A.等腰直角三角形 B.长方形
C.正方形
D.圆
评卷人 得分
二、填空题
15.(2 分)已知等腰三角形的两边长 x 、 y 满足 x + y − 7 + (4x + 2y − 22)2 = 0 ,且底边比腰
长,则它的一腰上的高于 . 16.(2 分)在△ABC 中,∠A=90°,∠B=60°,则∠C=_______度. 17.(2 分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走 出了一条路,他们仅仅少走了 步路(假设 2 步为 l m),却踩伤了花草.
C.∠A=90°,∠B=45°
D.∠A=120°,∠B=15°
7.(2 分)如图 AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有( )
A.1 对
B.2 对
C.3 对
D.4 对
8.(2 分)如图,D 是∠BAC 内部一点,DE⊥AB,DF⊥AC,DE=DF,则下列结论不.正.确.
果直角三角形的两边是 3、4,那么斜边必是 5;③如果一个三角形的三边是 l2、25、21,那么
此三角必是直角三角形;④一个等腰直角三角形的三边是 a,b,c(a>b=c),那么 a2 :b2:
c2=2:1:1.其中正确的是( )
A.①②
B.①③
C.①④
D.②④
14.(2 分)下列轴对称图形中,对称轴条数最少的是( )
21.(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE, ∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC,DC=EC,∴△ACE≌△BCD. (2)∵△ACB 是等腰直角三角形,∴∠B=∠BAC=45°. ∵△ACE≌△BCD,∴∠CAE=∠B=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°. ∴△ADE 是直角三角形,∴AD2+AE2=DE2. 由(1)知,AE=BD,∴AD2+BD2=DE2. 22.说明∠OOC=∠BOD 23.说明 Rt△ABC≌△Rt△DCF 24.①能②不能③能 25.DE=DF,理由略 26.BC=4cm,CD=4 cm,DE=2 cm 27.共有 10 个,等边三角形共有三条对称轴,每条对称轴上有 4 个点,有 3 个点重合 28.是等腰三角形,说明∠CEB=∠B 29.陈华同学的说法正确,理由略 30.说明△ABD≌△△ACD