(完整版)统计学重点整理及复习资料
- 格式:doc
- 大小:33.01 KB
- 文档页数:3
第一章绪论第一节统计的产生和发展一、统计的产生:源于人类的计数与统计实践活动。
二、统计的发展1、英国的政治算术学派(17世纪)【“有实无名”的统计学】创始人:英国的威廉·配第(政治经济学之父)代表作:《政治算术》——统计学诞生的标志;文中针对英、法、荷兰的国情,利用数字、重量、尺度的方法,并配以朴素的图表(现代统计学广为采用的方法和内容)进行三国国力的比较,但没有使用“统计学”一词。
2、德国的国势学派(又称记述学派)(18世纪)【“有名无实”的统计学】代表人物:康令、阿亨瓦尔康令在大学开设“国势学”课程,以文字技术和比较为主,反映各国的国情国力;阿亨瓦尔继承和发展了康令的思想,并于1749年首次使用“统计学”代替“国势学”,认为统计学是关于各国基本制度的学问,但缺乏数字和内容。
3、数理统计学派(19世纪)代表人物:凯特勒(比利时)(古典统计学的完成者,近代统计学的先驱者)代表作:《社会物理学》——他将概率论引进统计学,完成了统计学和概率论的结合。
第二节统计学的性质和特点一、统计的三个含义:统计工作(过程)、统计资料(成果)和统计学(理论)。
二、统计学的研究对象:大量社会现象(主要是经济现象)的总体数量方面的方法论科学。
三、统计学的特点:数量性、总体性、具体性、社会性、广泛性。
第四节统计学中的几个基本概念一、统计总体与总体单位1、统计总体:是指客观存在的、在同一性质基础上结合起来的许多个别单位的整体。
统计总体可以分为有限总体和无限总体,总体所包含的单位数有限的比如人口数、企业数,反之比如大海里的鱼资源数。
2、总体单位:是指构成总体的个别单位。
注:总体和总体单位的划分是相对的,它们随着统计研究对象和研究目的变化而相互转化。
二、统计标志与统计指标1、统计标志:用来说明总体单位所具有的属性或特征的名称。
可分为品质标志和数量标志。
品质标志是说明总体单位质的特征,不能用数字来表示的,如性别、籍贯、工种等;数量标志是说明总体单位量的特征,是可用数字来表示的,如年龄、身高、收入等。
统计学原理与实务各章节复习知识点归纳(考试复习资料精华版-根据历年考试重点以及老师画的重点原创整理)第一章总论重点在“第三节:统计学中的基本概念”考点一:掌握以下四组概念(含义及举例)——肯定考一个名词解释!①总体、总体单位(统计)总体:是由客观存在的,具有某种共同性质的许多个别事物构成的整体。
总体单位:构成总体的个别事物。
②标志、标志值及分类标志:说明总体单位特征的名称。
分类:Ⅰ按性质不同a.品质标志:说明总体单位的品质特征,一般用文字表现。
(有些品质标志虽然以数量表现,但实质表现产品质量差异。
例如产品质量的具体表现未“一等、二等、三等”。
)b.数量标志:说明总体单位的数量特征。
只能用数值来表现。
Ⅱ按变异情况可变标志:当一个标志在各个总体单位表现不尽相同时称为可变标志不变标志:……都相同……不变标志。
标志值:标志的具体表现。
③变量、变量值变量:指数量标志。
变量值:指数量标志值,具有客观存在性。
④指标的含义及分类(统计)指标:是综合反映统计总体某一数量特征的概念和数值,简称指标。
a.按其反映总体现象内容不同:数量指标(绝对数,绝对指标,总量指标),质量指标(相对数或平均数,相对指标和平均指标)。
b.按其作用不同:总量指标,相对指标和平均指标。
c.按反映的时间特点不同:试点指标和时期指标d.计量单位的特点:实物指标、价值指标和劳动指标。
★指标和标志的区别与联系:区别:①标志是说明总体单位特征的名称;指标是说明总体的数量特征;②标志既有反映总体单位数量特征的,也有反映总体单位品质特征;而指标只反映总体的数量特征;③凡是统计指标都具有综合的性质,而标志一般不具有。
联系:①许多指标由数量标志值汇总而得;②指标与数量标志可随统计研究目的而改变;课后习题:社会经济统计学研究对象的特点是:数量性、总体性、变异性。
统计研究运用的方法主要包括:大量观察法、统计分组法、综合指标法、统计模型法标志值就是标志表现。
第二章统计调查考点一:统计报表的分类①填报内容和实施范围:国家、部门和地方统计报表②调查范围:全面、非全面③报送周期长短:日报、旬报、月报、季报、半年报和年报④填报单位:基层、综合报表考点二:“普查”的含义普查:是普遍调查的简称。
统计总体:统计总体是根据一定目的确定的所要研究事物的全体,它是客观存在,并在某一相同性质基础上结合起来的由许多个别事物组成的整体,简称总体。
样本:是指在全及总体中按随机原则抽取的那部分单位所构成的集合体。
算术平均数:算术平均数是统计中最基本、最常用的一种平均数,它的基本计算形式是用总体的单位总数去除总体的标志总量。
调和平均数:是根据变量值的倒数计算的,是变量值倒数的算术平均数的倒数,也叫倒数平均数。
简单分组:是指对所研究的总体按一个标志进行分组。
复合分组:复合分组是指对所研究的总体按两个或两个以上的标志进行的多层次分组。
结构相对指标:结构相对指标是表明总体内部的各个组成部分在总体中所占比重的相对指标,也叫比重指标。
强度相对指标:是指两个性质不同,但有一定联系的总量指标数值之比。
类型抽样:又称分类抽样或分层抽样,它是先将总体按某个主要标志进行分组(或分类),再按随机原则从各组(类)中抽取样本单位的一种抽样方式。
机械抽样:它是将总体各单位按某一标志顺序排列,然后按固定顺序和相等距离或间隔抽取样本单位的抽样组织方式。
综合指数:凡是一个总量指标可以分解为两个或两个以上的因素指标时,为观察某个因素指标的变动情况,将其他因素指标固定下来计算出的指数称为综合指数。
平均指数:平均指数法是以个体指数为基础来计算总指数,根据选用的权数不同,平均指数法可以进一步分为加权算术平均法,加权调和平均法,固定权数加权平均法。
相关关系:是指现象之间客观存在的,在数量变化上受随机因素的影响,非确定性的相互依存关系。
回归分析:现象之间的相关关系,虽然不是严格的函数关系,但现象之间的一般关系值,可以通过函数关系的近似表达式来反映,这种表达式根据相关现象的实际对应资料,运用数学的方法来建立,这类数学方法称为回归分析。
统计调查:就是根据统计研究的目的、要求和任务,运用各种科学的调查方法,有计划、有组织的搜集有关现象的各个单位的资料,对客观事实进行登记,取得真实可靠的调查资料的活动过程。
统计学期末复习重点一.单项选择(20 X 2=40)单选题所涉及的知识点,不用死记概念,要理解其内涵,灵活应用!第一章.绪论统计的定义:统计是人们认识客观世界总体数量变动关系和变动规律的活动的总称,是认识客观世界的有力工具。
统计学的定义:统计学是关于数据的科学,研究如何收集(如调查与试验)、分析(回归分析)、表述数据(图与表),并通过数据得出基本结论。
统计的研究对象的特点:①数量性。
统计数据是客观事物量的反映。
②总体性。
统计的数量研究是对现象总体中各单位普遍存在的事实进行大量观察和综合分析。
③变异性。
总体各单位的特征表现存在着差异,而且这些差异并不是事先可以预知的。
统计的分类:统计可分为描述统计,推断统计、核算统计、理论统计、应用统计描述统计:汇总的表、图和数值。
包括搜集数据、整理数据、展示数据推断统计:用样本数据对总体性质进行估计,检验核算统计:对国家或地区经济运行过程及各类总量进行描述和分析总体:根据一定目的确定的所要研究的事物的全体。
它是由客观存在的、具有某种共同性质的许多个别事物构成的整体。
总体单位(简称单位):是组成总体的各个个体。
根据研究目的的不同,单位可以是人、物、机构等实物单位,也可以是一种现象或活动等非实物单位。
样本:由总体的部分单位组成的集合。
样本容量:样本所包含的总体单位数标志(变量):总体各单位普遍具有的属性或特征。
标志的分类:①品质标志:单位属性方面的特征。
品质标志的表现只能用文字、语言来描述。
②数量标志:单位数量方面的特征。
数量标志可以用数值来表现几种常用的统计软件:SAS SPSS MINITAB STATISTICA Excel思考题:1、在调查某高校学生的学习状况时,总体是(C )A该校全部学生B该校每个学生C该校全部学生的学习情况D被随机抽取进行数据采集的全部学生2. 要了解全国的人口情况,总体单位是(A )。
A.每一个人B.每一户C.每个省的人口D.全国总人口第二章.数据数据:所收集、分析、汇总表述和解释的事实及数字,数据是进行统计分析研究的基础;是统计学研究对象的特征,是客观事实;不仅仅局限于数字范畴,包括非数字形式的其他信息。
极差:一组数据的最大值与最小值之差称为极差,也称全距,用R表示。
其计算公式为:R=max(xi)-min(xi)离散系数:也称为变异系数,它是一组数据的标准差与其相应的平均数之比。
其计算公式为:V=S/X。
离散系数是测量数据离散程度的相对统计量,主要是用于比较不同样本数据的离散程度。
离散系数大,说明数据的离散程度也大;离散系数小,说明数据的离散程度也小。
三大统计分布:卡方分布、T分布、F分布卡方分布(χ2)定理:设n个相互独立并且都服从正态N(0,1)分布的随机变量X1、X2,……Xn,记则随机变量χ2服从自由度为n的χ2分布。
统计变量服从卡方分布,其含义是:在给定概率α的条件下,满足或者说表达式的概率为α。
T分布定理:设随机变量x,y相互独立,X~N(0,1),Y~χ2(n)记。
则随机变量T服从自由度为n的t分布。
设T~t(n),0<α<1,对于满足下列等式的数t a(n),称为t(n)分布的上侧分位数。
对于较大的n(>45)可以同标准正态分布的上侧分位数u a作为t(n)分布的上侧分位数F分布定理:设随机变量x,y相互独立,X~χ2(n1),Y~χ2(n2)记,则随机变量F服从第一自由度为n1,第二自由度为n2的F分布,记作:F~F(n1,n2)若F~F(n1,n2),易知:,若则统计量:描述样本特征的概括性数字度量。
完全由样本决定的量,叫做统计量;或者说不含有其他未知量的样本的函数称为统计量。
统计量可以看做是对样本的一种加工,它吧样本中所包含的关于总体的其一方面的信息集中起来。
最常用的统计量是样本均值和样本方差S 2。
自由度:随机变量所包含的独立变量的个数。
参数估计:就是用样本统计量去估计总体的参数。
在参数估计中,用来估计总体参数的统计量的名称称为估计量,用符号θ表示。
样本均值、样本比例、样本方差等都可以是一个估计量。
而根据一个具体的样本计算出来的估计量的数值称为估计值。
参数估计的方法有点估计和区间估计两种。
统计学期末复习要点一、复习重点1、理解描述统计学与推断统计学2、熟识定量数据与定性数据的图表叙述,常用图表3、熟练掌握加权算术平均数、标准差、标准差系数的计算方法理解样本均值、样本比例的样本原产及中心音速定理4、理解点估计的三个评价标准,区间估计的置信水平的概念5、熟练掌握总体均值与总体比例的区间估计方法6、认知影响样本容量大小因素(置信水平、总体方差、容许误差),就是怎样影响的?7、认知假设检验的原理、步骤及两类错误8、熟练掌握总体均值、总体比例的假设检验9、认知方差分析的概念、原理及基本步骤10、熟练掌握单因素方差分析方法,理解单因素方差分析表的内在联系11、掌控相关系数的性质及检验方法,一元线性与多元线性回归方程的插值,评价及检验,掌控相关系数、决定系数及回归估计标准误差的概念、排序及三者间的关系。
12、熟练掌握多元线性重回分析方法,重点熟识excel重回分析输出表的内在联系13、认知时间序列的共同组成因素及两类模型14、熟悉选择拟合时间序列趋势模型的分析方法、理解一元线性、抛物线、指数曲线趋势模型15、认知平均值综合指数与加权平均指数的概念及排序16、认知拉氏指数和帕氏指数概念及排序17、理解指数体系的概念及作用,熟练掌握总量指标的两因素分析方法18、理解cpi 指数及其经济意义,cpi指数与购买力指数的关系二、思考题1、解释洛伦茨曲线及其用途。
2、怎么理解均值在统计学中的地位?3、详述众数、中位数和均值的特点和应用领域场合。
4、详述综合指数的基本基本建设原理。
5、写出大样本条件下总体均值左侧检验的基本步骤。
6、写下大样本条件下总体方差未明时正态总体均值左侧检验的基本步骤。
7、简述样本容量与置信水平、总体方差、允许误差的关系。
8、在假设检验中第ⅰ类错误和第ⅱ类错误分别指什么,并表明它们出现的概率大小之间的关系。
9、分别列出小样本情形下一个总体(总体方差未知)均值的左侧、右侧及双侧检验的假设形式和拒绝域?10、详述方差分析的基本假设11、解释方差分析中总误差平方和、水平项误差平方和、误差项平方和三者含义及其关系?12、在对实际的时间序列拟合其长期趋势方程,通常可采用哪些分析方法?13、为什么平均发展速度用几何平均法计算?计算平均发展速度应注意哪些问题?14、简述移动平均法的基本原理和特点。
基本统计方法第一章 概论1. 总体(Population ):根据研究目的确定的同质对象的全体(集合);样本(Sample ):从总体中随机抽取的部分具有代表性的研究对象。
2. 参数(Parameter ):反映总体特征的统计指标,如总体均数、标准差等,用希腊字母表示,是固定的常数;统计量(Statistic ):反映样本特征的统计指标,如样本均数、标准差等,采用拉丁字字母表示,是在参数附近波动的随机变量。
3. 统计资料分类:定量(计量)资料、定性(计数)资料、等级资料。
第二章 计量资料统计描述1. 集中趋势:均数(算术、几何)、中位数、众数2. 离散趋势:极差、四分位间距(QR =P 75-P 25)、标准差(或方差)、变异系数(CV )3. 正态分布特征:①X 轴上方关于X =对称的钟形曲线;②X =时,f(X)取得最大值;③有两个参数,位置参数和形态参数;④曲线下面积为1,区间±的面积为68.27%,区间±1.96的面积为95.00%,区间±2.58的面积为99.00%。
4. 医学参考值范围的制定方法:正态近似法:/2X u S α±;百分位数法:P 2.5-P 97.5。
第三章 总体均数估计和假设检验1. 抽样误差(Sampling Error ):由个体变异产生、随机抽样造成的样本统计量与总体参数的差异。
抽样误差不可避免,产生的根本原因是生物个体的变异性。
2. 均数的标准误(Standard error of Mean, SEM ):样本均数的标准差,计算公式:/X σσ=3. 降低抽样误差的途径有:①通过增加样本含量n ;②通过设计减少S 。
4. t 分布特征:①单峰分布,以0为中心,左右对称; ②形态取决于自由度,越小,t 值越分散,t 分布的峰部越矮而尾部翘得越高; ③当逼近∞,X S 逼近X σ, t 分布逼近u 分布,故标准正态分布是t 分布的特例。
(完整版)统计学总复习提纲统计学复习提纲第⼀章:绪论1、1)统计的含义:统计⼀词有统计⼯作、统计资料、统计科学三种含义,但最基本的还是统计⼯作。
没有统计⼯作就不会有统计资料,没有丰富的统计实践经验就不会产⽣统计科学。
2)统计的研究对象:统计学的研究对象是统计⼯作的规律,即搜集、整理和分析统计数据的⽅法,是⼀门⽅法论科学。
3)统计的特点:数量性、具体性、综合性2、统计学的基本概念1)总体:总体是指在某种共性的基础上由许多个别事物结合起来的整体。
总体有三⽅⾯特征:同质性、⼤量性、差异性总体可分为有限总体和⽆限总体2)总体单位:构成总体的个别事物叫总体单位。
总体和总体单位是根据统计研究的⽬的来确定的。
3)标志:标志是指说明总体单位特征的名称。
标志可分为数量标志(⽤数字回答问题)和品质标志(⽤⽂字回答问题)。
标志还可分为不变标志和可变标志。
不变标志:所有总体单位共同具有的特征。
它是构成总体的必要条件和确定总体范围的标准。
可变标志:在总体各单位之间必然存在差异的标志。
4)变量:可变标志中既有品质标志也有数量标志。
可变的数量标志就叫变量。
变量的具体数值叫变量值。
凡变量值只能以整数出现的变量,叫离散变量。
凡变量值可作⽆限分割的变量,叫连续变量。
5)指标与指标体系:指标:说明总体数量特征的概念。
指标体系:以共同的研究⽬的为纽带⽽相互联系的⼀系列统计指标。
6)指标与标志的区别与联系区别有⼆:第⼀,指标说明总体的特征;⽽标志说明总体单位的特征。
第⼆,指标只反映总体的数量特征,所有指标都要⽤数字来回答;标志则既有反映总体单位的数量特征(⽤数字回答),也有反映总体单位的品质特征(⽤⽂字回答)。
⼆者联系:主要表现:许多标志的数值都是由总体各单位的数量标志的标志值汇总⽽得来的。
品质标志虽然本⾝不具有数值,但有些指标是按品质标志分组分组计算得出。
由于总体和总体单位可随统计研究的⽬的⽽易位,故指标和数量标志在⼀定的条件下可以变换。
统计学重点整理及复习资料
第一章
统计有三个含义,即:统计工作、统计资料、统计学。
统计学的研究对象:社会经济现象数量的总体数量特征及数量关系。
(学科性质:方法论)统计学的特点:数量性、总体性、具体性、社会性、广泛性。
统计工作的过程:设计、调查、整理、分析。
统计的研究方法:统计分组法、大量观察法、综合指标法、统计模型法、统计推断法。
统计总体:客观性、同质性、差异性。
组成统计总体的个别单位称为总体单位。
标志:统计学中总体单位所具有的属性或者特征;分为数量标志和品质标志(不可量性). 指标:反应总体某一综合数量特征的名称或范畴;可分数量指标和质量指标(率、平均)。
变异:指可变的品质标志;变量:指可变化的数量标志,变量的树枝也叫做变量值(标志值)。
第二章
统计调查:指根据统计研究的目的和要求,运用科学的调查方法有计划的、有组织的向社会实际搜集各项统计资料的过程。
统计调查的意义:是人们认识社会的基本方式、是统计的重要环节、在统计学中占有重要地位。
统计调查的基本要求:准确、及时、系统、和完整性。
统计调查的种类:1、按组织方式可分为统计报表制和专门调查。
2、按调查对象可分为全面调查和非全面调查。
3、按登记事物的连续性可以分为经常性调查和一次性调查(时点状态)。
4、按搜集资料的不同可分为直接观察法、报告法、采访法、问卷调查法。
统计方案的设计:一、确认调查任务和目的,二、确定调查对象和单位,三、确定调查项目和设计调查表,四、确定调查时间地点,五、制定调查的组织实施计划。
专门调查可分为:普查、重点调查、典型调查和抽样调查。
普查:为了特定的研究目的而专门组织的一次性全面调查;特点:1、一次性调查2、主要调查一定时点的情况3、普查的数据一般比较准确,规范化程度较高;原则:1、必须统一规定普查的时点2、正确选择普查的时期3、在普查范围内各调查单位或调查点应尽可能的同时进行4、同类普查的内容在各次普查中应尽可能的保持一致。
重点调查:在所要调查的总体中选择一部分重点单位进行非全面调查用以反应总体的基本情况。
重点单位:指全部单位中占比重小但其标志总量在总体中占有很到的比重。
典型调查:在调查对象中有意识的选择若干具有典型意义或代表性的单位进行全面调查。
目的:描述或揭示所研究问题的本质和规律性。
抽烟调查:按照随机性原则,从总体中抽取一部分单位进行调查,并计算这部分有关数据用以推算总体有关数据的方法,是一种非全面调查。
统计调查的误差:按产生的原因可分为人为误差和代表性误差(误差具有不可分性),统计调查的误差可以控制,但是不可以消除。
第二章重点补充:1、统计调查的调查时间主要指调查资料所属的时间
第三章统计资料整理
统计整理:根据研究目的,把统计调查搜集到的大量反映个体特征的原始资料,用科学的方法进行分类汇总,使之系统化、条理化、成为反映事物总体特征的工作过程。
(统计整理即是统计调查的继续又是统计分析的前提)
统计整理的步骤:一、设计统计资料整理方案;二、对搜集来的原始资料进行审核;三、将审核后的资料进行分组汇总;四、将汇总整理的结果编制成统计表。
:了解。
统计分组:按照一定的分组标志,将总体划分为若干组成部分的一种统计方法。
统计分组的作用:一、划分现象的类型(揭示相互关系和发展变化的规律性)二、揭示现象的内部结构;三、分析现象之间的依存关系。
分组标志的的选择:一、根据统计研究的目的和任务来选择;二、根据现象所处的历史条件和具体环境来选择;三、选择最能反映事物本质特征的标志作为分组标志。
(统计分组的关键在于正确的选择分组标志和划分各组的界限)
统计分组的种类:一、根据分组标志的性质不同,分为按品质标志和按数量标志分组(其中按数量标志分组有两种形式:单项式分组和组距式分组);二、根据分组标志多少的不同分为简单分组和复合分组。
分配数列:在统计分组的基础上,将总体中的所有单位按一定的顺序排列,形成总体单位在各组间的分布(又称分布数列、次数分布)
分配数列的两个基本要素:分组标志和相应的分布次数(分布在各组的总体单位数称之为次数,又叫频数;各组次数和总次数之比称为比率或频率。
)
分配数列的种类:1、品质分配数列和变量分配数列;2单项式数列和组距式数列。
品质数列:指按品质标志分组而形成的分配数列,表明总体单位中不同属性的单位分布情况,由组的名称和各组单位数两部分组成。
变量分配数列是按数量标志分组形成的分配数列。
组距数列的编制步骤:一、确定组数、组距和组限;二、确定分组形式;三、计算组中值。
累计次数分布:一、向上累计:是将各组的次数和比重,由变量值低的向变量值高的组逐组累计;二、向下累计:与之相反。
主要类型:钟型分布、U型分布、J型分布(了解)。
统计表:由总标题、横行标题、纵行标题和数字资料四部分组成,分为简单表、分组表、复合表。
(了解)
补充:1、统计整理工作中,最关键且最体现工作水平的一环是统计分组。
2、主词栏按时间先后顺序分组的统计表是简单表。
3、统计分组的主要作用是说明社会现象的内部结构、掌握事物发展规律、分析社会现象之间的依存关系。
第四章综合指标
总量指标:是反应社会经济现象总体在一定时间、地点条件下的规模或水平的统计指标。
总量指标的作用:1、总量指标是从数量上认识社会经济现象的起点。
2、总量指标是制定方针政策、编制计划、对国民经济实行科学管理的重要依据。
3、总量指标是计算相对指标和平均指标的基础。
(了解)
总量指标的种类:总量指标按其反应的内容不同可分为总体单位总量和总体标志总量,按其反映的时间状况不同可分为时期总量和时点总量。
总量指标的计量单位:一、实物单位(自然计量单位、度量衡单位、双重单位、复活单位、标准实物单位)二、货币单位,三、劳动量单位。
相对指标:它是两个有联系的总量指标数值比对而形成的反映现象的发展程度、结构、比例、强度、普遍程度。
相对指标的作用:一、利用相对指标,能够反映事物之间的对比关系,通过对比关系,对事物做出正确的结论。
二、利用相对指标可以消除一些不可比因素,使原不可比事物变为可以对比并进行分析。
相对指标的计量形式有无名数和有名数之分,无名数指倍数、成数、百分数、千分数,有名数是当相对指标分子分母单位不一致是的计量单位,如千克/每人。
常见的相对指标及计算
一、计划完成程度相对指标是一定时期内某项任务的实际完成数与计划规定数的对比的比
值,它用来说明计划完成程度。
在计算实际比计划增减的绝对量时,只能用分子减分母,所得结果正号为增加,负号为减少。
二、结构相对指标是指总体中部分数值。