0;②a >0;③当x <3时,y1<y2; ④方程组1y kx b=+ 3x =的解是2y x a=+ 1y =正确的个数是( )A .1个B .2个C .3个D .4个9. 在等腰直角三角形ABC 中,AB=AC=4,点O 为BC 的中点,以O 为圆心作⊙O 交BC 于点M 、N ,⊙O 与AB 、AC 相切,切点分别为D 、E ,则⊙O 的半径和∠MND 的度数分别为( )A .2,22.5°B .3,30°C .3,22.5°D . 2,30°10. 如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE-ED-DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm2).已知y 与t 的函数图象如图2,则下列结论错误的是( )A .AE=6cmB .sin ∠EBC= 45C .当0<t ≤10时,y= 25t2D .当t=12s 时,△PBQ 是等腰三角形第Ⅱ卷(非选择题共70分)二、填空题:本大题共5小题,每小题3分,共15分11. 点()11,x y、()22,x y在反比例函数kyx=的图象上,当12x x<<时,12y y<,则k的取值可以是.(只填一个符合条件的k的值)12. 如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.13. 如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC ⊥AP于点C,OD⊥PB于点D,则CD的长为.14.将4个数a b c d,,,排成2行、2列,两边各加一条竖直线记成a bc d,定义a bc d ad bc=-,上述记号就叫做2阶行列式.若1 1811x xx x+-=-+,则x=.15.如图,平面直角坐标系中,已知矩形OABC,O为原点,点A、C分别在x轴、y轴上,点B 的坐标为(1,2),连接OB,将△OAB沿直线OB翻折,点A落在点D的位置.则点D的坐标为.三、解答题:本大题共7个小题,共55分16.(5分)解方程10522112x x +=--17.(6分)四张小卡片上分别写有数字-1、-2、3、4,它们除数字外没有任何区别,现将它们放在盒子里搅匀.(1)随机地从盒子里抽取一张,求抽到数字3的概率;(2)随机地从盒子里抽取一张,将数字记为x ,不放回再抽取第二张,将数字记为y ,请你用画树状图或列表的方法表示所有等可能的结果,并求出点(x ,y )在函数y=2x 图象上的概率.18.(7分)如图,AB ∥CD ,AB=CD ,点E 、F 在BC 上,且BE=CF . (1)求证:△ABE ≌△DCF ;(2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形.19.(7分)阅读材料,解答问题. 利用图象法解一元二次不等式:x2+2x-3<0.解:设y=x2+2x-3,则y 是x 的二次函数.∵a=1>0, ∴抛物线开口向上.又∵当y=0时,x2+2x-3=0,解得x1=1,x2=-3. ∴由此得抛物线y=x2+2x-3的大致图象如图所示. 观察函数图象可知:当-3<x <1时,y <0. ∴x2+2x-3<0的解集是:-3<x <1时.(1)观察图象,直接写出一元二次不等式:x2+2x-3>0的解集 (2)仿照上例,用图象法解一元二次不等式:-2x2-4x+6>0.20.(8分)济宁市金乡县是中国大蒜之乡, A 村有大蒜200吨,B 村有大蒜300吨,现将这些大蒜运到C ,D 两个冷藏仓库.已知C 仓库可储存240吨,D 仓库可储存260吨,从A 村运往C ,D 两处的费用分别为每吨20元和25元;从B 村运往C ,D 两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的大蒜为x 吨,A ,B 两村运大蒜往两仓库的运输费用分别为yA 元,yB 元.(1)请填写下表,CD 总计A x吨200吨B 300吨总计240吨260吨500吨(2)并求出yA,yB与x之间的函数关系式,并求出自变量的取值范围;(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.21.(10分)如图,⊙O的半径为1,直线CD经过圆心O,交⊙O于C、D两点,直径AB⊥CD,点M是直线CD上异于点C、O、D的一个动点,AM所在的直线交于⊙O于点N,点P是直线CD 上另一点,且PM=PN.(1)当点M在⊙O内部,如图一,试判断PN与⊙O的关系,并写出证明过程;(2)当点M在⊙O外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由;(3)当点M在⊙O外部,如图三,∠AMO=15°,求图中阴影部分的面积.22.(12分)如图,抛物线y=-18x2+mx+n经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式及点C的坐标;(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;2014年高中阶段招生考试数学模拟试题答案一、选择题:本题共10小题,每题3分,共30分。
济宁微山中考数学试卷真题一、选择题1. 设函数 y = |x| + 2,以下哪个点(a,b)不在函数的图像上?A. (0,2)B. (-2,0)C. (1,3)D. (-1,1)2. 已知△ABC,AB=AC,角B=40°,则角A的度数是:A. 40°B. 80°C. 100°D. 140°3. 若正方体ABCD-EFGH的体积为1,E为ABC的底面中点,G为ADE的高点,则正方体的体积是:A. 1/3B. 1/2C. 2D. 34. 已知正比例函数 y = kx,当 x = 4 时,y = 20;当 x = 6 时,y = 30,则 k =?A. 2B. 3C. 4D. 55. 若函数 f(x) 的图像关于原点对称,则 f(x) 的解析式可能是:A. f(x) = x^3 + x^2B. f(x) = x^2 + 1C. f(x) = √xD. f(x) = 1/x二、填空题1. 将长方形纸片剪去一个小正方形后,得到的图形是一个面积为200 cm²的矩形,剪去小正方形的边长为 ______ cm。
2. 一次函数 y = kx + b,已知当 x = -2 时,y = 1;当 x = 3 时,y = -2。
则该函数的解析式为 ______。
3. 若三角形的三个内角的度数分别是 x°、(2x - 10)°、(5x + 20)°,则x 的值为 ______。
4. 增量为 6 的等差数列的首项是 3,其中第 10 项的值为 ______。
5. 若直线 y = 2x + k 与圆 x^2 + y^2 = 10 相切,则常数 k 的值为______。
三、解答题1. 某数学竞赛共有300人参加,其中男生人数是女生人数的3倍。
若每个男生可以满足3个女生的请求,每个女生可以满足2个男生的请求,那么最多有多少对男女生互相满足对方请求?解:设女生的人数为 x,则男生的人数为 3x。
微山县2016-2017学年第一学期期中考试九年级数学试题(时间:110分钟 满分:100分)注意事项:1.本试题分第l 卷和第Ⅱ卷两部分,共8页.第1卷第l 页至第2页为选择题,30 分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷(选择题,共30分)一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.下列图形中,既是轴对称图形又是中心对称图形的是( )2.下列方程是关于X 的一元二次方程的是( )A .2x 2+3=x(2x 一1)B .09212=-+x xC .x 2=OD .ax 2+bx+c=O 3.若关于x 的一元二次方程x 2+bx+c=O 的两个实数根分别为x 1=-2,x2=4,则b+c 的值是( )A .-l0B .10C .-6D .一l4.下列事件属于必然事件的是( )A.明天太阳从东方升起 B .购买2张彩票,其中1张中奖C .随机掷一枚骰子,朝上一面上的数字大于6D .投篮l0次,一次都没投中5.如图,PA 与圆D 相切于点A ,P0交⊙D 于点C ,点B 是优弧CBA 上一点,若∠P=26°,则∠ABC 的度数为( )A .26°B .64°C .32°D .90°6.如图,从一块直径是2的圆形硬纸片上剪出一个圆心角为90°扇形.则这个扇形的面积为( ) A .π B .π43c .π21 D .π427.已知3是关于x 的方程x 2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .10C .11D .10或ll8.如图,抛物线y=-x 2-2x +3与x 轴交于点A ,B ,把抛物线与线段AB 围城的图形记为C 1,将C l 绕点B 中心对称变换得C 2,C 2与x 轴交于另一点C ,将C 2绕点C 中心对称变换得C 3,连接C ,与C 3的顶点,则图中阴影部分的面积为( )A .32B .24C .36D .489.如图,AB 是⊙D 的直径,AD 切⊙D 于点A ,EC=CB .则下列结论:①BA ⊥DA ; ②OC ∥AE ;③∠COE=2∠CAE ;④0D⊥AC .一定正确的个数有( )A .4个B .3个C .2个D .1个10.如图,抛物线y=a x 2+b x +c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为 (一1,O),其部分图象如图所示,下列结论: ①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;③3a+c >0④当y >0时,x 的取值范围是﹣1≤x <3 ⑤若⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-21,310,,23y y 是抛物线上两点,则y 1<y 2.其中结论正确的个数是( )A .4个B .3个C .2个D .1个一、选择题(答题栏)(每小题3分,共30分)第Ⅱ卷(选择题共70分)二、填空题:本大题共5小题,每小题3分,共l5分.11.关于x 的一元二次方程群a x 2+b x +1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值 .12.把抛物线y=x 2+b x +c 向右平移3个单位长度,再向上平移2个单位长度,所得函数图象的解析式是y= x 2-2x+5,则b+c= .13.在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为14.二次函数y=a x 2+b x +c (a ≠0) (a ≠0,a ,b ,C 为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是.15.如图所示,⊙D内切△ABC,切点分别为M,G,N,DE切0D于F点,交AC,AB于点D,E,若△ABC的周长为l2,BC=2,则△ADE的周长是.三、解答题:本大题共7,J、题,共55分.16.(6分)解方程:3x(x-2)=2(2-x).17.(6分)如图,点D在等边△ABC的边BC上.(1)把△ACD绕点A顺时针旋转,使点C与点露重合,画出旋转后的△ABD′;(2)如果AC=4,CD=1,求(1)中点D旋转所走过的路程.18.(7分)一天,小明和小智一起玩卡片游戏,他们分别握有三张正面分别标有字母A,B,C,的不透明卡片.游戏约定:每人将各自的卡片背面朝工弄洗均匀,然后随机抽取一张,两张卡片中,如果同为元音或辅音字母,则为平局;如果一个元音字母一个辅音字母,则抽到元音字母者获胜.(1)请用列表或画树状图的方法列举出所有出现结果的可能性;(2)求小明获胜的概率.19.(8分)2016年9月5日,二十国集团领导人杭州峰会在杭州国际博览中心继续举行,这次峰会吸引了大批游客在“十一”假期间前往杭州旅游.为抓住商机,两个商家对同样一件售价为50元/个的产品进行促销活动.甲商家用如下方法促销:若购买该商品不超过l0个,按原价付款:若一次购买l0个以上.且购买的个数每增加一个,其价格减少l元,但该商品的售价不得低于35元/个;乙店一律按原价的80%销售.现购买该商品x个,如果全部在甲商家购买,则所需金额为y1元:如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y l,y2与x之间的函数关系式;(2)若一位游客花800元,最多能购买多少个该商品?20. (8分)已知直线,与⊙0,AB是⊙0的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E.F时,求证::∠DAE=∠BAF.21.(9分)阅读下面材料【材料一】按一定顺序排列的一列数称为数列,记作:{a n}(n属于正整数).数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第l项(通常也叫做首项),记作:a l;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第打位的数称为这个数列的第n项,记作:a n.【材料二】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.例如:数列l0,l5,20,25是等差数列.如果数列a l,a2,a3,…,a n,…是等差数列,那么a2一a l=d,a3一a2=d,,…,a n-a n-l=d.即:a2=a l+d,a3=a2+d=a l+d+d=a l+2d,a4=a3+d=a l+3d,….根据上述材料,解答问题(1)下列数列属于等差数列的县 (只填序号).①l,2,3,4,5.②2,4,6,8,10,11.③l,1,1,1,1.(2)已知数列{an}是等差数列,①a l=1,a2=4,a3=7,…。
2016年山东省济宁市微山县付村一中中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED3.(3分)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm4.(3分)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.25.(3分)如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π6.(3分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.7.(3分)在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5°B.135°C.112.5°D.45°8.(3分)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.9.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.10.(3分)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF 等于()A.B.1 C.D.2二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是.12.(3分)若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为.13.(3分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=.14.(3分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.15.(3分)如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.三、解答题:本大题共6小题,共35分16.(6分)对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.17.(7分)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.18.(7分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.19.(8分)如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.20.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.21.(9分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.2016年山东省济宁市微山县付村一中中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个【解答】解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.2.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED【解答】解:∵∠1=∠2∴∠DAE=∠BAC∴A,C,D都可判定△ABC∽△ADE选项B中不是夹这两个角的边,所以不相似,故选B.3.(3分)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm【解答】解:由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED⊥AB于点M,则ED=10cm,AB=8cm,由垂径定理知:点M为AB中点,∴AM=4cm,∵半径OA=5cm,∴OM2=OA2﹣AM2=25﹣16=9,∴OM=3cm.故选:A.4.(3分)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.2【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a ﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.5.(3分)如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π【解答】解:连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为,故选A.6.(3分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.7.(3分)在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5°B.135°C.112.5°D.45°【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A:∠B:∠C=2:3:6,设∠A=2a,∠B=3a,∠C=6a,则2a+6a=180°,∴a=22.5°,∴∠B=3a=67.5°,∴∠D=180°﹣∠B=112.5°.故选C.8.(3分)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.【解答】解:抛掷这个立方体,共6种情况,其中2,6;1,3;4,5是相对的面,6朝上,3朝上共2种情况,可使朝上一面的数字恰好等于朝下一面上的数字的3倍,故其概率为:,故选:B.9.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.10.(3分)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF 等于()A.B.1 C.D.2【解答】解:∵四边形ABCD是矩形,∴AD=BC=5,∠D=∠B=∠C=90°,∵AF平分∠DAE,EF⊥AE,∴DF=EF,由勾股定理得:AE2=AF2﹣EF2,AD2=AF2﹣DF2,∴AE=AD=5,在△ABE中由勾股定理得:BE==3,∴EC=5﹣3=2,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴=,∴=,∴CF=.故选C.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是k≤.【解答】解:根据题意得1﹣2k≥0,解得k≤.故答案为k≤.12.(3分)若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为﹣3.【解答】解:∵方程x2﹣3x﹣1=0的两根为x1、x2,∴x1+x2=3,x1x2=﹣1,∴==﹣3.故答案为:﹣3.13.(3分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=﹣.【解答】解:由题意得:,则5a+5b=﹣6,a+b=﹣.故答案为:﹣.14.(3分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为(2,).【解答】解:∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为:(2,).故答案为:(2,).15.(3分)如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP===3,故答案为:3.三、解答题:本大题共6小题,共35分16.(6分)对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.【解答】解:=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1∵x2﹣3x+1=0,∴x2﹣3x=﹣1.∴原式=﹣2(x2﹣3x)﹣1=2﹣1=1.故的值为1.17.(7分)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.18.(7分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE﹣DE=5+5+5﹣15=(5﹣5)m.答:宣传牌CD高约(5﹣5)米.19.(8分)如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.【解答】解:(1)如图Rt△ADE就是要画的图形(2)连接MQ,过M点作MF⊥DE,垂足为F,由Rt△ABC可知,AC=AB,根据翻折变换的知识得到AC=AE=4,(3)AD与⊙M相切.证明:过点M作MH⊥AD于H,连接MN,MA,则MN⊥AE,且MN=,在Rt△AMN中,tan∠MAN==,∴∠MAN=30°,∵∠DAE=∠BAC=60°,∴∠MAD=30°,∴∠MAN=∠MAD=30°,∴MH=MN,∴AD与⊙M相切.20.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=2,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.【解答】解:(1)2x2﹣7x+6=0,∵△=49﹣48=1>0,∴x=,∴x=2,x=,故答案为2,;(2)设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2﹣3x+2=0,∵△=9﹣16<0,∴不存在矩形B.21.(9分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.【解答】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。
2016年山东省济宁市微山县付村一中中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个2.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED3.(3分)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm4.(3分)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.25.(3分)如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π6.(3分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.7.(3分)在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5°B.135°C.112.5°D.45°8.(3分)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.9.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.10.(3分)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF 等于()A.B.1 C.D.2二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是.12.(3分)若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为.13.(3分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=.14.(3分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为.15.(3分)如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.三、解答题:本大题共6小题,共35分16.(6分)对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.17.(7分)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.18.(7分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.19.(8分)如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.20.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.21.(9分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.2016年山东省济宁市微山县付村一中中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分1.(3分)下列图形中,既是轴对称图形又是中心对称图形的有()A.4个 B.3个 C.2个 D.1个【解答】解:①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③是轴对称图形,也是中心对称图形;④是轴对称图形,也是中心对称图形.故选B.2.(3分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC ∽△ADE的是()A.B.C.∠B=∠D D.∠C=∠AED【解答】解:∵∠1=∠2∴∠DAE=∠BAC∴A,C,D都可判定△ABC∽△ADE选项B中不是夹这两个角的边,所以不相似,故选B.3.(3分)过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM的长为()A.3cm B.6cm C.cm D.9cm【解答】解:由题意知,最长的弦为直径,最短的弦为垂直于直径的弦,如图所示.直径ED⊥AB于点M,则ED=10cm,AB=8cm,由垂径定理知:点M为AB中点,∴AM=4cm,∵半径OA=5cm,∴OM2=OA2﹣AM2=25﹣16=9,∴OM=3cm.故选:A.4.(3分)一元二次方程ax2+bx+c=0,若4a﹣2b+c=0,则它的一个根是()A.﹣2 B.C.﹣4 D.2【解答】解:将x=﹣2代入ax2+bx+c=0的左边得:a×(﹣2)2+b×(﹣2)+c=4a ﹣2b+c,∵4a﹣2b+c=0,∴x=﹣2是方程ax2+bx+c=0的根.故选A.5.(3分)如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则长为()A. B. C. D.3π【解答】解:连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为,故选A.6.(3分)函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C. D.【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选C.7.(3分)在圆内接四边形ABCD中,若∠A:∠B:∠C=2:3:6,则∠D等于()A.67.5°B.135°C.112.5°D.45°【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∠B+∠D=180°,∵∠A:∠B:∠C=2:3:6,设∠A=2a,∠B=3a,∠C=6a,则2a+6a=180°,∴a=22.5°,∴∠B=3a=67.5°,∴∠D=180°﹣∠B=112.5°.故选C.8.(3分)如图是一枚六面体骰子的展开图,则掷一枚这样的骰子,朝上一面的数字是朝下一面的数字的3倍的概率是()A.B.C.D.【解答】解:抛掷这个立方体,共6种情况,其中2,6;1,3;4,5是相对的面,6朝上,3朝上共2种情况,可使朝上一面的数字恰好等于朝下一面上的数字的3倍,故其概率为:,故选:B.9.(3分)一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.10.(3分)如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF 等于()A.B.1 C.D.2【解答】解:∵四边形ABCD是矩形,∴AD=BC=5,∠D=∠B=∠C=90°,∵AF平分∠DAE,EF⊥AE,∴DF=EF,由勾股定理得:AE2=AF2﹣EF2,AD2=AF2﹣DF2,∴AE=AD=5,在△ABE中由勾股定理得:BE==3,∴EC=5﹣3=2,∵∠BAE+∠AEB=90°,∠AEB+∠FEC=90°,∴∠BAE=∠FEC,∴△ABE∽△ECF,∴=,∴=,∴CF=.故选C.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)若关于x的一元二次方程(x﹣k)2=1﹣2k有实数根,则k的取值范围是k≤.【解答】解:根据题意得1﹣2k≥0,解得k≤.故答案为k≤.12.(3分)若方程x2﹣3x﹣1=0的两根为x1、x2,则的值为﹣3.【解答】解:∵方程x2﹣3x﹣1=0的两根为x1、x2,∴x1+x2=3,x1x2=﹣1,∴==﹣3.故答案为:﹣3.13.(3分)已知点A(2a+3b,﹣2)和点B(8,3a+2b)关于原点对称,则a+b=﹣.【解答】解:由题意得:,则5a+5b=﹣6,a+b=﹣.故答案为:﹣.14.(3分)如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小为原来的一半,则线段AC的中点P变换后在第一象限对应点的坐标为(2,).【解答】解:∵△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),∴AC的中点是(4,3),∵将△ABC缩小为原来的一半,∴线段AC的中点P变换后在第一象限对应点的坐标为:(2,).故答案为:(2,).15.(3分)如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.则在圆锥的侧面上从B点到P点的最短路线的长为.【解答】解:圆锥底面是以BC为直径的圆,圆的周长是BCπ=6π,以AB为一边,将圆锥展开,就得到一个以A为圆心,以AB为半径的扇形,弧长是l=6π,设展开后的圆心角是n°,则=6π,解得:n=180,即展开后∠BAC=×180°=90°,AP=AC=3,AB=6,则在圆锥的侧面上从B点到P点的最短路线的长就是展开后线段BP的长,由勾股定理得:BP===3,故答案为:3.三、解答题:本大题共6小题,共35分16.(6分)对于任何实数,我们规定符号的意义是:=ad﹣bc.按照这个规定请你计算:当x2﹣3x+1=0时,的值.【解答】解:=(x+1)(x﹣1)﹣3x(x﹣2)=x2﹣1﹣3x2+6x=﹣2x2+6x﹣1∵x2﹣3x+1=0,∴x2﹣3x=﹣1.∴原式=﹣2(x2﹣3x)﹣1=2﹣1=1.故的值为1.17.(7分)如图:直线y=kx+3与x轴、y轴分别交于A、B两点,tan∠OAB=,点C(x,y)是直线y=kx+3上与A、B不重合的动点.(1)求直线y=kx+3的解析式;(2)当点C运动到什么位置时△AOC的面积是4.【解答】解:(1)∵直线y=kx+3与y轴交于B点,∴B(0,3),∵tan∠OAB=,∴OA=4,∴A(4,0),∵直线y=kx+3过A(4,0),∴4k+3=0,∴k=﹣,∴直线的解析式为:y=﹣x+3;(2)∵A(4,0),∴AO=4,∵△AOC的面积是4,∴△AOC的高为:2,∴C点的纵坐标为2或﹣2,∵直线的解析式为:y=﹣x+3经过C点,∴2=﹣x+3,或﹣2=﹣x+3,解得x=,或x=∴点C点坐标为(,2)或(,﹣2)时,△AOC的面积是4.18.(7分)某校一栋教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为45°,沿山坡向上走到B 处测得宣传牌顶部C的仰角为30°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.【解答】解:过B作BF⊥AE,交EA的延长线于F,作BG⊥DE于G.在Rt△ABF中,i=tan∠BAF==,∴∠BAF=30°,∴BF=AB=5,AF=5.∴BG=AF+AE=5+15.在Rt△BGC中,∵∠CBG=30°,∴CG:BG=,∴CG=5+5.在Rt△ADE中,∠DAE=45°,AE=15,∴DE=AE=15,∴CD=CG+GE﹣DE=5+5+5﹣15=(5﹣5)m.答:宣传牌CD高约(5﹣5)米.19.(8分)如图所示,在Rt△ABC中,∠C=90°,∠BAC=60°,AB=8.半径为的⊙M与射线BA相切,切点为N,且AN=3.将Rt△ABC绕A顺时针旋转120°后得到Rt△ADE,点B、C的对应点分别是点D、E.(1)画出旋转后的Rt△ADE;(2)求出Rt△ADE的直角边DE被⊙M截得的弦PQ的长度;(3)判断Rt△ADE的斜边AD所在的直线与⊙M的位置关系,并说明理由.【解答】解:(1)如图Rt△ADE就是要画的图形(2)连接MQ,过M点作MF⊥DE,垂足为F,由Rt△ABC可知,AC=AB,根据翻折变换的知识得到AC=AE=4,NE=AE﹣AN=4﹣3=1,在Rt△MFQ中,解得FQ=,故弦PQ的长度2.(3)AD与⊙M相切.证明:过点M作MH⊥AD于H,连接MN,MA,则MN⊥AE,且MN=,在Rt△AMN中,tan∠MAN==,∴∠MAN=30°,∵∠DAE=∠BAC=60°,∴∠MAD=30°,∴∠MAN=∠MAD=30°,∴MH=MN,∴AD与⊙M相切.20.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半”?(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=2,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.【解答】解:(1)2x2﹣7x+6=0,∵△=49﹣48=1>0,∴x=,∴x1=2,x2=,∴满足要求的矩形B存在.故答案为2,;(2)设所求矩形的两边分别是x和y,由题意,得,消去y化简,得2x2﹣3x+2=0,∵△=9﹣16<0,∴不存在矩形B.21.(9分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=12,E是AB上一点,且∠DCE=45°,BE=4,求DE的长.【解答】(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF.∴CE=CF.(2)解:GE=BE+GD成立.∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=GF.∴GE=DF+GD=BE+GD.(3)解:过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=12.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x﹣4,∴AD=AG﹣DG=16﹣x,AE=AB﹣BE=12﹣4=8.在Rt△AED中∵DE2=AD2+AE2,即x2=(16﹣x)2+82解得:x=10.∴DE=10.。