2019中考数学一轮复习各知识点练习题分层设计二十圆的有关概念无答案鲁教版_138
- 格式:doc
- 大小:99.50 KB
- 文档页数:4
2019备战中考数学(鲁教版五四制)巩固复习-圆(含解析)一、单选题1.已知圆O的半径为3,圆心O到直线l的距离为5,则直线l和圆O的位置关系是()A. 相离B. 相切C. 相交D. 以上均有可能2.已知:A,B,C,D,E五个点中无任何三点共线,无任何四点共圆,那么过其中的三点作圆,最多能作出()A. 5个圆B. 8个圆C. 10个圆D. 12个圆3.下列命题中,假命题是()A. 如果一条直线平分弦和弦所对的一条弧,那么这条直线经过圆心,并且垂直于这条弦; B. 如果一条直线平分弦所对的两条弧,那么这条直线经过圆心,并且垂直于这条弦;C. 如果一条直线经过圆心,并且平分弦,那么该直线平分这条弦所对的弧,并且垂直于这条弦;D. 如果一条直线经过圆心,并且垂直弦,那么该直线平分这条弦和弦所对的弧.4.已知OA=5cm,以O为圆心,r为半径作⊙O.若点A在⊙O内,则r的值可以是()A. 3cmB. 4cmC. 5cmD. 6cm5.已知⊙O的半径为15,弦AB的长为18,点P在弦AB上且OP=13,则AP的长为()A. 4B. 14C. 4或14D. 6或146.如图,AB为⊙O的直径,点C在⊙O上,∠A=40°,则∠B的度数为()A. 20°B. 40°C. 50°D. 60°7.如图,已知,AB是⊙的直径,点C,D在⊙上,∠ABC=50°,则∠D为()A. 50°B. 45°C. 40°D. 30°8.如图,AB为⊙O的直径,点C在⊙O上,若∠ACO=50°,则∠B的度数为()A. 60°B. 50°C. 40°D. 30°9.如图O是圆心,半径OC垂直弦AB于点D,AB=8,OB=5,则OD等于()A. 2B. 3C. 4D. 510.下列判断结论正确的有()(1)直径是圆中最大的弦.(2)长度相等的两条弧一定是等弧.(3)面积相等的两个圆是等圆.(4)同一条弦所对的两条弧一定是等弧.(5)圆上任意两点间的部分是圆的弦.A.1个B.2个C.3个D.4个二、填空题11.如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为________.12.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC=a,EF=b,HN=c,则a、b、c三者间的大小关系为 ________13.如图,在Rt△ABC中,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,∠BCD=40°,则∠A= ________14.如图,正六边形ABCDEF内接于⊙O,⊙O的半径为1,则弧AB的长为 ________.15.已知直线与⊙O相切,若圆心O到直线的距离是5,则⊙O的半径是________.16.如图是由两个长方形组成的工件平面图(单位:mm),直线l是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是________ mm.17.一个正八边形要绕它的中心至少转________ 度,才能和原来的图形重合,它有________ 条对称轴.18.在综合实践活动课上,小明用纸板制作了一个圆锥形漏斗模型.如图所示,它的底面半径OA=6cm,高SO=8cm,则这个圆锥漏斗的侧面积是________ cm2.(结果保留π)19.将一个圆心角为120°,半径为6cm的扇形围成一个圆锥的侧面,则这个圆锥的底面半径为________.20.如果圆心O到直线l的距离等于⊙O的半径,那么直线l和⊙O的公共点有________个.三、解答题21.如图,已知AB是⊙O的弦,C是的中点,AB=8,AC= ,求⊙O半径的长.22.一堆圆锥形沙子,底面直径是8米,高是1.5米,如果每立方米沙子重1.5吨,那么这堆沙子重多少吨?23.如图所示,线段AD过圆心O交⊙O于D,C两点,∠EOD=78°,AE交⊙O于B,且AB=OC,求∠A的度数.四、综合题24.如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.25.如图,已知AB、AD是⊙O的弦,点C是DO的延长线与弦AB的交点,∠ABO=30°,OB=2.(1)求弦AB的长;(2)若∠D=20°,求∠BOD的度数.26.在平面直角坐标系xOy中,定义点P(x,y)的变换点为P′(x+y,x﹣y).(1)如图1,如果⊙O的半径为,①请你判断M(2,0),N(﹣2,﹣1)两个点的变换点与⊙O的位置关系;②若点P在直线y=x+2上,点P的变换点P′在⊙O的内,求点P横坐标的取值范围.(2)如图2,如果⊙O的半径为1,且P的变换点P′在直线y=﹣2x+6上,求点P与⊙O 上任意一点距离的最小值.27.已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠DAE=∠BAF.答案解析部分一、单选题1.【答案】A【考点】直线与圆的位置关系【解析】【分析】圆O的半径为3,圆心O到直线l的距离为5;∵5>3,∴直线l和圆O的位置关系是相离。
2019版中考数学复习圆导学案鲁教版五四制复习目标:1、理解圆的有关概念,掌握垂径定理;圆心角、弧、•弦之间的相等关系的定理;圆周角和圆心角的关系定理.2、掌握点和圆、直线与圆以及圆与圆的位置关系;会利用切线的定义、切线的判定定理判定一条直线是否为圆的切线;能灵活运用切线长定理.3、进一步认识和理解正多边形和圆的关系和正多边的有关计算.4、熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算重、难点:掌握圆的有关性质,直线和圆、圆和圆的重要位置关系,以及与圆有关的计算问题。
一、基础复习:1、垂径定理:推论:平分的直径垂直于弦,且弦所对的两条弧。
2、在同圆或等圆中,、、、四组量有一组量相等,其余各组量对应相等,圆周角却有两种情况;同弧或等弧所对的圆周角是其所对圆心角的;直径所对的圆周角是;圆内接四边形的对角3、点与圆的位置关系:(圆半径为R,点到圆心距离为d)若d>R_____________ 若d=R_________ 若d<R_____________直线和圆的位置关系(设圆的半径为R,圆心到直线的距离为d)相交相切相离圆与圆的位置关系(若两圆半径为R,r(R>r),圆心距为d)外离______________;外切_____________;相交_____________;内切_____________;内含__________.4.切线的判定和性质(1)判定:经过半径的__________并且_______于这条半径的直线是圆的切线.(2)性质:圆的切线垂直于过______的半径.(3)切线长定理:5、三角形外心是的交点,到的距离相等。
三角形的内心是的交点,到的距离相等。
6、正n边形的中心角= ,外角= ,内角= ;7、半径是R的圆中,n o的圆心角所对的弧长为,扇形面积是或。
圆锥的母线长为l,底面圆的半径为r,圆锥的侧面积= ,圆锥的全面积=二、基本思路方法:圆的复习要注意转化、数形结合、分类讨论、方程、函数等数学思想方法的运用。
第六单元圆专题2 与圆有关的位置关系考点1 点和圆、直线和圆的位置关系1.已知平面内有⊙O和点A,B,若⊙O半径为2cm,线段OA=3cm,OB=2cm,则直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切2.点P是非圆上一点,若点P到⊙O上的点的最小距离是4cm,最大距离是9 cm,则⊙O 的半径是___________.3.如图,直线a⊥b,垂足为H,点P在直线b上,PH=4cm,O为直线b上一动点.若以1cm为半径的⊙O与直线a相切,则OP的长为___________.考点2 切线的性质与判定1.如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为( )A.35°B.45°C.55°D.65°2.如图,PA,PB为圆O的切线,切点分别为A,B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是( )A.△BPA为等腰三角形B.AB与PD相互垂直平分C.点A,B都在以PO为直径的圆上D.PC为△BPA的边AB上的中线3.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )A.1B.2C.√2C.√34.如图,在▱ABCD中,AD=12,以AD为直径的⊙O与BC相切于点E,连接OC.若OC=AB,则▱ABCD 的周长为____________.5.如图,⊙O的半径OA=2,B是⊙O上的动点(不与点A重合),过点B作⊙O的切线BC,BC=OA,连接OC,AC.当△OAC是直角三角形时,其斜边长为_____________.6.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=___________.7.如图,PA是以AC为直径的⊙O的切线,切点为A,过点A作AB⊥OP,交⊙O于点B. (1)求证:PB是⊙O的切线;,求PO的长.(2)若CC=6,cos∠CCC=358.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.̂上一点,连接AE并延长至点C,使9.已知:如图,AB是⊙O的直径,E为⊙O上一点,D是AE∠CBE=∠BDE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:AD²=DF· DB.考点3 三角形的外接圆与内切圆1.如图,已知点O是△ABC的外心,∠A=40°,连接BO,CO,则∠BOC的度数是( )A.60°B.70°C.80°D.90°2.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则CC=( )C.2√3C.3√3 C.3D.43.设边长为a的等边三角形的高、内切圆的半径、外接圆的半径分别为h,r,R,则下列结论不正确的是( )A.h=R+rB.R=2rC.C=√34C C.C=√33C4.如图,△ABC内接于⊙O,∠A=50°,点D是BC的中点,连接OD,OB,OC,则∠BOD=_______.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A,B,C在直角坐标系中的坐标分别为(3,6),(-3,3),(7,-2),则△ABC内心的坐标为_____________.6.已知△ABC的三边a,b,c满足b+|c-3|+C2−8C=4√C−1−19,则△ABC的内切圆半径=____________.专题检测一、选择题(每小题4分,共40分)1.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断2.已知⊙O的半径为5,点O到直线l的距离为3,则⊙O上到直线l的距离为2的点共有( )A.1个B.2个C.3个D.4个3.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于( )A.75°B.70°C.65°D.60°̂上一点,则∠EPF的4.如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF度数是( )A.65°B.60°C.58°D.50°5.如图,PA,PB是⊙O的切线,A,B是切点,若∠P=70°,则∠ABO=( )A.30°B.35°C.45°D.55°6.如图,长方形ABCD中,AB=4,AD=3,圆B 半径为1,圆A与圆B内切,则点C、D与圆A的位置关系是( )A.点C在圆A外,点D在圆A内B.点C在圆A外,点D在圆A外C.点C在圆A上,点D在圆A内D.点C在圆A内,点D在圆A外7.如图,在等腰△ABC中, AB=AC=2√5,BC=8,按下列步骤作图:①以点A为圆心,适当的长度为半径作弧,分别交AB,AC于点E,F,再分EF的长为半径作弧相交于点H,作射线AH;别以点E,F为圆心,大于12AB的长为半径作弧相交于点M,N,作直线②分别以点A,B为圆心,大于12MN,交射线AH于点O;③以点O为圆心,线段OA长为半径作圆.则⊙O的半径为( )A.2√5B.10C.4D.58.如图,直线AB,BC,CD分别与⊙O相切于点E,F,G,且AB∥CD,若OB=6 cm,OC=8cm,则BE+CG的长等于( )A.13 cmB.12 cmC.11 cmD. 10 cm9.如图,AB为⊙O的直径,点P在AB的延长线上,PC,PD与⊙O相切,切点分别为C,D.若AB=6,PC=4,则sin∠CAD等于( )A.35B.23C.34D.4510.如图,点A的坐标为(-3,2),⊙A的半径为1,P为坐标轴上一动点,PQ切⊙A于点Q,在所有P点中,使得PQ长最小时,点P的坐标为( )A.( 0,2)B.( 0,3)C.( -2,0)D.( -3,0)二、填空题(每小题4分,共24分)11.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆 (填“内”“上”或“外”).12.如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为___________.13.点O是△ABC的外心,若∠BOC=110°,则∠BAC为 .14.如图,四边形ABCD是⊙O的外切四边形,且AB=10,CD=12,则四边形ABCD的周长为 .15.如图,PA,PB是⊙O的切线,A,B是切点.若∠P=50°,则∠AOB= .16.如图,两个圆都是以点O为圆心,大圆的弦AB是小圆的切线,点P为切点,AB=10,则图中圆环的面积为 .三、解答题(共36分)17.(12分)阅读下列材料:平面上两点P₁(x₁,y₁),P₂(x₂,y₂)之间的距离表示为|P1P2|=√(x1−x2)2+(y1−y2)2,称为平面内两点间的距离公式,根据该公式,如图,设P(x,y)是圆心坐标为C(a,b)、半径为r的圆上任意一点,则点P适合的条件可表示为√(x−a)2+(y−b)2=r,变形可得 (x-a)²+(y-b)²=r², 我们称其为圆心为C(a,b),半径为r的圆的标准方程.例如:由圆的标准方程(x-1)²+(y-2)²=25 可得它的圆心为(1,2),半径为5.根据上述材料,结合你所学的知识,完成下列各题.(1)圆心为C(3,4),半径为2的圆的标准方程为 ;(2)若已知⊙O的标准方程为(x-2)²+y²=2²,圆心为C,请判断点A(3,-1)与⊙O的位置关系.18.(12分)已知△ABC内接于⊙O,AB=AC,∠BAC=42°,点D是⊙O上一点.(1)如图①,若BD为⊙O的直径,连接CD,求∠DBC和∠ACD的大小;(2)如图②,若CD∥BA,连接AD,过点D作⊙O的切线,与OC的延长线交于点E,求∠E的大小.19.(12分)如图,在△ABC中,∠ACB=90°,BO为△ABC的角平分线,以点O为圆心,OC为半径作⊙O与线段AC交于点D.(1)求证:AB为⊙O的切线;,AD=2,求BO的长.(2)若tanA=34参考答案考点1 点和圆、直线和圆的位置关系1.D ⊙O的半径为2 cm,线段OA=3cm,OB=2cm,即点A到圆心O的距离大于圆的半径,点B 到圆心O的距离等于圆的半径,∴点A在⊙O外,点B在⊙O上,∴直线AB 与⊙O的位置关系为相交或相切.2.6.5cm或2.5cm 分为两种情况:①当点在圆内时,如图1,∵点到圆上的最小距离PB=4cm,最大距离PA=9cm,∴直径AB=4+9=13(cm),∴半径r=6.5 cm;②当点在圆外时,如图2,∵点到圆上的最小距离PB=4 cm,最大距离PA=9 cm,∴直径AB=9-4=5(cm),∴半径r=2.5cm.3.3cm或5cm ∵直线a⊥b,O为直线b上一动点,∴⊙O与直线a相切时,切点为H,∴OH=1 cm. 当点O在点H的左侧,⊙O与直线a相切时,OP=PH-OH=4-1=3(cm);当点O在点H的右侧,⊙O与直线a相切时,OP=PH+OH=4+1=5(cm);∴⊙O与直线a相切,OP的长为3cm或5cm.考点2 切线的性质与判定1.C ∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°-∠BAC=90°-35°=55°.2.B 由切线长定理,得PA=PB,∴△BPA 是等腰三角形,故A正确;由圆的对称性可知AB⊥PD,但不一定平分,故B不一定正确;如图,连接OB,OA,由切线的性质,得∠OBP=∠OAP=90°,∴点A,B,P在以OP为直径的圆上,故C正确;∵△BPA是等腰三角形,PD⊥AB,∴PC为△BPA的边AB上的中线,故D正确.3.D 如图,连接OB.∵四边形OABC是菱形.∴OA=AB.∵OA=OB,∴OA=AB=OB,∴∠AOB=60°.∵BD是⊙O的切线,∴∠DBO=90°.∵OB=1,∴BD=√3OB=√3.4.24+6√5如图,连接OE,过点C作CF⊥AD交AD于点F,∵四边形ABCD为平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠EOD+∠OEC =180°,∵⊙O与BC相切于点E,∴OE⊥BC,∴∠OEC=90°,∴∠EOD=90°,∵CF⊥AD,∴∠CFO=90°,∴四边形OECF为矩形,∴FC=OE,OD=3,∵AD为直径,AD=12,∴FC=OE=OD= 12在Rt△OFC中,由勾股定理得OC²=OF²+FC²=3²+6²=45.∴AB=OC=3√5,∴平行四边形ABCD的周长为12+12+3√5+3√5=24+6√5.5.2√3或2√2连接OB,∵BC是⊙O的切线,∴∠OBC=90°.∵BC=OA,∴OB=BC=2,∴△OBC是等腰直角三角形,∴∠BCO=45°,∴∠ACO≤45°.当△OAC是直角三角形时,①若∠AOC=90°,∴OC=√2OB=2√2,∴AC=√OA2+OC2=√22+(2√2)2=2√3;②若∠OAC=90°,∵BC是⊙O的切线,∴∠CBO=∠OAC=90°.∵BC=OA=OB,∴△OBC是等腰直角三角形,∴OC= 2√2.6.27°∵ PA切⊙O于点A,∴∠OAP=90°.∵∠P=36°, ∴∠AOP=54°. ∴∠B=12∠AOP=27 ∘.7.(1)证明连接OB,如图,∵PA是以AC为直径的⊙O的切线,切点为A,∴∠PAO=90°, ∵OA=OB,AB⊥OP,∴∠POA=∠POB,在△PAO和△PBO中, {AO=BO,∠POA=∠POB,OP=OP,∴△PAO≌△PBO(SAS),∴∠PBO=∠PAO=90°,即OB⊥PB,又∵OB为⊙O的半径,∴PB是⊙O的切线;(2)解设OP与AB交于点D.∵AB⊥OP,AB=6,∴DA=DB=3,∠PDA =∠PDB=90°,∵cos∠PAB=35=DAPA=3PA,∴PA=5,∴PD=√PA2−AD2=√52−32=4,在Rt△APD和Rt△APO中,cos∠APD= PDPA ,cos∠APO=PAPO,8.(1)证明∵∠CAD=∠ABD,∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)解∵AF是⊙O的切线,∴∠FAB=90°.∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°. ∴∠ABD=∠FAD.∵∠ABD=∠CAD,∠CAD=∠EAD,∴∠FAD=∠EAD.∵AD=AD,∴△ADF≌△ADE(ASA).∴AF=AE,DF=DE.∵AB=4,BF=5,∴AF =√BF 2−AB 2=3,∴AE=AF=3. ∵S △ABF =12AB ⋅AF =12BF ⋅AD, ∴AD =AB⋅AF BF=4×35=125,∴DE =√AE 2−AD 2=√32−(125)2=95, ∴BE =BF −2DE =75.∵∠AED=∠BEC,∠ADE=∠BCE=90°.∴△BEC ∽△AED. ∴BEAE =BCAD , ∴BC =BE⋅AD AE=2825, ∴sin ∠BAC =BC AB =725.∵∠BDC=∠BAC,∴sin ∠BDC =725.9.证明 (1)∵AB 是⊙O 的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°. ∵∠CBE=∠BDE,∠BDE=∠EAB,∴∠EAB=∠CBE,∴∠EBA+∠CBE=∠EBA+∠EAB=90°,即∠ABC=90°,∴CB ⊥AB. ∵AB 是⊙O 的直径,∴BC 是⊙O 的切线. (2)∵BD 平分∠ABE,∴∠ABD=∠DBE. ∵∠DAF=∠DBE,∴∠DAF=∠DBA.∵∠ADB=∠FDA,∴△ADF ∽△BDA, ∴ADBD =DFAD ,∴AD ²=DF ·DB. 考点3 三角形的外接圆与内切圆1.C ∵点O 为△ABC 的外心,∠A=40°, ∴∠A =12∠BOC,∴∠BOC =2∠A =80 ∘. 2.C 过点O 作OE ⊥BC 于点E,如图所示:∵∠BAC=120°,AB=AC,∴∠ABC=∠ACB=30°,又 ∵AB̂对应的圆周角为∠ACB 和∠ADB,∴∠ACB=∠ADB=30°, 而BD 为直径,∴∠BAD=90°,在Rt △BAD 中,∠ADB=30°,AD=3, ∴cos30 ∘=ADBD =3BD =√32,∴BD =2√3,∴OB =√3,又∵∠ABD=90°-∠ADB=90°-30°=60°,∠ABC=30°,∴∠OBE=30°. 又∵OE ⊥BC,∴△OBE 为直角三角形. ∴cos ∠OBE =cos30 ∘−BEOB =√3=√32, ∴BE =32.由垂径定理可得BC=2BE= 2×32=3.3.C 如图,∵△ABC是等边三角形.∴△ABC的内切圆和外接圆是同心圆,圆心为O. 设OE=r,AO=R,AD=h,∴h=R+r,故A正确;∵AD⊥BC,∴∠DAC=12∠BAC=12×60°=30°.在Rt△AOE中,∴R=2r,故B正确;∵OD=OE=r,AB=AC=BC=a,∴AE=12AC=12a,∴(12a)2+r2=(2r)2,(12a)2+(12R)2=R².∴r=√36a,R=√33a,故C错误,D正确.4.50°∵∠A=50° ,∴∠BOC=100°.∵OB=OC,∴△OBC为等腰三角形,又∵D为BC 中点,∴OD为BC上的中线,根据等腰三角形三线合一性质可得OD为∠BOC的平分线∴∠BOD=12∠BOC=50∘.5.(2,3) 根据A,B,C三点的坐标建立如图所示的坐标系.根据题意,得AB=√62+32=3√5,AC=√42+82=4√5,BC=√102+52=5√5.∵AB²+AC²=BC².∴∠BAC=90°.设BC的函数表达式为y=kx+b,代入B( -3,3),C(7,-2).得{3=−3k+b,−2=7k+b,解得{k=−12,b=32,∴BC的函数表达式为y=−12x+32.当y=0时,x=3,即G(3,0),∴点A与点G关于BD对称,射线BD是∠ABC的平分线.设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r.∵∠BAC=90°,∴四边形MEAF为正方形, S ABC=12AB×AC=12AB×r+12AC×r+12BC×r,解得r=√5,即AE=EM=√5,∴BE=3√5−√5=2√5,∴BM=√BE2+EM2=5,∵B( -3,3),∴M(2,3).∴△ABC内心M的坐标为(2,3).6.1 ∵b+|c−3|+a2−8a=4√b−1−19,∴|c−3|+(a−4)2+(√b−1−2)2= 0,∴c=3,a=4,b=5.∵3²+4²=25=5²,∴c²+a²=b²,∴△ABC是直角三角形,∠ABC=90°.设内切圆的半径为r.根据题意,得S△ABC=12×3×4=12×3×r+12×4×r+12×r×5,∴r=1.(或者r=3+4−52=1)专题检测1.C2.C 如图,∵⊙O的半径为5,点O到直线l 的距离为3,∴CE=2,过点D作AB⊥ OC,垂足为D,交⊙O于A,B两点,且DE=2,∴⊙O上到直线l的距离为2的点为A,B,C,∴⊙O上到直线l的距离为2的点有3个.3.B4.B5.B 如图,连接OA.∵PA,PB是⊙O的切线,A,B是切点,∴∠PBO=∠PAO=90°,∵∠P=70°,∴∠BOA=360°—∠PBO—∠PAO-∠P=110°,∵OA=OB,∴∠ABO=∠BAO=12(180∘−∠BOA)=12(180 ∘−110 ∘)=35 ∘.6.C 两圆内切,圆心距等于半径之差的绝对值,设圆A的半径为R,则AB=R-1,∵AB =4,圆B半径为1,∴R=5,即圆A的半径等于5,∵AB=4,BC=AD=3,由勾股定理可知AC=5,∴AC=5=R,AD=3C在圆上,点D在圆内.7.D 如图,连接OC,设OA交BC于点T.∵AB=AC=2√5,AO平分∠BAC,∴AO⊥BC,BT=TC=4,∴AT=√AC2−CT2=√(2√5)2−42=2.在Rt△OCT中.有r²=(r-2)²+4²,解得r=5.8.D9.D 连接OC、OD、CD,CD交PA于点E,如图,∵PC,PD与⊙O相切,切点分别为C,D,∴OC⊥CP,PC=PD,OP平分∠CPD.∴OP⊥CD,∴CB̂=DB̂,∴∠COB=∠DOB,∵∠CAD=12∠COD,∴∠COB=∠CAD,在Rt△OCP中, OP=√OC2+PC2=√32+42=5,∴sin∠COP=PCOP =45,∴sin∠CAD=45.10.D 连接AQ、PA,如图,∵PQ切⊙A于点Q,∴AQ⊥PQ,∴∠AQP=90°,∴PQ=√AP2−AQ2=√AP2−1,当AP的长度最小时,PQ的长度最小,∵AP⊥x轴时,AP的长度最小,∴AP⊥x轴时,PQ的长度最小,∵A(-3,2),∴此时P点坐标为(-3,0).11.上 12.55°13.55°或125°分两种情况:(1)点A 与点O 在BC 边同侧时,如图1:∵∠BOC=110°,∴∠BAC =110 ∘×12=55 ∘. (2)点A 与点O 在BC 边两侧时,如图2:∵∠BOC=110°,即BĈ所对的圆心角为110°,∴BDC ̂所对的圆心角为:360°—110°=250°. ∴∠BAC =12×250 ∘=125 ∘. 14.4415.130° ∵PA,PB 是⊙O 的切线,A,B 是切点,∴OA ⊥PA,OB ⊥PB,∴∠OAP=∠OBP=90°,∵∠OAP+∠AOB+∠OBP +∠P=360°,∴∠AOB=360°—90°—90°-50°=130°. 16.25π 如图,连接OP 、OA,∵大圆的弦AB 是小圆的切线,∴OP ⊥AB, ∴AP=BP= 12AB =5, 由勾股定理得OA ²-OP ²=AP ²=25, ∴圆环的面积=π×OA ²-π×OP ²=π×(OA ²-OP ²)=25π.17.解 (1)圆心为C(3,4),半径为2的圆的标准方程为(x-3)²+( y-4)²=4.故答案为:(x-3)²+(y-4)²=4. (2)由题意得圆心为C(2.0),∵A (3,−1),∴AC =√(3−2)2+12= √2<2,∴点A 在⊙C 内部.18.解 (1)∵AB=AC,∴∠ABC=∠ACB= 12(180 ∘−∠BAC)=12×(180 ∘−42 ∘)=69 ∘,∵BD 为直径,∴∠BCD=90°,∵∠D=∠BAC=42°,∴∠DBC=90°-∠D=90°-42°=48°; ∴∠ACD=∠ABD=∠ABC-∠DBC=69°-48°=21°; (2)如图,连接OD,∵CD ∥AB,∴∠ACD=∠BAC=42°,∵四边形ABCD 为⊙O 的内接四边形,∴∠B+∠ADC=180°, ∴∠ADC=180°-∠B=180°-69°=111°,∴∠CAD=180°-∠ACD-∠ADC=180°-42°-111°=27°,∴∠COD=2∠CAD=54°, ∵DE 为切线,∴OD ⊥DE,∴∠ODE=90°,∴∠E=90°-∠DOE=90°-54°=36°. 19.(1)证明如图,过点O 作OH ⊥AB 于点H.∵∠ACB=90°,∴OC ⊥BC.∵BO 为△ABC 的角平分线,OH ⊥AB,∴OH=OC,即OH 为⊙O 的半径. ∵OH ⊥AB,∴AB 为⊙O 的切线.(2)解设⊙O 的半径为3x,则OH=OD=OC=3x.在Rt △AOH 中,∵tanA =34, ∴OHAH =34,∴3xAH =34,∴AH=4x, ∴AO =√OH 2+AH 2=√(3x )2+(4x )2=5x,∵AD=2,∴AO=OD+AD=3x+2,∴3x+2=5x,∴x=1,∴OA=3x+2=5,OH=OD=OC=3x=3 . ∴AC=OA+OC=5+3=8.在Rt △ABC 中, ∵tanA =BCAC ,∴BC =AC ⋅tanA =8×34=6, ∴OB =√OC 2+BC 2=√32+62=3√5.。
2019版中考数学一轮复习各知识点练习题分层设计二十三正多边形与圆鲁教版一、知识要点正多边形的概念;正多边形与圆的有关计算;正多边形平面镶嵌.二、课前演练1.若一个正六边形的周长为24,则该六边形的面积为___________.2.半径为r 的圆内接正三角形的边长为________.(结果可保留根号).3.如图,⊙O 的外切正六边形ABCDEF 的边长为2,则阴影部分的面积为( ) A. 3-π2 B. 3-2π3 C. 23-π2 D. 23-2π34.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A .(4+5)cmB .9cmC .45cmD .62cm三、例题分析例1 如图,已知⊙O 的周长等于12πcm ,求以它的半径为边长的正六边形ABCDEF 的面积.例2 (1)如图1,已知△PAC 是⊙O 的内接正三角形,那么∠OAC=____________;(2)如图2,设AB 是⊙O 的直径,AC 是圆的任意一条弦,∠OA C=α.①如果α=45°,那么AC 能否成为圆内接正多边形的一条边?若有可能,那么此多边 形是正几边形?请说明理由;②若AC 是圆的内接正n 边形的一边,则用含n 的代数式表示α应为________.﹒BC D E F A O ·四、巩固练习1.一正多边形绕它的中心旋转45°后,就第一次与原图形重合,那么这个多边形()A.是轴对称图形,但不是中心对称图形 B.是中心对称图形,但不是轴对称图形C.既是轴对称图形,又是中心对称图形 D.既不是轴对称图形,也不是中心对称图形2.用两种正多边形镶嵌,不能与正三角形匹配的正多边形是()A.正方形 B.正六边形 C.正十二边形 D.正十八边形3.一个多边形的每个外角与它相邻的内角比都是1:3,这个多边形是_________边形.4.如果一个正多边形的中心角是36°,那么这个正多边形的边数是__________.5.如图,已知⊙O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和⊙O相切(我们称T1、T2分别为⊙O的内接正六边形和外切正六边形).(1)设T1、T2的边长分别为a,b,⊙O的半径为r,求r:a及r:b的值;(2)求正六边形T 1、T2的面积比S1:S2的值.6.(1)已知:如图1,△ABC为正三角形,点M为BC边上任意一点,点N为CA边上任意一点,且BM=CN,BN、AM相交于Q点,试求∠BQM的度数.(2)如果将(1)中的正三角形改为正方形ABCD(如图2),点M为BC上任意一点,点N为CD边上任意一点,且BM=CN,BNAM相交于Q点,那么∠BQM等于多少度呢?说明理由.(3)如果将(1)中的“正三角形”改为正五边形…正n边形(如图3),其余条件都不变,请你根据(1)、(2)的求解思路,将你推断的结论填入下表:(注:的各个角都相等)正五边形…正n边形∠BQM的度数…。
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】(圆的有关概念)一、知识要点圆的有关概念,点和圆的位置关系,圆的对称性(中心对称性:弧、弦、圆心角的关系,轴对称性:垂径定理),圆周角定理及推论,确定圆的条件,三角形的外心. 二、课前演练1. 如图,⊙O 的半径为5,弦AB=8,M 是弦AB 上的动点,则线段OM 的最小值为( ) A .5 B .4 C .3 D .22.如图,AB 为⊙O 的直径,CD 为弦,AB⊥CD,如果∠BOC=700,那么∠A 的度数为( ) A. 70 0B. 350C. 300D. 2003.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A=63 º,那么∠B= º.4.如图,点A 、B 、C 在圆O 上,且∠BAC=40°,则∠BOC= °. 三、例题分析例1 如图,△ABC 中,AB=AC ,∠BAC=45°,以AB 为直径的⊙O 交BC 于D ,交AC 于E .(1)求∠EBC 的度数; (2)求证:BD=CD .例2 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC=CD . (1)求证:OC ∥BD ;(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.(第1题图) (第2题图) (第3题图) (第4题图)A B CDOMOA CDFAEABCO BABCDEOODCBA四、巩固练习1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在圆的圆心是( )A .点PB .点QC .点RD .点M2.如图,直线l 1∥l 2,以直线l 1上的点A 为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=56º,则∠1= ( )A .36ºB .68ºC .72ºD .78º3. 如图,⊙O 的弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B ( ) A .30°B .35°C .40°D .50°4.如图,在R t △ABC 中,∠C=90°,AB=10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于_________________。
九年级数学中考第一轮(七)圆鲁教版知识精讲【本讲教育信息】一. 教学内容:中考第一轮(七)圆二. 知识学习:1. 圆的基础知识①圆的有关概念:弦,弧,半圆,弓形,弓形高,等弧(隐含同圆等圆),弦心距,直径等。
②圆的确定圆心决定位置,半径决定大小,不共线的三点确定一个圆。
注意:作图(两边中垂线找交点),三角形外心的位置,外心到三角形各顶点距离等③圆的对称性:轴对称,中心对称,旋转不变性2. 圆与其它图形<1>点与圆三种<2>直线与圆①一条直线与圆三种②两条直线与圆③三条直线与圆三角形内切圆与圆外切三角形三角形内心(角平分线交点)位置永远在三角形内部,到三角形各边距离相等④四条直线与圆圆外切四边形两组对边的和相等+=+AB DC AD BC<3>两圆与直线两圆外切时连心线过内公切线,切点与该切线垂直。
两圆内切时连心线过切点,垂直于过切点的切线。
两圆相交时,连心线垂直于公共弦,并且平分公共弦。
3. 定理<1>垂径定理及推论:过圆心;垂直弦;平分弦(非直径);平分优弧;平分劣弧;2求3。
<2>圆心角,弦,弦心距,弧之间关系:同圆等圆中知1得3。
<3>与圆有关的角:圆心角,圆周角,弦切角,圆内角,圆外角,圆内接四边形外角,内对角,对角<4>切线的判定、性质:①判定:常见的证法连半径,证垂直,判断切线,“连垂切”或作垂直证d=r②性质:若一条直线满足过圆心、过切点,垂直于切线中任意两条,可得另外一条。
常见“切连垂”<5>切线长定理 从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角 4. 和圆有关的计算 < 1 >求线段 ①直径、半径②垂径定理:求弦长、弦心距、拱高③切线长④直角三角形内切圆半径⑤任意三角形内切圆半径与面积、周长的关系 ⑥等边三角形内切圆半径:外接圆半径=1:2 ⑦与圆有关的比例线段、弦长、切线长等 < 2 >求角圆心角,圆周角,弦切角,两切线夹角,公切线夹角 < 3 >正多边形的有关计算正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。
(圆的有关计算)一、知识要点圆周长、弧长、扇形面积等计算;圆锥的侧面积与全面积的求法.二、课前演练1.如果一个扇形的半径是1,弧长是π3,那么此扇形的圆心角= °. 2.一扇形的圆心角为120°,半径为3,则此扇形面积为_______(结果保留π).3.一个扇形的弧长是20πcm ,面积是240πcm 2.则这个扇形的半径是_____.4.已知圆锥的底面直径和母线长都是10cm ,则圆锥的侧面积为________.三、例题分析例1 如图,有一直径是1cm 的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形CAB .(1)被剪掉的阴影部分的面积是多少?(2)若用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少(结果可用根号表示).例2 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠AOC=60°,OC=2.(1)求OE 和CD 的长;(2)求图中阴影部分的面积.四、巩固练习1.一扇形圆心角为60°,它所对的弧长为2πcm ,则这个扇形的半径为( )A .6cmB .12cmC .23cmD .6cm2.如图,一枚直径为4cm 的圆形古钱币沿直线滚动一周,圆心移动的距离是( )A .2πcmB .4πcmC .8πcmD .16πcm3.如图,半径为1cm ,圆心角为90°的扇形OAB 中,分别以OA 、OB 为直径作半圆,则图中阴影部分的面积为( )A .πcm2 B .23πcm 2 C .12cm 2 D .23cm 24.如图,已知⊙O 的半径为2,弦AB ⊥半径OC ,沿AB 将弓形ACB 翻折,使点C 与圆心O 重合,则月牙形(图中实线围成的部分)的面积是________.(第2题图) (第2题图)(第3题图)5.如图,⊙O 中,弧AD=弧AC ,弦AB 与弦AC 交于点A ,弦CD 与AB 交于点F ,连接BC .(1)求证:AC 2=AB •AF ;(2)若⊙O 的半径长为2cm ,∠B=60°,求图中阴影部分面积.6.如图,在菱形ABCD中,AB=23,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D交BD于H,交CD于F,连接HF,求图中阴影部分的面积(结果保留π);(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=3S△MD F时,求动点M经过的弧长(结果保留π).。
中考数学一轮复习基础考点专题23圆(含解析)中考数学一轮复习基础考点专题23圆(含解析)专题23 圆考点总结[思维导图][知识要点]知识点一与圆有关的概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:圆心;半径,其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作⏜AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)圆心角概念:顶点在圆心的角叫做圆心角.圆周角概念:顶点在圆上,并且两边都和圆相交的角叫做圆周角.三角形的外接圆垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.2)三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.3)锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).圆内接四边形概念:如果一个四边形的所有顶点都在一个圆上,那么这个四边形弓形与扇形弓形的概念:由弦及其所对的弧组成的图形。
(圆的有关概念)
一、知识要点
圆的有关概念,点和圆的位置关系,圆的对称性(中心对称性:弧、弦、圆心角的关系,轴对称性:垂径定理),圆周角定理及推论,确定圆的条件,三角形的外心. 二、课前演练
1. 如图,⊙O 的半径为5,弦AB=8,M 是弦AB 上的动点,则线段OM 的最小值为( ) A .5 B .4 C .3 D .2
2.如图,AB 为⊙O 的直径,CD 为弦,AB⊥CD,如果∠BOC=700
,那么∠A 的度数为( ) A. 70 0
B. 350
C. 300
D. 200
3.如图,过D 、A 、C 三点的圆的圆心为E ,过B 、E 、F 三点的圆的圆心为D ,如果∠A=63 º,那么∠B= º.
4.如图,点A 、B 、C 在圆O 上,且∠BAC=40°,则∠BOC= °. 三、例题分析
例1 如图,△ABC 中,AB=AC ,∠BAC=45°,以AB 为直径的⊙O 交BC 于D ,交AC 于E . (1)求∠EBC 的度数; (2)求证:BD=CD .
例2 如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC=CD . (1)求证:OC ∥BD ;
(2)若BC 将四边形OBDC 分成面积相等的两个三角形,试确定四边形OBDC 的形状.
(第1题图) (第2题图) (第3题图) (第4题图)
C
D
O
A B A
B
C
O B
C
O
D
C
B
A
四、巩固练习
1.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在圆的圆心是( )
A .点P
B .点Q
C .点R
D .点M
2.如图,直线l 1∥l 2,以直线l 1上的点A
为圆心、适当长为半径画弧,分别交直线l 1、l 2于点B 、C ,连接AC 、BC .若∠ABC=56º,则∠1= ( )
A .36º
B .68º
C .72º
D .78º
3. 如图,⊙O 的弦AB 、
CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B ( ) A .30°
B .35°
C .40°
D .50°
4.如图,在R t △ABC 中,∠C=90°,AB=10,若以点C 为圆心,CB 长为半径的圆恰好经过AB 的中点D ,则AC 的长等于_________________。
5.如图,CD 切⊙O 于点D ,OC 交⊙O 于B ,弦AB ⊥OD 于点E ,若⊙O 的半径为10,sin ∠COD=4
5
.
求:(1)弦AB 的长; (2)CD 的长.
6. 如图,△ABC 内接于⊙O ,AD 是的边BC 上的高,AE 是⊙O 的直径,连BE . ⑴试说明:△ABE 与△ADC 相似; ⑵若AB=2BE=4DC=8,求△ADC 的面积.
D
E
C B A 1
56º l 2 l 1 (第1题图) (第2题图) (第3题图) (第4题图)。