2017年秋人教版八年级数学上第11章三角形章末检测卷含答案
- 格式:pdf
- 大小:170.00 KB
- 文档页数:9
人教版八年级上册第11章《三角形》章末达标检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列图形具有稳定性的是()A.正方形B.长方形C.五边形D.直角三角形2.下列四组长度的小木棒中,按首尾顺次连结能组成一个三角形的是()A.1,2,3B.4,5,6C.3,4,12D.4,8,43.下列四个图形中,线段BE是△ABC的高的图形是()A.B.C.D.4.若△ABC的三个内角的比为3:5:2,则△ABC是()A.等腰三角形B.锐角三角形C.直角三角形D.钝角三角形5.下列说法中错误的是()A.三角形的中线、角平分线、高线都是线段B.任意三角形的内角和都是180°C.三角形按边分可分为不等边三角形和等腰三角形D.三角形的一个外角大于任何一个内角6.如图,已知△ABC,点D在BC的延长线上,∠ACD=140°,∠ABC=50°,则∠A的大小为()A.50°B.140°C.120°D.90°7.如图,已知BD是△ABC的中线,AB=7,BC=4,△ABD和△BCD的周长的差是()A.2B.3C.4D.不能确定8.如图,在△ABC中,∠BAC=90°,BD平分∠ABC,CD∥AB交BD于点D,已知∠ACB =34°,则∠D的度数为()A.30°B.28°C.26°D.34°9.游戏中有数学智慧,找起点游戏规定:从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,成功的招数不止一招,可助我们成功的一招是()A.每走完一段直路后沿向右偏72°方向行走B.每段直路要短C.每走完一段直路后沿向右偏108°方向行走D.每段直路要长10.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16二.填空题(共6小题,满分24分,每小题4分)11.在门框钉一根木条能固定住门框,不易变形,这里利用的数学原理是.12.三角形的三边长分别为3、8、x,则x的取值范围是.13.正六边形的一个内角是正n边形一个外角的4倍,则n=.14.在正六边形ABCDEF中,对角线BD、AC交于点M,则∠CMD的度数为.15.如图,把△ABC纸片沿DE折叠,使点A落在图中的A'处,若∠A=25°,∠BDA'=120°,则∠A'EC=.16.如图,在△ABC中,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC,内角∠ABC,外角∠ACF,以下结论:①AD∥BC;②∠ACB=∠ADB;③∠ADC+∠ABD=90°;④,其中正确的结论有.三.解答题(共7小题,满分46分)17.(5分)如图,Rt△ABC中,∠C=90°,∠B=3∠A,求∠B的度数.18.(5分)如图,已知∠1=20°,∠2=25°,∠A=50°,求∠BDC的度数.19.(6分)如图为一机器零件,∠A=36°的时候是合格的,小明测得∠BDC=98°,∠C =38°,∠B=23°.请问该机器零件是否合格并说明你的理由.20.(6分)三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角.如图1,点D为BC延长线上一点,则∠ACD为△ABC的一个外角.求证:∠ACD=∠A+∠B证明:过点C作CE∥AB(过直线外一点)∴∠B=∠A=∵∠ACD=∠1+∠2∴∠ACD=∠+∠B(等量代换)应用:如图2是一个五角星,请利用上述结论求∠A+∠B+∠C+∠D+∠E的值为21.(7分)已知:如图,点D是直线AB上一动点,连接CD.(1)如图1,当点D在线段AB上时,若∠ABC=105°,∠BCD=30°,求∠ADC度数;(2)当点D在直线AB上时,请写出∠ADC、∠ABC、∠BCD的数量关系,并证明.22.(8分)如图,在△ABC中,∠B=2∠C,AE平分∠BAC交BC于E.(1)若AD⊥BC于D,∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.23.(9分)如图,在△ABC中,AD是高,AE,BF是角平分线,它们相交于点O.(1)若∠ABC=60°,∠C=70°,求∠DAE的度数.(2)若∠C=70°,求∠BOE的度数.(3)若∠ABC=α,∠C=β(α<β),则∠DAE=.(用含α、β的式子表示)参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:具有稳定性的图形是三角形.故选:D.2.解:A、1+2=3,不满足三角形三边关系定理,故错误,不符合题意;B、4+5>6,满足三边关系定理,故正确,符合题意;C、3+4<12.不满足三边关系定理,故错误,不符合题意;D、4+4=8.不满足三角形三边关系定理,故错误,不符合题意.故选:B.3.解:线段BE是△ABC的高的图是选项A.故选:A.4.解:∵△ABC的三个内角的比为3:5:2可设此三角形的三个内角分别为2x°,3x°,5x°,∴2x°+3x°+5x°=180°,解得x=18°,∴5x°=5×18°=90°.∴此三角形是直角三角形.故选:C.5.解:A、正确,符合线段的定义;B、正确,符合三角形内角和定理;C、正确;D、三角形的一个外角大于任何一个和它不相邻的内角,错误.故选:D.6.解:∵∠ACD=∠A+∠ABC,∴∠A=∠ACD﹣∠ABC,∵∠ACD=140°,∠ABC=50°,∴∠A=140°﹣50°=90°故选:D.7.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=7﹣4=3.故选:B.8.解:∵∠BAC=90°,∠ACB=34°,∴∠ABC=180°﹣90°﹣34°=56°,∵BD平分∠ABC,∴∠ABD=∠ABC=28°,∵CD∥AB,∴∠D=∠ABD=28°,故选:B.9.解:∵从起点走五段相等直路之后回到起点,要求每走完一段直路后向右边偏行,∴=72°,∴每走完一段直路后沿向右偏72°方向行走.故选:A.10.解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的四边形为13或14或15,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:利用的数学原理是三角形的稳定性,故答案为:三角形的稳定性.12.解:∵三角形的三边长分别为3,x,8,∴8﹣3<x<3+8,即5<x<11,故答案为:5<x<11.13.解:正六边形的一个内角为:,∵正六边形的一个内角是正n边形一个外角的4倍,∴正n边形一个外角为:120°÷4=30°,∴n=360°÷30°=12.故答案为:12.14.解:根据题意得∠ABC=,∵AB=BC,∴∠ACB=,∴∠CMD=2∠ACB=60°.故答案为:60°.15.解:如图,∵∠BDA'=120°,∴∠ADA'=60°,∵△ABC纸片沿DE折叠,使点A落在图中的A'处,∴∠ADE=∠A′DE=30°,∠AED=∠A′ED,∵∠CED=∠A+∠ADE=25°+30°=55°,∴∠AED=125°,∴∠A′ED=125°,∴∠A′EC=∠A′ED﹣∠CED=125°﹣55°=70°.故答案为70°.16.解:①∵AD平分∠EAC,∴∠EAC=2∠EAD,∵∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确;②∵AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∠ABC=∠ACB,∴∠ABC=∠ACB=2∠DBC,∴∠ACB=2∠ADB,故②错误;③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°,故③正确;④∵BD平分∠ABC,∴∠ABD=∠DBC,∵∠ADB=∠DBC,∴∠ADB=∠DBC,∵∠DCF=90°﹣∠ABC=∠DBC+∠BDC,∴∠BDC=90°﹣2∠DBC,∴∠DBC=45°﹣∠BDC,故④正确;故答案是:①③④.三.解答题(共7小题,满分46分)17.解:∵∠B=3∠A,∴∠A=∠B,∵∠C=90°,∴∠A+∠B=90°,∴∠B+∠B=90°,解得∠B=67.5°.18.解:∵∠1=20°,∠2=25°,∠A=50°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣50°=85°,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣85°=95°.19.解:作直线AD,∴∠3=∠B+∠1﹣﹣﹣(1)∴∠4=∠C+∠2﹣﹣﹣(2)由(1)、(2)得:∠3+∠4=∠B+∠C+∠1+∠2,即∠BDC=∠B+∠C+∠BAC,∵∠BDC=98°,∠C=38°,∠B=23°∴∠BAC=98°﹣38°﹣23°=37°≠36°,∴该机器零件不合格.20.证明:过点C作CE∥AB(过直线外一点有且只有一条直线与已知直线平行)∴∠B=∠2(两直线平行,同位角相等),∠A=∠1(两直线平行,内错角相等),∵∠ACD=∠1+∠2,∴∠ACD=∠A+∠B(等量代换)应用:对于△BDN,∠MNA=∠B+∠D,对于△CEM,∠NMA=∠C+∠E,对于△ANM,∠A+∠MNA+∠NMA=180°,∴∠A+∠B+∠D+∠C+∠E=180.故答案为:有且只有一条直线与已知直线平行;∠2(两直线平行,同位角相等);∠1(两直线平行,内错角相等);A;180°21.解:(1)如图1中,∵∠ADC=∠ABC+∠BCD,∠ABC=105°,∠BCD=30°,∴∠ADC=135°.(2)如图1中,当点D在线段AB上时,∠ADC=∠ABC+∠BCD.如图2中,当点D在线段AB的延长线上时,∠ABC=∠ADC+∠BCD.如图3中,当点D在线段BA的延长线上时,∠ADC+∠ABC+∠BCD=180°.22.(1)解:∵∠C=40°,∠B=2∠C,∴∠B=80°,∴∠BAC=60°,∵AE平分∠BAC,∴∠EAC=30°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=50°,∴∠DAE=50°﹣30°=20°;(2)证明:∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC,∵AE平分∠BAC,∴∠EAC=∠BAC=(180°﹣∠B﹣∠C)=(180°﹣3∠C)=90°﹣∠C,∵∠DAE=∠DAC﹣∠EAC,∴∠DAE=∠DAC﹣(90°﹣∠C)=90°﹣∠C﹣90°+∠C=∠C,∴∠FEC=C,∴∠C=2∠FEC.23.解:(1)∠ABC=60°,∠C=70°∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣60°﹣70°=50°,∵AE是角平分线,∴∠EAC=∠BAC=×50°=25°,∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠EAC﹣∠CAD=25°﹣20°=5°;(2)∵AE,BF是角平分线,∴∠OAB=∠BAC,∠OBA=∠ABC,∴∠BOE=∠OAB+∠OBA=(∠BAC+∠ABC)=(180°﹣∠C)=×(180°﹣70°)=55°;(3)∠ABC=α,∠C=β,∴∠BAC=180°﹣∠ABC﹣∠C=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=∠BAC=(180°﹣α﹣β),∵AD是高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣β,∴∠DAE=∠EAC﹣∠CAD═(180°﹣α﹣β)﹣(90°﹣β)=(β﹣α).故答案为(β﹣α).。
人教版八年级数学上册第11章三角形单元测试含答案(1)一.选择题(每小题3分共30分)1.如图中三角形的个数为()A.10个B.12个C.13个D.9个2.三角形的高线、中线、角平分线都是()A.直线B.线段C.射线D.以上情况都有3.在实际生活中,我们经常利用一些几何图形的稳定性或不稳定性,下列实物图中利用了稳定性的是()A.电动伸缩门B.升降台C.栅栏D.窗户4.已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.105.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A.120°B.60°C.140°D.无法确定6.关于三角形的外角,下列说法中错误的是()A.一个三角形只有三个外角B.三角形的每个内角处都有两个外角C.三角形的每个外角是与它相邻内角的邻补角D.一个三角形共有六个外角7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF8.将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形9.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°10.下列各图中,∠1=∠2的是()A.B.C.D.二.填空题(每小题3分共30分)11.钝角三角形三边上的中线的交点在此三角形(填写“内”或“外”或“边上”).12.如图所示:在△AEC中,AE边上的高是.13.如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=5,则它的周长等于.14.三角形的三边长分别为5,8,2x+1,则x的取值范围是.15.如图,自行车的主框架采用了三角形结构,这样设计的依据是三角形具有.16.如图,在△ABC中,∠B=80°,∠C=40°,AD⊥BC于点D,AE平分∠BAC,则∠DAE =.17.如图,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A =.18.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.19.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB交BC于点D,BE⊥AD于点E.若∠CAB =50°,则∠DBE=.20.如图,将△ABC纸片沿DE折叠,使点A落在四边形BCED外点A1的位置,若∠1+∠2=240°,则∠A=°.三.解答题(共60分)21.如图,△ACB中,∠ACB=90°,∠1=∠B.(1)试说明CD是△ABC的高;(2)如果AC=8,BC=6,AB=10,求CD的长.22.在△ABC中,∠A=∠B+20°,∠C=∠A+50°,求△ABC各内角的度数.23.已知:AE是△ABC的外角∠CAD的平分线.(1)若AE∥BC,如图1,试说明∠B=∠C;(2)若AE交BC的延长线于点E,如图2,直接写出反应∠B、∠ACB、∠AEC之间关系的等式.24.如图1,直线PQ⊥直线MN,垂足为O,△AOB是直角三角形,∠AOB=90°,斜边AB与直线PQ交于点C.(1)若∠A=∠AOC=30°,则BC BO(填“>”“=”“<”);(2)如图2,延长AB交直线MN于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠AEO=α,求∠AOE的度数(用含α的代数式表示);(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点R,∠A=36°,当△AOB 绕O点旋转时(斜边AB与直线PQ始终相交于点C),问∠R的度数是否发生改变?若不变,求其度数;若改变,请说明理由.25.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB=°;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB 与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E的度数;如果会,请说明理由.参考答案一.选择题(共10小题)1.解:图中最小的即边长为1个单位的三角形共9个,边长为2个单位的三角形有3个,最大的三角形即边长为3个单位的三角形有1个.所以共9+3+1=13(个),故选:C.2.解:三角形的高线、角平分线和中线都是线段,故选:B.3.解:A、利用了四边形的不稳定性,故错误;B、利用了四边形的不稳定性,故错误;C、利用了三角形的稳定性,正确;D、四边形不具有稳定性,故错误,故选:C.4.解:设第三边为x,根据三角形的三边关系,得:4﹣1<x<4+1,即3<x<5,∵x为整数,∴x的值为4.三角形的周长为1+4+4=9.故选:C.5.解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°﹣120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°﹣40°=140°,故选:C.6.解:∵三角形每个顶点处各有两个外角(互为对顶角),即一个三角形共有6个外角,∴A错误,B、D正确;∵三角形的外角与它相邻内角和等于180°,∴三角形的每个外角是与它相邻内角的邻补角,∴C正确;故选:A.7.解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,∴CE=CF.故选:C.8.解:一个四边形截一刀后得到的多边形可能是三角形,可能是四边形,也可能是五边形,故选:A.9.解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.10.解:A选项在直角三角形中∠1与∠2互余,所以A选项错误;B选项∠1与∠2是对顶角,∠1=∠2,所以B选项正确;C选项利用平行线的性质可知∠1与∠2互余,所以C选项错误;D选项∠1与∠2互余,所以D选项错误;故选:B.二.填空题(共10小题)11.解:钝角三角形三边上的中线的交点在此三角形内.故答案为内.12.解:由高的定义可知,在△AEC中,AE边上的高是CD.故答案为:CD.13.解:如图所示,Rt△ABC中,CD⊥AB,CD=AB=,设BC=a,AC=b,则,解得a+b=5,或a+b=﹣5(舍去),∴△AB长度周长为5+5;如图所示,Rt△ABC中,AC=BC,设BC=a,AC=b,则,解得,∴△AB长度周长为3+5;综上所述,该三角形的周长为5+3或5+5.故答案为:5+3或5+5.14.解:根据三角形的三边关系可得:8﹣5<2x+1<5+8,解得:1<x<6.故答案为:1<x<6.15.解:自行车的主框架采用了三角形结构,这样设计的依据是三角形具稳定性,故答案为:稳定性.16.解:∵在△ABC中,∠B=80°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=60°,∵AE平分∠BAC,∴∠EAC=∠BAC=°=30°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣40°=50°,∴∠DAE=∠DAC﹣∠EAC=50°﹣30°=20°,故答案为:20°.17.解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠ABD=∠CBD,∠ACD=∠ECD,∵∠ACE=∠A+∠ABC,即∠ACD+∠ECD=∠ABC+∠CBD+∠A,∴2∠ECD=2∠CBD+∠A,∴∠A=2(∠ECD﹣∠CBD)∵∠ECD=∠CBD+∠D,∠D=15°∴∠D=∠ECD﹣∠CBD=15°∴∠A=2×15°=30°.故答案为:30°.18.解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM﹣∠ABC=60°,∠ACB=180°﹣∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°﹣∠PBC﹣∠BCP=30°,故答案为:30°.19.解:∵∠C=∠E=90°,∠ADC=∠BDE,∴∠DBE=∠DAC,∵AD平分∠CAB,∴∠CAD=∠CAB=25°,故答案为25°.20.解:∵∠1+∠2=240°,∴∠ADE+∠A1DE+∠AED+∠A1ED=180°+360°﹣240°=300°,由折叠的性质可得∠ADE+∠AED=150°,∴∠A=30°.故答案为:30.三.解答题(共5小题)21.解:(1)∵∠1+∠BCD=90°,∠1=∠B∴∠B+∠BCD=90°∴△BDC是直角三角形,即CD⊥AB,∴CD是△ABC的高;(2)∵∠ACB=∠CDB=90°∴S△ABC=AC•BC=AB•CD,∵AC=8,BC=6,AB=10,∴CD===.22.解:∵∠A=∠B+20°,∠C=∠A+50°,∴∠C=∠B+20°+50°,∵∠A+∠B+∠C=180°,∴∠B+20°+∠B+∠B+20°+50°=180°,解得:∠B=30°,∴∠A=30°+20°=50°,∴∠C=50°+50°=100°,即∠A=50°,∠B=30°,∠C=100°.23.解:(1)∵AE是△ABC的外角∠CAD的平分线,∴∠DAE=∠CAE,又∵AE∥BC,∴∠DAE=∠B,∠CAE=∠C,∴∠B=∠C;(2)∠ACB=∠B+2∠AEC.理由:∵AE是△ABC的外角∠CAD的平分线,∴∠DAE=∠CAE,即∠DAC=2∠DAE,∵∠DAE是△ABE的外角,∠DAC是△ABC的外角,∴∠DAC=∠B+∠ACB,∠DAE=∠B+∠AEC,∴∠B+∠ACB=2(∠B+∠AEC),即∠ACB=∠B+2∠AEC.24.解:(1)∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC=30°,∴∠B=∠BOC=60°∴△BOC是等边三角形,∴BC=BO故答案为:=;(2)∵OD⊥AB,∠AEO=α,∴∠DOE=90°﹣α,∵∠DOB=∠BOE,∴∠BOE==(90°﹣α)=45°﹣α,∴∠AOE=∠AOB+∠BOE=90°+45°﹣=135°﹣;(3)∠P的度数不变,∠P=27°.理由如下:设∠AOM=β,则∠AOC=90°﹣β,∵OF平分∠AOM,∴∠FOM=∠RON=,∴∠COR=∠CON+∠RON=90°+,∵∠OCB=∠A+∠AOC=36°+90°﹣β=126°﹣β,∵CR平分∠BCO,∴∠OCR==63°﹣,∴∠R=180°﹣(∠OCR+∠COR)=180°﹣63°+﹣90°﹣=27°,∴∠R的度数不变,∠R=27°.25.解:(1)∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:135;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°;(3)∵BC、BD分别是∠OBA和∠NBA的角平分线,∴∠ABC=∠OBA,∠ABD=∠NBA,∠ABC+∠ABD=∠OBA+∠NBA,∠ABC+∠ABD=(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°,∵四边形内角和等于360°,∴∠ACB+∠ADB=360°﹣90°﹣90°=180°,由(1)知:∠ACB=90°+n°,∴∠ADB=180°﹣(90°+n°)=90°﹣n°,∴∠ACB+∠ADB=180°,∠ADB=90°﹣n°;(4)∠E的度数不变,∠E=40°;理由如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA﹣∠AOB,∵AE、BC分别是∠OAB和∠NBA的角平分线,∴∠BAE=∠OAB,∠CBA=∠NBA,∠CBA=∠E+∠BAE,即∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,∴∠E=40°人教版八年级数学上册《第11章三角形》单元综合测试(解析版)一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.113.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.706.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°7.六边形的内角和是()A.540°B.720°C.900°D.1080°8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,512.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°三、填空题14.十边形的外角和是______°.15.如图,自行车的三角形支架,这是利用三角形具有______性.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为______.17.如图,∠1+∠2+∠3+∠4+∠5=______°.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.25.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.《第11章三角形》参考答案与试题解析一、选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.【点评】本题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.2.若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【考点】三角形三边关系.【分析】根据三角形三边关系,两边之和第三边,两边之差小于第三边即可判断.【解答】解:设第三边为x,则4<x<10,所以符合条件的整数为6,故选A.【点评】本题考查三角形三边关系定理,记住两边之和第三边,两边之差小于第三边,属于基础题,中考常考题型.3.在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为()A.35° B.40° C.45° D.50°【考点】三角形内角和定理.【分析】在△ABC中,根据三角形内角和是180度来求∠C的度数.【解答】解:∵三角形的内角和是180°,又∠A=95°,∠B=40°∴∠C=180°﹣∠A﹣∠B=180°﹣95°﹣40°=45°,故选C.【点评】本题考查了三角形内角和定理,利用三角形内角和定理:三角形内角和是180°是解答此题的关键.4.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°【考点】三角形的外角性质;角平分线的定义.【分析】根据三角形角平分线的性质求出∠ACD,根据三角形外角性质求出∠A即可.【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.【点评】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.5.若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是()A.7 B.10 C.35 D.70【考点】多边形内角与外角;多边形的对角线.【分析】由正n边形的每个内角为144°结合多边形内角和公式,即可得出关于n的一元一次方程,解方程即可求出n的值,将其代入中即可得出结论.【解答】解:∵一个正n边形的每个内角为144°,∴144n=180×(n﹣2),解得:n=10.这个正n边形的所有对角线的条数是: ==35.故选C.【点评】本题考查了多边形的内角以及多边形的对角线,解题的关键是求出正n边形的边数.本题属于基础题,难度不大,解决该题型题目时,根据多边形的内角和公式求出多边形边的条数是关键.6.如图的七边形ABCDEFG中,AB、ED的延长线相交于O点.若图中∠1、∠2、∠3、∠4的外角的角度和为220°,则∠BOD的度数为何?()A.40° B.45° C.50° D.60°【考点】多边形内角与外角.【分析】延长BC交OD与点M,根据多边形的外角和为360°可得出∠OBC+∠MCD+∠CDM=140°,再根据四边形的内角和为360°即可得出结论.【解答】解:延长BC交OD与点M,如图所示.∵多边形的外角和为360°,∴∠OBC+∠MCD+∠CDM=360°﹣220°=140°.∵四边形的内角和为360°,∴∠BOD+∠OBC+180°+∠MCD+∠CDM=360°,∴∠BOD=40°.故选A.【点评】本题考查了多边形的内角与外角以及角的计算,解题的关键是能够熟练的运用多边形的外角和为360°来解决问题.本题属于基础题,难度不大,解决该题型题目时,利用多边形的外角和与内角和定理,通过角的计算求出角的角度即可.7.六边形的内角和是()A.540°B.720°C.900°D.1080°【考点】多边形内角与外角.【分析】多边形内角和定理:n变形的内角和等于(n﹣2)×180°(n≥3,且n为整数),据此计算可得.【解答】解:由内角和公式可得:(6﹣2)×180°=720°,故选:B.【点评】此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n﹣2)•180°(n ≥3,且n为整数)..8.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90° C.72° D.60°【考点】多边形内角与外角.【分析】首先设此多边形为n边形,根据题意得:180(n﹣2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案.【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,故这个正多边形的每一个外角等于:=72°.故选C.【点评】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n﹣2)•180°,外角和等于360°.9.如图所示,小华从A点出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米B.150米C.160米D.240米【考点】多边形内角与外角.【分析】多边形的外角和为360°每一个外角都为24°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为24°,∴多边形的边数为360°÷24°=15,∴小明一共走了:15×10=150米.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据多边形的外角和及每一个外角都为24°求边数.10.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部【考点】三角形的角平分线、中线和高.【分析】根据三角形的中线,角平分线和高线的定义以及在三角形的位置对各选项分析判断后利用排除法求解.【解答】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选C.【点评】本题考查了三角形的角平分线、中线、高线,是基础题,熟记概念以及在三角形中的位置是解题的关键.11.若一个三角形的三条边长分别为3,2a﹣1,6,则整数a的值可能是()A.2,3 B.3,4 C.2,3,4 D.3,4,5【考点】三角形三边关系.【分析】直接利用三角形三边关系得出a的取值范围,进而得出答案.【解答】解:∵一个三角形的三条边长分别为3,2a﹣1,6,∴,解得:2<a<5,故整数a的值可能是:3,4.故选:B.【点评】此题主要考查了三角形三边关系,正确得出a的取值范围是解题关键.12.已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.正三角形【考点】三角形内角和定理.【分析】根据已知条件和三角形的内角和是180度求得各角的度数,再判断三角形的形状.【解答】解:∵∠A=20°,∴∠B=∠C=(180°﹣20°)=80°,∴三角形△ABC是锐角三角形.故选A.【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.13.如图,△ABC中,AE是∠BAC的角平分线,AD是BC边上的高线,且∠B=50°,∠C=60°,则∠EAD的度数()A.35° B.5°C.15° D.25°【考点】三角形内角和定理;角平分线的定义.【分析】利用三角形的内角和是180°可得∠BAC的度数;AE是∠BAC的角平分线,可得∠EAC的度数;利用AD是高可得∠ADC=90°,那么可求得∠DAC度数,那么∠EAD=∠EAC﹣∠DAC.【解答】解:∵∠B=50°,∠C=60°,∴∠BAC=180°﹣∠B﹣∠C=70°,∵AE是∠BAC的角平分线,∴∠EAC=∠BAC=35°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣∠C=30°,∴∠EAD=∠EAC﹣∠DAC=5°.故选B.【点评】关键是得到和所求角有关的角的度数;用到的知识点为:三角形的内角和是180°;角平分线把一个角分成相等的两个角.三、填空题(共4小题,每小题3分,满分12分)14.十边形的外角和是360 °.【考点】多边形内角与外角.【专题】常规题型.【分析】根据多边形的外角和等于360°解答.【解答】解:十边形的外角和是360°.故答案为:360.【点评】本题主要考查了多边形的外角和等于360°,多边形的外角和与边数无关,任何多边形的外角和都是360°.15.如图,自行车的三角形支架,这是利用三角形具有稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性解答.【解答】解:自行车的三角形车架,这是利用了三角形的稳定性.故答案为:稳定性.【点评】本题考查了三角形的稳定性,是基础题.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为125°.【考点】三角形内角和定理;三角形的角平分线、中线和高.【专题】探究型.【分析】先根据三角形内角和定理求出∠ABC+∠ACB的度数,再由角平分线的定义得出∠2+∠4的度数,由三角形内角和定理即可求出∠BPC的度数.【解答】解:∵△ABC中,∠A=70°,∴∠ABC+∠ACB=180°﹣∠A=180°﹣70°=110°,∴BP,CP分别为∠ABC与∠ACP的平分线,∴∠2+∠4=(∠ABC+∠ACB)=×110°=55°,∴∠P=180°﹣(∠2+∠4)=180°﹣55°=125°.故答案为:125°.【点评】本题考查的是三角形内角和定理及角平分线的定义,熟知三角形的内角和定理是解答此题的关键.17.如图,∠1+∠2+∠3+∠4+∠5= 540 °.【考点】多边形内角与外角.【分析】连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理即可求出答案.【解答】解:连接∠2和∠5,∠3和∠5的顶点,可得三个三角形,根据三角形的内角和定理,∠1+∠2+∠3+∠4+∠5=540°.故答案为540.【点评】本题主要考查三角形的内角和为180°定理,需作辅助线,比较简单.三、解答18.在△ABC中,CD⊥AB于D,CE是∠ACB的平分线,∠A=20°,∠B=60°.求∠BCD和∠ECD的度数.【考点】三角形的角平分线、中线和高.【分析】由CD⊥AB与∠B=60°,根据两锐角互余,即可求得∠BCD的度数,又由∠A=20°,∠B=60°,求得∠ACB的度数,由CE是∠ACB的平分线,可求得∠ACE的度数,然后根据三角形外角的性质,求得∠CEB的度数.【解答】解:∵CD⊥AB,∴∠CDB=90°,∵∠B=60°,∴∠BCD=90°﹣∠B=90°﹣60°=30°;∵∠A=20°,∠B=60°,∠A+∠B+∠ACB=180°,∴∠ACB=100°,∵CE是∠ACB的平分线,∴∠ACE=∠ACB=50°,∴∠CEB=∠A+∠ACE=20°+50°=70°,∠ECD=90°﹣70°=20°【点评】此题考查了三角形的内角和定理,三角形外角的性质以及三角形高线,角平分线的定义等知识.此题难度不大,解题的关键是数形结合思想的应用.19.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【考点】三角形的角平分线、中线和高.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠A=50°,∠C=60°∴∠ABC=180°﹣50°﹣60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°﹣90°﹣∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC﹣∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.20.已知△ABC中,∠ACB=90°,CD为AB边上的高,BE平分∠ABC,分别交CD、AC于点F、E,求证:∠CFE=∠CEF.【考点】三角形的角平分线、中线和高.【专题】证明题.【分析】题目中有两对直角,可得两对角互余,由角平分线及对顶角可得两对角相等,然后利用等量代换可得答案.【解答】证明:∵∠ACB=90°,∴∠1+∠3=90°,∵CD⊥AB,∴∠2+∠4=90°,又∵BE平分∠ABC,∴∠1=∠2,∴∠3=∠4,∵∠4=∠5,∴∠3=∠5,即∠CFE=∠CEF.【点评】本题考查了三角形角平分线、中线和高的有关知识;正确利用角的等量代换是解答本题的关键.21.如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB的度数.【考点】多边形内角与外角;三角形内角和定理.【分析】首先根据四边形内角和为360度计算出∠DAB+∠ABC=360°﹣220°=140°,再根据∠1=∠2,∠3=∠4计算出∠2+∠3=70°,然后利用三角形内角和为180度计算出∠AOB的度数.【解答】解:∵∠D+∠C+∠DAB+∠ABC=360°,∠D+∠C=220°,∴∠DAB+∠ABC=360°﹣220°=140°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=70°,∴∠AOB=180°﹣70°=110°.【点评】此题主要考查了多边形的内角,关键是掌握四边形内角和为360°,三角形内角和为180°.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:EP⊥FP.【考点】三角形内角和定理;角平分线的定义;平行线的性质.【专题】证明题.【分析】要证EP⊥FP,即证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.【解答】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°﹣(∠PEF+∠EFP)=180°﹣90°=90°,即EP⊥FP.【点评】本题的关键就是找到∠PEF+∠EFP与∠BEF+∠EFD之间的关系,考查了整体代换思想.23.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.【考点】三角形的角平分线、中线和高.【分析】根据直角三角形两锐角互余求出∠AED,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAE,然后根据角平分线的定义求出∠BAC,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.【点评】本题考查了三角形的角平分线、中线和高,主要利用了直角三角形两锐角互余,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记各性质并准确识图是解题的关键.24.如图,在△BCD中,BC=4,BD=5,(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.【考点】三角形三边关系;平行线的性质.【分析】(1)利用三角形三边关系得出DC的取值范围即可;(2)利用平行线的性质得出∠AEC的度数,再利用三角形内角和定理得出答案.【解答】解:(1)∵在△BCD中,BC=4,BD=5,∴1<DC<9;(2)∵AE∥BD,∠BDE=125°,∴∠AEC=55°,又∵∠A=55°,∴∠C=70°.【点评】此题主要考查了三角形三边关系以及平行线的性质,得出∠AEC的度数是解题关键.25.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC 的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】△ABD中,由三角形的外角性质知∠3=2∠2,因此∠4=2∠2,从而可在△BAC中,根据三角形内角和定理求出∠4的度数,进而可在△DAC中,由三角形内角和定理求出∠DAC 的度数.【解答】解:设∠1=∠2=x,则∠3=∠4=2x.因为∠BAC=63°,所以∠2+∠4=117°,即x+2x=117°,所以x=39°;所以∠3=∠4=78°,∠DAC=180°﹣∠3﹣∠4=24°.【点评】此题主要考查了三角形的外角性质以及三角形内角和定理的综合应用.人教版八年级上册单元测试第11章三角形综合提优测试一.选择题1.一个多边形,其每个内角都是140°,则该多变形的边数是()A.6 B.7 C.8 D.92.如果一个三角形两边上的高的交点在三角形的内部,那么这个三角形是()A.锐角三角形 B.直角三角形C.钝角三角形 D.任意三角形3.观察下列图形,三角形是()4.在△AOC中,OB交AC于点D,量角器的摆放如图所示,则∠CDO的度数为()A.90° B.95° C.100°D.120°5.设三角形三边之长分别为3,8,1﹣2a,则a的取值范围为()A. 3<a<6 B.﹣5<a<﹣2C.﹣2<a<5 D.a<﹣5或a>26.在△ABC中,若∠A:∠B=5:7,且∠C比∠A大10°,那么∠C的度数为()A.70° B.60°C.50° D.40°7.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°8.如图,在△ABC中,AD平分∠BAC且与BC相交于点D,∠B=40°,∠BAD=30°,则∠C的度数是()A.70° B.80°C.100° D.110°9.如图,Rt△ABC中,∠ACB=90°,DE过点C且平行于AB,若∠BCE=35°,则∠A的度数为()A.35° B.45°C.55° D.65°10.已知线段AC=3,BC=2,则线段AB的长度()A.一定是5 B.一定是1C.一定是5或1 D.以上都不对11.如图,点D在BC的延长线上,连接AD,则∠EAD是()的外角.A.△ABC B.△ACDC.△ABD D.以上都不对12.如图,P是△ABC内一点,延长CP交AB于D,则下列不等式成立的是()A.∠2>∠A>∠1B.∠2>∠1>∠AC.∠1>∠A>∠2D.∠A>∠1>∠2二.填空题13.在△ABC中,若∠A=30°,∠B=50°,则∠C= .14.如图,在△ABC中,①若AD是∠BAC的平分线,则∠=∠=∠;②若AE=CE,则BE是AC边上的;③若CF是AB边上的高,则∠=∠=90°,CF AB.15.在△ABC中,∠C=30°,∠A-∠B=30°,则∠A= .16.如图,已知△ABC 中,∠A=60°,BD⊥AC于D,CE⊥AB于E,BD、CE交于点F,∠FBC、∠FCB的平分线交于点O,则∠BOC的度数为.17.如图,已知AB⊥BD,BC⊥CD,a=5,b=4,则BD的长的取值范围为 .三.解答题18.如图,已知∠CDF=∠OEF=90°,CE与OA相交于点F,若∠C=20°,求∠O的大小.19.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC 的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.20.(1)如图1,D1是△ABC的边AB上的一点,则图中有哪几个三角形?(2)如图2,D1,D2是△ABC的边AB上的两点,则图中有哪几个三角形?(3)如图3,D1,D2,…,D10是△ABC的边AB上的10个点,则图中共有多少个三角形?21.在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分线.(1)求∠DCE的度数.(2)若∠CEF=135°,求证:EF∥BC.22.已知将一块直角三角板DEF放置在△ABC上,使得该三角板的两条直角边DE,DF恰好分别经过点B、C.(1)∠DBC+∠DCB= 度;(2)过点A作直线直线MN∥DE,若∠ACD=20°,试求∠CAM的大小.23.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.答案一.选择题1. D.2. A3. C4. B.5. B6. B7. C.8. B9. C10. D.11. C12. B二.填空题13.100°14. ①BAD;CAD;BAC;②中线;③AFC;BFC;⊥15. 90°16.150°.17. 4<DB<5三.解答题18.解:∵∠CDF=∠OEF=90°,∴∠C+∠AFD=90°,∠O+∠OFE=90°,∵∠OFE=∠CFD(对顶角相等),∴∠O=∠C=20°.19.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.20.(1)图中三角形有:△ABC、△AD1C、△AD1B共3个;(2)图中三角形有:△ACD1、△ACD2、△ABC、△D1CD2、△D1CB、△D2CB共6个,(3)∵直线AB上有12个点,∴直线AB上的线段共有:=66(条),即图中共有66个三角形.21.解:(1)∵∠B=30°,CD⊥AB于D,∴∠DCB=90°-∠B=60°.∵CE平分∠ACB,∠ACB=90°,∴∠ECB=∠AC B=45°,∴∠DCE=∠DCB-∠ECB=60°-45°=15°;(2)证明:∵∠CEF=135°,∠ECB=∠ACB=45°,∴∠CEF+∠ECB=180°,∴EF∥BC.22.解:(1)在△DBC中,∵∠DBC+∠DCB+∠D=180°,而∠D=90°,∴∠DBC+∠DCB=90°;故答案为90;(2)在Rt△ABC中,∵∠ABC+∠ACB+∠A=180°,即∠ABD+∠DBC+∠DCB+∠ACD+∠BAC=180°,而∠DBC+∠DCB=90°,∴∠ABD+∠ACD=90°﹣∠BAC,∴∠ABD+∠BAC=90°﹣∠ACD=70°.又∵MN∥DE,∴∠ABD=∠BAN.而∠BAN+∠BAC+∠CAM=180°,∴∠ABD+∠BAC+∠CAM=180°,∴∠CAM=180°﹣(∠ABD+∠BAC)=110°.23.解:(1)由三角板的性质可知∠D=30°,∠3=45°,∠DCE=90°.∵CF平分∠DCE,∴∠1=∠2=∠DCE=45°,∴∠1=∠3,∴CF∥AB.(2)由三角形内角和可得∠DFC=180°-∠1-∠D=180°-45°-30°=105°.。
第11章 三角形 全章测试一、选择题(每题3分,共30分)1. 以下列各组长度的线段为边,能构成三角形的是 ( )A .7,3,4B .5,6,12C .3,4,5D .1,2,3 2. 等腰三角形的一个外角是80°,则其底角是( )A .100°B .100°或40°C .40°D .80 3.一个多边形的每一个外角都等于40°,那么这个多边形的内角和为( )A .1260°B .1080°C .1620°D .360°4.用一批完全相同的多边形地砖铺地面,不能进行镶嵌的是( ) A.正三角形 B.正方形 C.正六边形 D.正八边形5.下列说法正确的是( )A.三角形的角平分线、中线及高都在三角形内B.直角三角形的高只有一条.C.三角形至少有一条高在形内D.钝角三角形的三条高都在形外. 6.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( ) A .5 B .6 C .7 D .8 7.在下图中,正确画出AC 边上高的是( ).(A ) (B ) (C ) (D ) 8.如图所示,∠A 、∠1、∠2的大小关系是( ) A. ∠A >∠1>∠2 B. ∠2>∠1>∠A C. ∠A >∠2>∠1 D. ∠2>∠A >∠19. 给出下列命题:⑴三角形的一个外角一定大于它的一个内角.⑵若一个三角形的三个内角之比为1:3:4,它肯定是直角三角形 ⑶三角形的最小内角不能大于60°⑷三角形的一个外角等于和它不相邻的两个内角的和 其中真命题的个数是 ( )(A )1个 (B )2个 (C )3个 (D )4个10.如图1,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是( )A .∠A=∠1+∠2 B .2∠A=∠1+∠2 C .3∠A=2∠1+∠2 D .3∠A=2(∠1+∠2)二、填空题(每题3分,共30分)11.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条,这样做的道理是 . 12.已知等腰三角形的两边长是5cm 和11cm ,则它的周长是_______13.一个等腰三角形的周长为18,已知一边长为5,则其他两边长为 ____________. 14.已知一个三角形的三条边长为2、7、x ,则x 的取值范围是 _______. 15.如图所示,AB∥CD,∠ABE=66°,∠D=54°,则∠E 的度数为 . 16.如图,∠A +∠B +∠C +∠D +∠E +∠F= .17.在△ABC 中,在△ABC 中,∠A-∠B=∠B-∠C =15°则∠A 、∠B 、∠C 分别为 . 18.如图,在△ABC 中,两条角平分线BD 和CE 相交于点O ,若∠BOC=116°,那么∠A 的度数是_______。
人教版八年级上册数学单元测试卷第十一章三角形姓名班级学号成绩一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.33.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE第3题图第6题图第7题图4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.80.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°第10题图第13题图第14题图二.填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为;(2)若∠ABC=60°,求∠DAE的度数.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=,可以发现∠ADC'与∠C 的数量关系是;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.第11章:三角形单元测试卷(参考答案)一.选择题(共10小题,每小题3分,共30分)1.下列图形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性解答.【解答】解:三角形、四边形、五边形及六边形中只有三角形具有稳定性.故选:A.【点评】本题考查了三角形具有稳定性,是基础题,需熟记.2.若正n边形的一个外角为60°,则n的值是()A.6B.5C.4D.3【分析】根据多边形的外角和与正多边形的性质即可求得答案.∵【解答】解:正n边形的一个外角为60°∴n=360°÷60°=6故选:A.【点评】本题考查多边形的外角和及正多边形的性质,此为基础且重要知识点,必须熟练掌握.3.如图,△ABC的边BC上的高是()A.线段AF B.线段DB C.线段CF D.线段BE【分析】根据三角形的高的定义进行分析即可得出结果.【解答】解:由图可得:△ABC的边BC上的高是AF.故选:A.【点评】本题主要考查三角形的角平分线、中线、高,解答的关键是对三角形的高的定义的掌握.4.以下各组线段为边,能组成三角形的是()A.2cm,4cm,6cm B.8cm,6cm,4cmC.14cm,6cm,7cm D.2cm,3cm,6cm【分析】根据三角形任意两边的和大于第三边,进行分析判断.【解答】解:A、2+4=6,不能组成三角形;B、4+6=10>8,能组成三角形;C、6+7=13<14,不能够组成三角形;D、2+3=5<6,不能组成三角形.故选:B.【点评】本题考查了能够组成三角形三边的条件.注意:用两条较短的线段相加,如果大于最长那条就能够组成三角形.5.在△ABC中,∠A=∠B=∠C,则此三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】用∠A表示出∠B、∠C,然后利用三角形的内角和等于180°列方程求解即可.【解答】解:∵∠A=∠B=∠C∴∠B=2∠A,∠C=3∠A∵∠A+∠B+∠C=180°∴∠A+2∠A+3∠A=180°解得∠A=30°所以,∠B=2×30°=60°∠C=3×30°=90°所以,此三角形是直角三角形.故选:B.【点评】本题考查了三角形的内角和定理,熟记定理并用∠A列出方程是解题的关键.6.如图,在△ABC中,∠B=30°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是()A.30°B.45°C.60°D.70°【分析】由折叠的性质可得∠B=∠D=30°,再根据外角的性质即可求出结果.【解答】解:将△ABC沿直线m翻折,交BC于点E、F,如图所示:由折叠的性质可知:∠B=∠D=30°根据外角的性质可知:∠1=∠B+∠3,∠3=∠2+∠D∴∠1=∠B+∠2+∠D=∠2+2∠B∴∠1﹣∠2=2∠B=60°故选:C.【点评】本题考查三角形内角和定理、翻折变换的性质,熟练掌握三角形外角的性质和翻折的性质是解题的关键.7.如图所示,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠BAC的度数是()A.50°B.60°C.70°D.80°【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°.故选:D.【点评】本题主要考查三角形的外角性质,解答的关键是熟记三角形的外角性质:三角形的外角等于与其不相邻的两个内角之和.8.如图,在△ABC中,BD是AC边上的高,CE是∠ACB的平分线,BD,CE交于点F.若∠AEC=80°,∠BFC=128°,则∠ABC的度数是()A.28°B.38°C.42°D.62°【分析】根据∠BFC的度数以及BD⊥AC,可求出∠ACE度数,进而得出∠ACB度数,再结合∠AEC度数,求出∠A度数,最后利用三角形的内角和定理即可解题.【解答】解:因为BD是AC边上的高所以∠BDC=90°.又∠BFC=128°所以∠ACE=128°﹣90°=38°又∠AEC=80°则∠A=62°.又CE是∠ACB的平分线所以∠ACB=2∠ACE=76°.故∠ABC=180°﹣62°﹣76°=42°.故选:C.【点评】本题考查角平分线的定义及三角形的内角和定理,利用外角求出∠ACE的度数是解题的关键.9.一个多边形的内角和等于540°,则它的边数为()A.4B.5C.6D.8【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n∴(n﹣2)•180°=540°∴n=5.故选:B.【点评】本题考查了多边形的内角和定理,掌握n边形的内角和为(n﹣2)•180°是解决此题关键.10.如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC=()A.95°B.120°C.130°D.135°【分析】利用三角形ABC和三角形OBC的内角和都是180°,求解即可.【解答】解:由三角形内角和定理在三角形ABC中:∠A+∠ABC+∠ACB=180°∴∠OBC+∠OCB+∠1+∠2+∠A=180°∴∠OBC+∠OCB=180°﹣80°﹣15°﹣40°=45°在三角形OBC中∠OBC+∠OCB+∠BOC=180°∴∠BOC=180°﹣45°=135°故选:D.【点评】此题主要考查三角形的内角和定理:三角形的内角和是180°;掌握定理是解题关键.二.填空题(共5小题,每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,若第三边的长为整数,则此三角形周长的最大值17.【分析】第三边的长为x,根据三角形的三边关系得出x的取值范围,再由第三边的长为整数得出x的值,进而可得出结论.【解答】解:第三边的长为x∵一个三角形的两边长分别为4和5∴5﹣4<x<5+4,即1<x<9∵第三边的长为整数∴x的值可以为2,3,4,5,6,7,8∴当x=8时,此三角形周长的最大值=4+5+8=17.故答案为:17.【点评】本题考查的是三角形的三边关系,熟知三角形两边之和大于第三边;三角形的两边之差小于第三边是解题的关键.12.如果一个多边形的内角和等于它外角和的3倍,则这个多边形的边数是8.【分析】根据多边形的内角和公式及外角的特征计算.【解答】解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故答案为:8.【点评】本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.13.如图,AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=50°,点F为边AB上一点,当△BDF为直角三角形时,则∠ADF的度数为20°或60°.【分析】分两种情况进行讨论:当∠BFD=90°时,当∠BDF=90°时,分别依据三角形内角和定理以及角平分线的定义,即可得到∠ADF的度数为20°或60°.【解答】解:如图所示,当∠BFD=90°时∵AD是△ABC的角平分线,∠BAC=60°∴∠BAD=30°∴Rt△ADF中,∠ADF=60°;如图,当∠BDF=90°时同理可得∠BAD=30°∵CE是△ABC的高,∠BCE=50°∴∠BFD=∠BCE=50°∴∠ADF=∠BFD﹣∠BAD=20°综上所述,∠ADF的度数为20°或60°.故答案为:20°或60°.【点评】此题主要考查了三角形的内角和定理,解答此题的关键是要明确:三角形的内角和是180°.14.如图,在△ABC中,AD为BC边上的中线,DE⊥AB于点E,DF⊥AC于点F,AB=3,AC=4,DF=1.5,则DE=2.【分析】由题意,△ABC中,AD为中线,可知△ABD和△ADC的面积相等;利用面积相等,问题可求.【解答】解:∵△ABC中,AD为中线∴BD=DC∴S△ABD=S△ADC∵DE⊥AB于E,DF⊥AC于F,AB=3,AC=4,DF=1.5∴•AB•ED=•AC•DF∴×3×ED=×4×1.5∴ED=2故答案为:2.【点评】此题考查三角形的中线,三角形的中线把三角形的面积分成相等的两部分.本题的解答充分利用了面积相等这个知识点.15.如图,∠A+∠B+∠C+∠D+∠E+∠F的度数为360°【分析】根据三角形外角的性质和四边形内角和等于360°可得∠A+∠B+∠C+∠D+∠E+∠F的度数.【解答】解:如图∵∠1=∠2+∠F=∠B+∠E+∠F,∠1+∠A+∠C+∠D=360°∴∠A+∠B+∠C+∠D+∠E+∠F=360°故答案为:360°.【点评】此题考查三角形的内角和,角的和与差,掌握三角形的内角和定理是解决问题的关键.三.解答题一(共3小题,每题8分,共24分)16.在△ABC中,∠CAE=25°,∠C=40°,∠CBD=30°,求∠AFB的度数.【分析】根据三角形的外角定理得出∠AEB=∠CAE+∠C,再根据∠AFB=∠CBD+∠AEB即可求解.【解答】解:∵∠CAE=25°,∠C=40°∴∠AEB=∠CAE+∠C=25°+40°=65°∵∠CBD=30°∴∠AFB=∠CBD+∠AEB=30°+65°=95°.【点评】本题主要考查了三角形的外角定理,解题的关键是掌握三角形的一个外角等于与它不相邻的两个内角之和.17.已知一个正多边形的边数为n.(1)若这个多边形的内角和为其外角和的4倍,求n的值;(2)若这个正多边形的一个内角为135°,求n的值.【分析】(1)利用多边形的内角和与外角和列得方程,解方程即可;(2)利用多边形的内角和与正多边形的性质列得方程,解方程即可.【解答】解:(1)由题意可得(n﹣2)•180°=360°×4解得:n=10;(2)由题意可得(n﹣2)•180°=135°n解得:n=8.【点评】本题考查多边形的内角和与外角和,正多边形的性质,结合已知条件列得对应的方程是解题的关键.18.如图,在△ABC中,∠B=40°,∠C=70°,AD是△ABC的角平分线,点E在BD上,点F在CA的延长线上,EF∥AD.(1)求∠BAF的度数.(2)求∠F的度数.【分析】(1)根据外角的性质即可得到结论;(2)根据角平分线的定义得到∠DAC=BAC=35°,根据平行线的性质即可得到结论.【解答】解:(1)∵∠BAF=∠B+∠C∵∠B=40°,∠C=70°∴∠BAF=110°;(2)∵∠BAF=110°∴∠BAC=70°∵AD是△ABC的角平分线∴∠DAC=BAC=35°∵EF∥AD∴∠F=∠DAC=35°.【点评】本题考查了三角形外角的性质,平行线的性质,三角形的内角和,角平分线的定义,熟练掌握三角形外角的性质是解题的关键.四.解答题二(共3小题,每题9分,共27分)19.如图,在△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠C=70°.(1)∠AOB的度数为125°;(2)若∠ABC=60°,求∠DAE的度数.【分析】(1)根据角平分线的定义得出∠OAB+∠OBA=(∠BAC+∠ABC),根据三角形内角和定理得出∠BAC+∠ABC=180°﹣∠C=110°,进而即可求解;(2)根据三角形内角和定理求得∠DAC,∠BAC,根据AE是∠BAC的角平分线,得出∠CAE=∠CAB =25°,根据∠DAE=∠CAE﹣∠CAD,即可求解.【解答】(1)解:∵AE、BF是∠BAC、∠ABC的角平分线∴∠OAB+∠OBA=(∠BAC+∠ABC)在△ABC中,∠C=70°∴∠BAC+∠ABC=180°﹣∠C=110°∴∠AOB=180°﹣∠OAB﹣∠OBA=180°﹣(∠BAC+∠ABC)=125°.故答案为:125°;(2)解:∵在△ABC中,AD是高,∠C=70°,∠ABC=60°∴∠DAC=90°﹣∠C=90°﹣70°=20°,∠BAC=180°﹣∠ABC﹣∠C=50°∵AE是∠BAC的角平分线∴∠CAE=∠CAB=25°∴∠DAE=∠CAE﹣∠CAD=25°﹣20°=5°∴∠DAE=5°.【点评】本题考查了三角形中线,角平分线,三角形内角和定理,掌握三角形内角和定理是解题的关键.20.已知在△ABC中,∠A、∠B、∠C的对边分别为a、b、c.(1)化简代数式:|a+b﹣c|+|b﹣a﹣c|=2a.(2)若AB=AC,AC边上的中线BD把三角形的周长分为15和6两部分,求腰长AB.【分析】(1)先根据三角形的三边关系定理可得a+b>c,a+c>b,从而可得a+b﹣c>0,b﹣a﹣c<0,再化简绝对值,然后计算整式的加减法即可得;(2)先根据三角形中线的定义可得,再分①和②两种情况,分别求出a,c的值,从而可得三角形的三边长,然后看是否符合三角形的三边关系定理即可得出答案.【解答】解:(1)由题意得:a+b>c,a+c>b∴a+b﹣c>0,b﹣a﹣c<0∴|a+b﹣c|+|b﹣a﹣c|=a+b﹣c+(﹣b+a+c)=a+b﹣c﹣b+a+c=2a.故答案为:2a;(2)设AB=AC=2x,BC=y,则AD=CD=x∵AC上的中线BD将这个三角形的周长分成15和6两部分①当3x=15,且x+y=6解得,x=5,y=1∴三边长分别为10,10,1;②当x+y=15且3x=6时解得,x=2,y=13,此时腰为4根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴△ABC的腰长AB为10.【点评】本题考查了三角形的三边关系定理、整式加减的应用、二元一次方程组的应用、三角形的中线等知识点,掌握相应的定义和分类讨论思想是解题关键.21.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E.(1)求证:∠BAC=∠B+2∠E.(2)若CA⊥BE,∠ECD﹣∠ACB=30°时,求∠E的度数.【分析】(1)根据角平分线的定义、三角形的外角性质计算,证明结论;(2)根据角平分线的定义及已知条件可求解∠ACB,∠ECD的度数,利用直角三角形的性质可求解∠B 的度数,再由三角形外角的性质可求解.【解答】(1)证明:∵CE平分∠ACD∴∠ECD=∠ACE.∵∠BAC=∠E+∠ACE∴∠BAC=∠E+∠ECD∵∠ECD=∠B+∠E,′∴∠BAC=∠E+∠B+∠E∴∠BAC=2∠E+∠B.(2)解:∵CE平分∠ACD∴∠ACE=∠DCE∵∠ECD﹣∠ACB=30°,2∠ECD+∠ACB=180°∴∠ACB=40°,∠ECD=70°∵CA⊥BE∴∠B+∠ACB=90°∴∠B=50°∵∠ECD=∠B+∠E∴∠E=70°﹣50°=20°.【点评】本题考查的是三角形的外角性质、三角形内角和定理,直角三角形的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.五.解答题三(共2小题,每题12分,共24分)22.我们在小学已经学习了“三角形内角和等于180°”.在三角形纸片中,点D,E分别在边AC,BC上,将∠C沿DE折叠,点C落在点C'的位置.(1)如图1,当点C落在边BC上时,若∠ADC'=58°,则∠C=29°,可以发现∠ADC'与∠C的数量关系是∠ADC'=2∠C;(2)如图2,当点C落在△ABC内部时,且∠BEC'=42°,∠ADC'=20°,求∠C的度数;(3)如图3,当点C落在△ABC外部时,若设∠BEC'的度数为x,∠ADC'的度数为y,请求出∠C与x,y之间的数量关系.【分析】(1)根据平角定义求出∠CDC′=122°,然后利用折叠的性质可得∠CDE=∠CDC′=61°,∠DEC=×180°=90°,最后利用三角形内角和定理,进行计算即可解答;(2)根据平角定义求出∠CDC′=160°,∠CEC′=138°,然后利用折叠的性质可得∠CDE=∠CDC′=80°,∠DEC=∠CEC′=69°,最后利用三角形内角和定理,进行计算即可解答;(3)根据平角定义求出∠CDC′=180°﹣x,∠CEC′=180°+y,然后利用折叠的性质可得∠CDE=∠CDC′=90°+y,∠DEC=∠CEC′=90°﹣x,最后利用三角形内角和定理,进行计算即可解答.【解答】解:(1)∵∠ADC′=58°∴∠CDC′=180°﹣∠ADC′=122°由折叠得:∠CDE=∠C′DE=∠CDC′=61°,∠DEC=∠DEC′=×180°=90°∴∠C=180°﹣∠EDC﹣∠DEC=29°∴∠ADC'与∠C的数量关系:∠ADC'=2∠C.故答案为:29°,∠ADC'=2∠C;(2)∵∠BEC′=42°,∠ADC′=20°∴∠CEC′=180°﹣∠BEC′=138°,∠CDC′=180°﹣∠ADC′=160°由折叠得:∠CDE=∠C′DE=∠CDC′=80°,∠DEC=∠DEC′=∠CEC′=69°∴∠C=180°﹣∠EDC﹣∠DEC=31°∴∠C的度数为31°;(3)如图:∵∠BEC′=x,∠ADC′=y∴∠CEC′=180°﹣x,∠1=180°+∠ADC′=180°+y由折叠得:∠CDE=∠C′DE=∠1=90°+y,∠DEC=∠DEC′=∠CEC′=90°﹣x∴∠C=180°﹣∠EDC﹣∠DEC=180°﹣(90°+y)﹣(90°﹣x)=x﹣y∴∠C与x,y之间的数量关系:∠C=x﹣y.【点评】本题考查了三角形内角和定理,熟练掌握三角形内角和定理,以及折叠的性质是解题的关键.23.如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)∠ACB=135°;(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;(3)如图3,过C作直线与AB交于F,且满足∠AGO﹣∠BCF=45°,求证:CF∥OB.【分析】(1)根据直角三角形的性质得到∠BAO+∠ABO=90°,根据角平分线的定义、三角形内角和定理计算,得到答案;(2)根据三角形的外角性质得到∠OBE﹣∠OAB=90°,再根据三角形的外角性质计算即可;(3)根据邻补角的概念得到∠BCG=45°,根据三角形的外角性质得到∠CBG=∠BCF,根据平行线的判定定理证明结论.【解答】(1)解:∵∠AOB=90°∴∠BAO+∠ABO=90°∵AC、BC分别是∠BAO和∠ABO的角平分线∴∠CAB=∠BAO,∠CBA=∠ABO∴∠CAB+∠CBA=(∠BAO+∠ABO)=45°∴∠ACB=180°﹣45°=135°故答案为:135°;(2)解:∠ADB的大小不发生变化∵∠OBE是△AOB的外角∴∠OBE=∠OAB+∠AOB∵∠AOB=90°∴∠OBE﹣∠OAB=90°∵BD平分∠OBE∴∠EBD=∠OBE∵∠EBD是△ADB的外角∴∠EBD=∠BAG+∠ADB∴∠ADB=∠EBD﹣∠BAG=∠OBE﹣∠OAB=45°;(3)证明:∵∠ACB=135°,∠ACB+∠BCG=180°∴∠BCG=180°﹣∠ACB=180°﹣135°=45°∵∠AGO是△BCG的外角∴∠AGO=∠BCG+∠CBG=45°+∠CBG∵∠AGO﹣∠BCF=45°∴45°+∠CBG﹣∠BCF=45°∴∠CBG=∠BCF∴CF∥OB.【点评】本题考查的是三角形的外角性质、平行线的判定、角平分线的定义、三角形内角和定理,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.。
第十一章检测卷时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.以下列各组线段为边,能组成三角形的是()A.2、2、4 B.8、6、3 C.2、6、3 D.11、4、62.如图,图中∠1的大小等于()A.40°B.50°C.60°D.70°3.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒4.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD 的周长是()A.9 B.14 C.16 D.不能确定5.如图,△ABC中,∠A=46°,∠C=74°,BD平分∠ABC,交AC于点D,那么∠BDC 的度数是()A.76°B.81°C.92°D.104°6.在下列条件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A∶∠B∶∠C=1∶2∶3,能确定△ABC为直角三角形的条件有()A.1个B.2个C.3个D.0个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.若a、b、c是△ABC的三边的长,则化简|a-b-c|-|b-c-a|+|a+b-c|的结果是( )A .a +b +cB .-a +3b -cC .a +b -cD .2b -2c9.小明同学在用计算器计算某n 边形的内角和时,不小心多输入一个内角,得到和为2016°,则n 等于( )A .11B .12C .13D .1410.在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( )A .∠ADE =20°B .∠ADE =30°C .∠ADE =12∠ADCD .∠ADE =13∠ADC二、填空题(每小题3分,共24分) 11.如图,共有______个三角形.12.若n 边形内角和为900°,则边数n =______、13.一个三角形的两边长分别是3和8,周长是偶数,那么第三边边长是______、 14.将一副三角板按如图所示的方式叠放,则∠α=______、15.如图,在△ABC 中,CD 是AB 边上的中线,E 是AC 的中点,已知△DEC 的面积是4cm 2,则△ABC 的面积是______、16.如图,把三角形纸片ABC 沿DE 折叠,使点A 落在四边形BCDE 的内部,已知∠1+∠2=80°,则∠A 的度数为______、17.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1-∠2=______、18.如图,已知∠AOB =7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A =90°-7°=83°、当∠A <83°时,光线射到OB 边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2、若A1A2⊥AO,光线又会沿A2→A1→A 原路返回到点A,此时∠A=76°、…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值为______、三、解答题(共66分)19.(8分)如图:(1)在△ABC中,BC边上的高是AB;(1分)(2)在△AEC中,AE边上的高是CD;(2分)(3)若AB=CD=2cm,AE=3cm,求△AEC的面积及CE的长.20.(8分)如图,在△BCD中,BC=4,BD=5、(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.21、(8分)如图,六边形ABCDEF的内角都相等,CF∥AB、(1)求∠FCD的度数;(2)求证:AF∥CD、22.(10分)如图,点E在AC上,点F在AB上,BE,CF交于点O,且∠C=2∠B,∠BFC-∠BEC=20°,求∠C的度数.23.(10分)如果多边形的每个内角都比它相邻的外角的4倍多30°,求这个多边形的内角和及对角线的总条数.24.(10分)如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成12cm 和15cm两部分,求△ABC各边的长.25.(12分)如图①,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB 、(1)求证:∠OAC =∠OCA ;(2)如图②,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P ,即满足∠POC =13∠AOC ,∠PCE =13∠ACE ,求∠P 的大小;(3)如图③,在(2)中,若射线OP 、CP 满足∠POC =1n ∠AOC ,∠PCE =1n ∠ACE ,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示).参考答案与解析1.B 2、D 3、C 4、A 5、A 6、B 7、C 8、B9.C 解析:n 边形内角和为(n -2)·180°,并且每一个内角的度数都小于180°、∵(13-2)×180°=1980°,(14-2)×180°=2160°,1980°<2016°<2160°,∴n =13、故选C 、10.D 解析:如图,在△AED 中,∠AED =60°,∴∠A =180°-∠AED -∠ADE =120°-∠ADE 、在四边形DEBC 中,∠DEB =180°-∠AED =180°-60°=120°,∴∠B =∠C =(360°-∠DEB -∠EDC )÷2=120°-12∠EDC 、∵∠A =∠B =∠C ,∴120°-∠ADE =120°-12∠EDC ,∴∠ADE =12∠EDC 、∵∠ADC =∠ADE +∠EDC =12∠EDC +∠EDC =32∠EDC ,∴∠ADE =13∠ADC 、故选D 、11.6 12、7 13、7或9 14、75° 15.16cm 2 16、40°17.24° 解析:等边三角形的每个内角是60°,正方形的每个内角是(4-2)×180°4=90°,正五边形的每个内角是(5-2)×180°5=108°,正六边形的每个内角是(6-2)×180°6=120°,∴∠1=120°-108°=12°,∠2=108°-90°=18°,∠3=90°-60°=30°,∴∠3+∠1-∠2=30°+12°-18°=24°、18.76 6 解析:∵A 1A 2⊥AO ,∠AOB =7°,∴∠1=∠2=90°-7°=83°,∴∠A =∠1-∠AOB =76°、如图,当MN ⊥OA 时,光线沿原路返回,∴∠4=∠3=90°-7°=83°,∴∠6=∠5=∠4-∠AOB =83°-7°=76°=90°-14°,∴∠8=∠7=∠6-∠AOB =76°-7°=69°,∴∠9=∠8-∠AOB =69°-7°=62°=90°-2×14°,由以上规律可知∠A =90°-n ·14°、当n =6时,∠A 取得最小值,最小度数为6°,故答案为:76,6、19.解:(1)AB (1分) (2)CD (2分)(3)∵AE =3cm ,CD =2cm ,∴S △AEC =12AE ·CD =12×3×2=3(cm 2).(5分)∵S △AEC =12CE ·AB=3cm 2,AB =2cm ,∴CE =3cm 、(8分)20.解:(1)∵在△BCD 中,BC =4,BD =5,∴1<DC <9、(4分)(2)∵AE ∥BD ,∠BDE =125°,∴∠AEC =55°、又∵∠A =55°,∴∠C =70°、(8分) 21.(1)解:∵六边形ABCDEF 的内角相等,∴∠B =∠A =∠BCD =120°、(1分)∵CF ∥AB ,∴∠B +∠BCF =180°,∴∠BCF =60°,∴∠FCD =60°、(4分)(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°,∴∠AFC =180°-120°=60°,∴∠AFC =∠FCD ,∴AF ∥CD 、(8分)22.解:由三角形的外角性质,得∠BFC =∠A +∠C ,∠BEC =∠A +∠B 、(2分)∵∠BFC -∠BEC =20°,∴(∠A +∠C )-(∠A +∠B )=20°,即∠C -∠B =20°、(5分)∵∠C =2∠B ,∴∠B =20°,∠C =40°、(10分)23.解:设这个多边形的一个外角为x °,依题意有x +4x +30=180,解得x =30、(3分)∴这个多边形的边数为360°÷30°=12,(5分)∴这个多边形的内角和为(12-2)×180°=1800°,(7分)对角线的总条数为(12-3)×122=54(条).(10分)24.解:设AB =x cm ,BC =y cm 、有以下两种情况:(1)当AB +AD =12cm ,BC +CD=15cm 时,⎩⎨⎧x +12x =12,y +12x =15,解得⎩⎪⎨⎪⎧x =8,y =11.即AB =AC =8cm ,BC =11cm ,符合三边关系;(5分)(2)当AB +AD =15cm ,BC +CD =12cm 时,⎩⎨⎧x +12x =15,y +12x =12,解得⎩⎪⎨⎪⎧x =10,y =7.即AB =AC =10cm ,BC =7cm ,符合三边关系.(9分)综上所述,AB =AC =8cm ,BC =11cm 或AB =AC =10cm ,BC =7cm 、(10分)25.(1)证明:∵A (0,1),B (4,1),∴AB ∥CO ,∴∠OAB =180°-∠AOC =90°、(1分)∵AC 平分∠OAB ,∴∠OAC =45°,∴∠OCA =90°-45°=45°,∴∠OAC =∠OCA 、(3分)(2)解:∵∠POC =13∠AOC ,∴∠POC =13×90°=30°、∵∠PCE =13∠ACE ,∴∠PCE =13(180°-45°)=45°、∵∠P +∠POC =∠PCE ,∴∠P =∠PCE -∠POC =15°、(7分) (3)解:∠OPC =45°n 、(8分)证明如下:∵∠POC =1n ∠AOC ,∴∠POC =1n ×90°=90°n 、∵∠PCE =1n ∠ACE ,∴∠PCE =1n (180°-45°)=135°n 、(10分)∵∠OPC +∠POC =∠PCE ,∴∠OPC =∠PCE -∠POC =45°n、(12分)www 、czsx 、com 、cn。
初中数学试卷马鸣风萧萧八上数学第11章《三角形》测试题一、选择题1.一个多边形内角和是10800,则这个多边形的边数为()A、 6B、 7C、 8D、 92.能将三角形面积平分的是三角形的()A、角平分线B、高C、中线D、外角平分线3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A.13cm B.6cm C.5cm D.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是()A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C(∠C除外)相等的角的个数是()A、3个B、4个C、5个D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A、900B、1200C、1600D、18007.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()(A)1个 (B)2个 (C)3个 (D)4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
正确的命题有( )A.1个B.2个C.3个D.4个二、填空题9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是度。
12.如图,∠1=_____.第5题图第6题图C D BA第9题图第10题图AB CDE第11题图140801第12题图13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 .14.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 度。
人教版八年级数学上第十一章三角形单元检测含答案一、选择题(本大题共9小题,每小题3分,共27分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.以下列各组线段为边,能组成三角形的是( ).A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cmC.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm2.下列说法错误的是( ).A.锐角三角形的三条高线、三条中线、三条角平分线分别交于一点B.钝角三角形有两条高线在三角形外部C.直角三角形只有一条高线D.任意三角形都有三条高线、三条中线、三条角平分线3.如果多边形的内角和是外角和的k倍,那么这个多边形的边数是( ).A.k B.2k+1C.2k+2 D.2k-24.四边形没有稳定性,当四边形形状改变时,发生变化的是( ).A.四边形的边长B.四边形的周长C.四边形的某些角的大小D.四边形的内角和5.如图,在△ABC中,D,E分别为BC上两点,且BD=DE=EC,则图中面积相等的三角形有( )对.A.4 B.5C.6 D.76.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B-∠C中,能确定△ABC是直角三角形的条件有( ).A.1个B.2个C.3个D.4个7.如果三角形的一个外角小于和它相邻的内角,那么这个三角形为( ).A.钝角三角形B.锐角三角形C.直角三角形D.以上都不对8.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( ).A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).A.相等B.互补C.相等或互补D.无法确定二、填空题(本大题共9小题,每小题3分,共27分.把答案填在题中横线上)10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四边形的__________.11.已知a,b,c是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.12.等腰三角形的周长为20 cm,一边长为6 cm,则底边长为__________.13.如图,∠ABD与∠ACE是△ABC的两个外角,若∠A=70°,则∠ABD+∠ACE=__________.14.四边形ABCD的外角之比为1∶2∶3∶4,那么∠A∶∠B∶∠C∶∠D=__________.15.如果一个多边形的内角和等于它的外角和的3倍,那么这个多边形是__________边形.16.如图,∠A+∠B+∠C+∠D+∠E+∠F=__________.17.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1=__________.18.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A点时,一共走了__________米.三、解答题(本大题共4小题,共46分)19.(本题满分10分)一个正多边形的一个外角等于它的一个内角的13,这个正多边形是几边形?20.(本题满分12分)如图所示,直线AD和BC相交于点O,AB∥CD,∠AOC=95°,∠B=50°,求∠A和∠D.21.(本题满分12分)如图,经测量,B处在A处的南偏西57°的方向,C处在A处的南偏东15°方向,C处在B处的北偏东82°方向,求∠C的度数.22.(本题满分12分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为R 的扇形草坪(图中阴影部分).(1)图①中草坪的面积为__________;(2)图②中草坪的面积为__________;(3)图③中草坪的面积为__________;(4)如果多边形的边数为n,其余条件不变,那么,你认为草坪的面积为__________.参考答案1.B 点拨:只有B中较短两边之和大于第三边,能组成三角形.2.C 点拨:直角三角形也有三条高,只是有两条与边重合了,因此C错误,故选C.3.C 点拨:任何多边形的外角和都是360°,所以内角和就是180°的2k倍,即(n-2)=2k,所以边数n=2k+2,故选C.4.C 点拨:四边形形状改变时,只是改变了四个角的大小,内角和、边长、周长都不改变.故选C.5.A 点拨:等底同高的三角形的面积是相等的,所以△ABD,△ADE,△AEC三个三角形的面积相等,有3对,△ABE与△ACD的面积也相等,有1对,所以共有4对三角形面积相等,故选A.6.D 点拨:根据三角形内角和定理可知,①中∠C=90°,②中∠C=90°,③中∠A+∠B=90°,两锐角互余,④中∠B=90°,所以①②③④都能判定是直角三角形,故选D.7.A 点拨:外角小于内角,它们又互补,所以内角大于90°,故三角形为钝角三角形.故选A.8.B 点拨:∠A=180°-(∠B+∠C)=180°-(∠AED+∠ADE),所以∠B+∠C=∠AED+∠ADE,在四边形BCDE中,∠1+∠2=360°-2(180°-∠A),化简得,∠1+∠2=2∠A.9.C 点拨:如图,有两种情况,一是∠A与∠D的两边互相垂直,另一种是∠A与∠BDE的两边所在的直线相互垂直,根据四边形内角和是360°,能得到第一种情况时互补,第二种情况时相等,所以两角相等或互补,故选C.10.三角形的稳定性 不稳定性11.2a-2b 点拨:因为a,b,c是三角形的三边长,三角形两边之和大于第三边,所以a-b+c>0,a-b-c<0,所以原式=a-b+c-[-(a-b-c)]=2a-2b.12.8 cm或6 cm 点拨:当腰长是6 cm时,根据周长20 cm求得底边长是8 cm,能组成三角形;当底边长是6 cm时,求得腰长是7 cm,也能组成三角形,两种情况都成立,所以底边长是8 cm或6 cm.13.250° 点拨:由∠A=70°,可得∠ABC+∠ACB=110°,∠ABD+∠ACE+∠ABC+∠ACB=360°,所以∠ABD+∠ACE=360°-110°=250°,也可用外角性质求出.14.4∶3∶2∶1 点拨:由外角之比是1∶2∶3∶4可求得四边形ABCD的外角分别是36°,72°,108°,144°,内角分别是144°,108°,72°,36°,所以它们的比是4∶3∶2∶1.15.八 点拨:由题意可知内角和是360°×3=1 080°,所以是八边形.16.360° 点拨:由图可知∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠1,∠2,∠3的和是中间的三角形的外角和,等于360°,所以∠A+∠B+∠C+∠D+∠E+∠F=360°.17.45° 点拨:在△ABC中,∠ABC=180°-∠A-∠C=70°,∠1=∠ABC-∠D=70°-25°=45°.18.120 点拨:由题意可知,回到出发点时,小亮正好转了360°,由此可知所走路线是边长为10米,外角为30°角的正多边形,360°÷30°=12,所以是正十二边形,周长为120米,所以小亮一共走了120米.19.解:设正多边形的边数为n ,得180(n -2)=360×3,解得n =8.答:这个正多边形是八边形.20.解:因为∠AOC 是△AOB 的一个外角,所以∠AOC =∠A +∠B (三角形的一个外角等于和它不相邻的两个内角的和).因为∠AOC =95°,∠B =50°,所以∠A =∠AOC -∠B =95°-50°=45°.因为AB ∥CD ,所以∠D =∠A =45°(两直线平行,内错角相等).21.解:因为BD ∥AE ,所以∠DBA =∠BAE =57°.所以∠ABC =∠DBC -∠DBA =82°-57°=25°.在△ABC 中,∠BAC =∠BAE +∠CAE =57°+15°=72°,所以∠C =180°-∠ABC -∠BAC =180°-25°-72°=83°.22.答案:(1)πR 2 (2)πR 2 (3)πR 2 (4)πR 21232n -22点拨:因为一个周角是360°,所以阴影部分的面积实际上就是多边形内角和是整个周角的多少倍,阴影部分的面积就是圆面积的多少倍.如(1)中三角形内角和是180°,因此图①中阴影部分的面积就是圆面积的一半,依次类推.。
《第11章三角形》一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.5.如图所示,图中有个三角形,个直角三角形.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.8.若一个n边形的边数增加一倍,则内角和将增加.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:412.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有()A.7条B.8条C.9条D.10条17.如图,△ABC中,D为BC上的一点,且S△ACD =S△ABD,则AD为()A.高B.中线 C.角平分线 D.不能确定18.现有长度分别为2cm、4cm、6cm、8cm的木棒,从中任取三根,能组成三角形的个数为()A.1 B.2 C.3 D.4三、解答题(共46分)19.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?《第11章三角形》参考答案与试题解析一、填空题1.如果三角形的一个角等于其它两个角的差,则这个三角形是三角形.【考点】三角形内角和定理.【分析】三角形三个内角之和是180°,三角形的一个角等于其它两个角的差,列出两个方程,即可求出答案.【解答】解:设三角形的三个角分别为:a、b、c,则由题意得:解得:a=90°故这个三角形是直角三角形.【点评】本题考查直角三角形的有关性质,可利用方程进行求解.2.已知△ABC中,AD⊥BC于D,AE为∠A的平分线,且∠B=35°,∠C=65°,则∠DAE的度数为.【考点】三角形内角和定理.【分析】首先根据三角形的内角和定理和角平分线的定义求出∠EAC的度数,再根据三角形的内角和定理求出∠DAC的度数,进而求∠DAE的度数.【解答】解:∵∠B=35°,∠C=65°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣35°﹣65°=80°.∵AE为∠BAC的平分线,∴∠EAC=∠BAC=×80°=40°.∵AD⊥BC,∴∠ADC=90°,在△ADC中,∵∠DAC=180°﹣∠ADC﹣∠C=180°﹣90°﹣65°=25°,∴∠DAE=∠EAC﹣∠DAC=40°﹣25°=15°.故答案为:15°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.3.△ABC中,如果∠A=∠B=3∠C,则∠A= .【考点】三角形内角和定理.【分析】根据题意可得出2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,再由三角形内角和定理即可得出x的值,进而得出结论.【解答】解:∵ABC中,∠A=∠B=3∠C,∴2∠A=∠B=6∠C,设∠C=x,则∠B=6x,∠A=3x,∵∠A+∠B+∠C=180°,∴3x+6x+x=180°,解得x=18°,∴∠A=3x=54°.故答案为:54°.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.4.已知,如图,∠ACD=130°,∠A=∠B,那么∠A的度数是°.【考点】三角形的外角性质.【分析】直接根据三角形内角与外角的性质解答即可.【解答】解:∵∠ACD是△ABC的外角,∴∠ACD=∠A+∠B,∵∠ACD=130°,∠A=∠B,∴∠A==65°.【点评】本题比较简单,考查的是三角形外角的性质,即三角形的外角等于不相邻的两个内角的和.5.如图所示,图中有个三角形,个直角三角形.【考点】三角形.【分析】三角形有:△ABC、△ADE、△ADB、△ADC、△CDE;根据直角三角形性质,直角三角形有:△ADE、△ADB、△ADC、△CDE.【解答】解:由分析知:图中有5个三角形,4个直角三角形.【点评】本题考查三角形和直角三角形的判定,认真列举即可.6.四边形ABCD中,若∠A+∠B=∠C+∠D,若∠C=2∠D,则∠C= .【考点】多边形内角与外角.【分析】先根据任意四边形的内角和为360°及∠A+∠B=∠C+∠D,∠C=2∠D列出关于∠D的关系式,求出∠D的度数,再由∠C=2∠D即可求解.【解答】解:∵任意四边形的内角和为360°,∴∠A+∠B+∠C+∠D=360°,∵∠A+∠B=∠C+∠D,∠C=2∠D,∴∠A+∠B+∠C+∠D=6∠D=360°,∴∠D=60°,∴∠C=2×60°=120°.【点评】本题考查的是四边形的内角和定理,解答此题的关键是根据四边形的内角和定理及四个角之间的关系列出关于∠D的关系式,再求出∠C的度数即可.7.某足球场需铺设草皮,现有正三角形、正四边形、正五边形、正六边形、正八边形、正十边形6种形状的草皮,请你帮助工人师傅选择两种草皮来铺设足球场,可供选择的两种组合是.【考点】平面镶嵌(密铺).【专题】开放型.【分析】选择两种草皮来铺设足球场,共15种可能.根据正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°:若能,则说明能铺满;反之,则说明不能铺满.依此得出可供选择的两种组合.【解答】解:正三角形、正四边形内角分别为60°、90°,当60°×3+90°×2=360°,故能铺满;正三角形、正五边形内角分别为60°、108°,显然不能构成360°的周角,故不能铺满;正三角形、正六边形内角分别为60°、120°,当60°×2+120°×2=360°,故能铺满;正三角形、正八边形内角分别为60°、135°,显然不能构成360°的周角,故不能铺满;正三角形、正十边形内角分别为60°、144°,显然不能构成360°的周角,故不能铺满;正四边形、正五边形内角分别为90°、108°,显然不能构成360°的周角,故不能铺满;正四边形、正六边形内角分别为90°、120°,显然不能构成360°的周角,故不能铺满;正四边形、正八边形内角分别为90°、135°,当90°+135°×2=360°,故能铺满;正四边形、正十边形内角分别为90°、144°,显然不能构成360°的周角,故不能铺满;正五边形、正六边形内角分别为108°、120°,显然不能构成360°的周角,故不能铺满;正五边形、正八边形内角分别为108°、135°,显然不能构成360°的周角,故不能铺满;正五边形、正十边形内角分别为108°、144°,当108°×2+144°=360°,故能铺满;正六边形、正八边形内角分别为120°、135°,显然不能构成360°的周角,故不能铺满;正六边形、正十边形内角分别为120°、144°,显然不能构成360°的周角,故不能铺满;正八边形、正十边形内角分别为135°、144°,显然不能构成360°的周角,故不能铺满.故可供选择的两种组合是:正三角形和正四边形、正三角形和正六边形、正四边形和正八边形、正五边形、正十边形中任选两种即可.【点评】解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.若一个n边形的边数增加一倍,则内角和将增加.【考点】多边形内角与外角.【分析】n边形的内角和是(n﹣2)•180°,将n边形的边数增加一倍就变成2n边形,2n边形的内角和是(2n﹣2)•180°,据此即可求得增加的度数.【解答】解:∵n边形的内角和是(n﹣2)•180°,∴2n边形的内角和是(2n﹣2)•180°,∴将n边形的边数增加一倍,则它的内角和增加:(2n﹣2)•180°﹣(n﹣2)•180°=n×180°.故答案为n×180°.【点评】本题主要考查了多边形的内角和公式,整式的化简,都是需要熟练掌握的内容.9.如图,BC⊥ED于O,∠A=27°,∠D=20°,则∠B= ,∠ACB= .【考点】直角三角形的性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BEO=∠A+∠D,再根据直角三角形两锐角互余列式计算即可求出∠B,根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACB=∠D+∠COD.【解答】解:∵∠A=27°,∠D=20°,∴∠BEO=∠A+∠D=27°+20°=47°,∵BC⊥ED,∴∠B=90°﹣∠BEO=90°﹣47°=43°;在Rt△COD中,∠ACB=∠D+∠COD=20°+90°=110°.故答案为:43°;110°.【点评】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.如图,由平面上五个点A、B、C、D、E连接而成,则∠A+∠B+∠C+∠D+∠E= .【考点】三角形的外角性质;三角形内角和定理.【分析】延长CE交AB于F,再根据三角形内角与外角的关系求出∠BFC=∠A+∠C,∠D+∠DEG=∠EGB,再根据三角形内角和定理解答即可.【解答】解:延长CE交AB于F,∵∠BFC是△ACF的外角,∴∠BFC=∠A+∠C,∵∠EGB是△EDG的外角,∴∠EGB=∠D+∠DEG,∵∠B+∠BFC+∠EGB=180°,∴∠A+∠B+∠C+∠D+∠E=180°.【点评】此题比较简单,解答此题的关键是延长CE交AB于F,构造出△BGF,利用三角形外角的性质把所求的角归结到一个三角形中,再根据三角形内角和定理求解.二、选择题11.如果一个三角形的三个外角之比为2:3:4,则与之对应的三个内角度数之比为()A.4:3:2 B.5:3:1 C.3:2:4【考点】三角形的外角性质.【分析】已知三角形三个外角的度数之比,可以设一份为k°,根据三角形的外角和等于360°列方程求三个内角的度数,确定三角形内角的度数,然后求出度数之比.【解答】解:设一份为k°,∵三个外角之比为2:3:4,∴三个外角的度数分别为2k°,3k°,4k°,∵2k°+3k°+4k°=360°,解得k°=40°,∴三个外角分别为80°,120°和160°,∵三角形外角与它相邻的内角互补,与之对应的三个内角的度数分别是100°,60°和20°,即三个内角的度数的比为5:3:1.故选B.【点评】本题考查三角形外角的性质及三角形的外角与它相邻的内角互补的知识,解答的关键是沟通外角和内角的关系.12.三角形中至少有一个内角大于或等于()A.45° B.55° C.60° D.65°【考点】三角形内角和定理.【分析】根据三角形的内角和为180°解答即可.【解答】解:∵三角形的内角和为180°,∴当三个内角均小于60°时不能构成三角形,∴三角形中至少有一个内角大于或等于60°.故选C.【点评】此题比较简单,考查的是三角形的内角和为180°.13.如图,下列说法中错误的是()A.∠1不是三角形ABC的外角B.∠B<∠1+∠2C.∠ACD是三角形ABC的外角D.∠ACD>∠A+∠B【考点】三角形的外角性质.【分析】根据三角形的外角等于和它不相邻的两个内角的和,判断A正确,D错误;由三角形外角的定义,判断C正确;三角形的外角大于和它不相邻的任何一个内角,判断B正确.【解答】解:A、∠1不是三角形ABC的外角,正确;B、∠B<∠1+∠2,正确;C、∠ACD是三角形ABC的外角,正确;D、∠ACD=∠A+∠B,故D错误.故选D.【点评】本题考查三角形外角的性质以及考查三角形内角与外角的关系.14.如图,C在AB的延长线上,CE⊥AF于E,交FB于D,若∠F=40°,∠C=20°,则∠FBA的度数为()A.50° B.60° C.70° D.80°【考点】三角形的外角性质;三角形内角和定理.【分析】先根据三角形内角和定理求出∠EDF的度数,再根据对顶角的性质求出∠CDB的度数,由三角形外角的性质即可求出∠FBA的度数.【解答】解:∵CE⊥AF于E,∴∠FED=90°,∵∠F=40°,∴∠EDF=180°﹣∠FED﹣∠F=180°﹣90°﹣40°=50°,∵∠EDF=∠CDB,∴∠CDB=50°,∵∠C=20°,∠FBA是△BDC的外角,∴∠FBA=∠CDB+∠C=50°+20°=70°.故选C.【点评】本题考查的是三角形内角和定理及外角的性质,解答此题的关键是熟知以下知识:(1)三角形的内角和为180°;(2)三角形的外角等于与之不相邻的两个内角的和.15.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形()A.1个B.3个C.5个D.无数个【考点】三角形三边关系.【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边c的范围,根据c的值为整数,即可确定c的值.从而确定三角形的个数.【解答】解:c的范围是:2<c<8,因而c的值可以是:3、4、5、6、7共5个数,因而由a、b、c为边可组成5个三角形.故选C.【点评】本题需要理解的是如何根据已知的两条边求第三边的范围.16.多边形每一个内角都等于150°,则从此多边形一个顶点发出的对角线有( )A .7条B .8条C .9条D .10条【考点】多边形内角与外角;多边形的对角线.【分析】多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n ﹣3)条,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于150°,∴每个外角是30°,∴多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12﹣3=9条.故选C .【点评】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容.多边形从一个顶点出发的对角线共有(n ﹣3)条.17.如图,△ABC 中,D 为BC 上的一点,且S △ACD =S △ABD ,则AD 为( )A .高B .中线C .角平分线D .不能确定【考点】三角形的面积.【分析】过A 作AE ⊥BC ,分别计算S △ACD 、S △ABD ,根据S △ACD =S △ABD 即可求得BD=DC ,即可解题.【解答】解:过A 作AE ⊥BC ,则S △ACD =BD •AE ,S △ABD =BC •AE ,∵S △ACD =S △ABD ,∴BD=BC ,∴AD 为中线.故选B .【点评】本题考查了三角形面积的计算,考查了三角形中线的定义.本题中求证BD=DC 是解题的关键.18.现有长度分别为2cm 、4cm 、6cm 、8cm 的木棒,从中任取三根,能组成三角形的个数为( ) A .1 B .2 C .3 D .4【考点】三角形三边关系.【分析】根据三角形的三边关系定理,只要满足任意两边的和大于第三边,即可确定有哪三个木棒组成三角形.【解答】解:能组成三角形的三条线段是:4cm 、6cm 、8cm .只有一种结果.故选A .【点评】考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.三、解答题(共46分)19.如图,在三角形ABC 中,∠B=∠C ,D 是BC 上一点,且FD ⊥BC ,DE ⊥AB ,∠AFD=140°,你能求出∠EDF 的度数吗?【考点】等腰三角形的性质.【分析】由于DF ⊥BC ,DE ⊥AB ,所以∠FDC=∠FDB=∠DEB=90°,又因为△ABC 中,∠B=∠C ,所以∠EDB=∠DFC ,因为∠A FD=140°,所以∠EDB=∠DFC=40°,所以∠EDF=90°﹣∠EDB=50°.【解答】解:∵DF ⊥BC ,DE ⊥AB ,∴∠FDC=∠FDB=∠DEB=90°,又∵∠B=∠C,∴∠EDB=∠DFC,∵∠AFD=140°,∴∠EDB=∠DFC=40°,∴∠EDF=90°﹣∠EDB=50°.【点评】本题考查了等腰三角形的性质;利用三角形的内角和定理求解角的度数是正确解答本题的关键.20.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?【考点】方向角;垂线;平行线的性质.【专题】应用题.【分析】根据方向角的定义即可求解.分别作AM∥CD,NB∥CD,根据两直线平行,内错角相等即可求得∠1与∠2的度数.【解答】解:设甲岛处的位置为A,乙岛处的位置为B,丙岛处的位置为D,丁岛处的位置为C.作AM∥CD,NB∥CD,如图:∵丁岛在丙岛的正北方,∴CD⊥AB.∵甲岛在丁岛的南偏西52°方向,∴∠ACD=52°.又∵AM∥CD,∴∠1=∠ACD=52°.∴丁岛在甲岛的北偏东52°方向.∵乙岛在丁岛的南偏东40°方向,∴∠BCD=40°.又∵BN∥CD,∴∠2=∠BCD=40°,∴丁岛在乙岛的北偏西40°方向.【点评】本题主要考查了方向角的定义和平行线的性质,是一个基础的内容.21.已知等腰三角形的周长是16cm.(1)若其中一边长为4cm,求另外两边的长;(2)若其中一边长为6cm,求另外两边长;(3)若三边长都是整数,求三角形各边的长.【考点】等腰三角形的性质;三角形三边关系.【分析】(1)(2)由于未说明已知的边是腰还是底,故需分情况讨论,从而求另外两边的长.(3)根据三边长都是整数,且周长是16cm,还是等腰三角形,所以可用列表法,求出其各边长.【解答】解:(1)如果腰长为4cm,则底边长为16﹣4﹣4=8cm.三边长为4cm,4cm,8cm,不符合三角形三边关系定理.所以应该是底边长为4cm.所以腰长为(16﹣4)÷2=6cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理,所以另外两边长都为6cm;(2)如果腰长为6cm,则底边长为16﹣6﹣6=4cm.三边长为4cm,6cm,6cm,符合三角形三边关系定理.所以另外两边长分别为6cm和4cm.如果底边长为6cm,则腰长为(16﹣6)÷2=5cm.三边长为6cm,5cm,5cm,符合三角形三边关系定理,所以另外两边长都为5cm;(3)因为周长为16cm,且三边都是整数,所以三角形的最长边小于8cm且是等腰三角形,我们可用列表法,求出其各边长如下:7cm,7cm,2cm;6cm,5cm,5cm;6cm,6cm,4cm,共有这三种情况.【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.22.如图,在四边形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠ADC,试问BE∥DF吗?为什么?【考点】平行线的判定;多边形内角与外角.【专题】探究型.【分析】要证BE∥DF,需证∠FDC=∠BEC,由于已知里给出了两条角平分线,四边形ABCD内角和为360°,∠A=∠C=90°,可得:∠FDC+∠EBC=90°,在△BCE中,∠BEC+∠E BC=90°,等角的余角相等,就可得到∠FDC=∠BEC,即可证.【解答】解:平行.∵∠A=∠C=90°,四边形ABCD的内角和为360°,∴∠ADC+∠ABC=180°,∵BE平分∠ABC,DF平分∠ADC,∴∠FDC+∠EBC=90°.又∵∠C=90°,∴∠BEC+∠EBC=90°,∴∠FDC=∠BEC,∴BE∥DF.【点评】本题利用了角平分线性质和判定,四边形的内角和为360°,同角的余角相等.。