第三章 截面图形的几何性质
- 格式:ppt
- 大小:767.50 KB
- 文档页数:25
第一章 绪论和基本概念应力(全应力):2P 正应力:σ 切应力:τ 222τσ+=P线应变:l l dx du //x ∆==ε 切应变:角度的改变量α只受单向应力或纯剪的单元体:胡克:εσ⋅=E 剪切胡克:r G ⋅=τ ()E G =+ν12 第二章 杆件的内力分析 轴力N F :拉力为正扭矩T :右手螺旋,矢量方向与截面外法线方向一致为正 剪力S F :顺时针方向转动为正外力偶矩:()m N N P ·/9549m = ()m N N P ·/7024m = (K N /马力) 第三章 截面图形的几何性质 静矩:⎰=Ax ydA S 若C 为形心[质心]:A S XC/y =组合截面图形形心坐标计算:∑∑===ni i ni cii C A y A y 11/惯性矩:⎰=Ax dA y I 2惯性积:⎰=Axy xydA I 包括主轴在内的任意一对正角坐标0=xy I对O 点的极惯性矩:()y x AAP I I dA y x dA I +=+==⎰⎰222ρ 实心圆:32/224d I I I P y x π=== 圆环:()64/-12244απD I I I P y x === D d /=α平行四边/三角形:12/3bh I x =平行移轴公式:A b I I xc x ⋅+= A ab I I xcyc xy ⋅+= 转轴公式(逆转α):()()αα2s i n 2/2c o s2/1xy y x y x x I I I I I I --++=()()αα2sin 2/2cos 2/1xy y x y x y I I I I I I +--+= ()αα2cos 2sin 11xy y x y x I I I I +-= 求主轴:000=y x I ()y x xy I I I --=/22tan 0α()[]2//2a r c t a n 0y x xy I I I --=α主惯性矩:()22min max 00x 4212xy y xy x y I I II I I I I I +-±+==第四章 杆件的应力与强度计算斜面上的正应力:ασσα2cos = 切应力:2/2sin αστα=许用应力:脆性材料[]b b n /σσ= 塑性材料:[]s s n /σσ=或[]s n /5.0σσ= 拉压杆强度条件:[]σσ≤=A F N /max max 校核强度:[]()[]%5%100/max ≤⨯-σσσ 剪切强度条件:[]ττ≤=s A F /s 挤压强度条件:[]bs bs bs A F σσ≤=/bs圆轴扭转切应力:p I T /ρτρ⋅= []ττ≤=⋅=p p W T I R T //m a x 梁的弯曲:中性层曲率:()z EI M //1=ρ 等直梁在弯曲时的正应力:z I M /y =σz z W M I M //y m a x m a x ==σ矩形截面梁的弯曲切应力:()()z s z z s I y h F bI S F 2/4//22*-==τ在中性轴处:()A F bh F s s 2/32/3max ==τ 最大切应力均在中性轴上工字型截面梁:腹板:()d I S F z z s /*=τ 翼缘:()δτz z s I S F /*1=圆形截面:A F s 3/4max =τ 薄壁环形截面:A F s /2max =τ切应力强度条件:[][]ττ≤=d I S F z z s /*max max max 理想设计:[][]c t c t σσσσ//max max = 许用拉应力:[]t σ 许用压应力:[]c σ 两垂直平面内弯曲组合截面梁:z N M N I y M A F //max max +=+=σσσ偏心压缩(拉伸):截面上任意点:22max /-/-/-z F y F M N i y Fy i z Fz A F =+=σσσ2y y Ai I = 0=σ时中性轴截距:F y y y i a /2-=第五章 杆件的变形与刚度计算轴向拉(压)杆的变形:l l /∆=ε b b /'∆=ε νεε-=' ∑===∆ni ii i Ni N A E lF EA l F l 1圆轴扭转变形:()P GI Tl /=ϕ [在弹性范围之内]刚度条件:()[]rad GI l T P '/max 'max ϕϕ≤= ()[]m GI l T P /'/180max 'max ︒≤⋅⋅=ϕπϕ梁的弯曲变形:挠度:w ()x M ''=E I w θEI EIw =' ()⎰⎰++=D Cx dxdy x M EIw支承处:0=w 悬梁臂:0=w ,0=θ 连接处:21w w =,21θθ= 梁的刚度条件:[]l w l w //max ≤ []w w ≤max []θθ≤m a x第六章 应力状态分析 任意斜截面上的应力:()()ατασσσσσα2sin 2/2cos 2/xy y x y x--++=()ατασστα2cos 2/2sin xy y x +-=αασσσσ-+=︒+y x 90 ααττ-=︒+90应力圆:22min max 22xy yx y x τσσσσσσ+⎪⎪⎭⎫ ⎝⎛-±+= y x xy σστα--=22tan 0三向应力状态:()2/31max σστ-=应力应变关系:()E /90︒+-=ααανσσε ()E /9090ααανσσε-=︒+︒+ G /αβαβτγ=第七章 强度理论及其应用 强度理论:断裂失效:11r σσ=()3212r σσνσσ+-=屈服失效:313r σσσ-= ()()()[]2/2132322214r σσσσσσσ-+-+-=轴向拉压弯扭组合变形:[]στσσ≤+=223r 4[]στσσ≤+=224r 3仅圆轴弯扭:[]σσ≤+=Z W T M /223r []σσ≤+=Z W T M /5.70224r ,Z P W W 2=薄壁圆筒强度:横截面上的正应力:()24/'σσ==t PD 纵截面上的正应力:()12/''σσ==t PD 03=σ第八章 压杆稳定临界应力:欧拉公式:()()222222cr /λπμπμπσEi l E A l EI A F cr ==== A I i /= 利用欧拉公式前提条件:P P E σπλλ/2=≥不满足时用经验公式:λσb a -=cr211cr λσb a -=压杆的稳定性计算:安全因素法:st cr cr n F F n ≥==σσ//折剪因素法:[][]st cr st n A F //σσσϕσ==≤= 第九章 能量方法杆件应变能:轴向拉伸或压缩:()⎰==∆==l N N dx EAx F EA lF l F w V 22222ε扭转:()⎰====l P P dx GI x T GI l T T w V 22222ϕε弯曲:()⎰====l dx EIx M EI l m m w V 22222θε 组合变形: 2/2/2/θϕεεm T l F dV V l++∆==⎰。
第七章截面的几何性质【学时】2内容:静距、惯性矩、惯性积、惯性半径,简单图形和组合图形静矩的计算及形心位置的确定。
简单图形惯性矩和惯性积的计算;平行移轴公式、转轴公式;组合图形惯性矩和惯性积的计算。
形心主惯性轴和形心主惯性矩。
【基本要求】1.理解静距、惯性矩、惯性积、惯性半径的概念[2]。
2.掌握简单图形和组合图形静矩的计算及形心位置的确定[1]。
3.掌握简单图形惯性矩和惯性积的计算[1]。
4.掌握平行移轴公式[1]。
5.了解转轴公式[3]。
6.掌握组合图形惯性矩和惯性积的计算[1]。
7.了解形心主惯性轴和形心主惯性矩[3]。
【重点】简单图形和组合图形静矩的计算及形心位置的确定,简单图形惯性矩的计算;平行移轴公式;组合图形惯性矩的计算。
【难点】组合图形惯性矩的计算,转轴公式,形心主惯性矩。
§7-1 面积矩与形心位置一、面积(对轴)矩:y A S x ⋅=d d x A S y ⋅=d d ⎰⎰⎰⎰====AAy y AAx x Ax S S Ay S S d d d d二、形心:例1 试确定下图的形心。
解 :用正负面积法解之。
1.用正面积法求解,图形分割及坐标如图212121A A Ax A x A A x x i i ++==∑3.201080110101101035-=⨯+⨯⨯⨯-= 7.341080110101101060=⨯+⨯⨯⨯=y 2.用负面积法求解, 图形分割及坐标如图212121A A A x A x AA x x ii ++==∑3.201107080120)11070(5-=⨯-⨯⨯-⨯=80120§7-2 惯性矩、惯性积、极惯性矩一、 惯性矩⎰⎰==Ay Ax A x I A y I d d 22二、极惯性矩y x AI I A I +==⎰d 2ρρ三、 惯性积⎰=Axy A xy I d如果 x 或 y 是对称轴,则I xy =0(1)惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。
截面图形的几何性质一.重点及难点:(一).截面静矩和形心1.静矩的定义式如图1所示任意有限平面图形,取其单元如面积,定义它对任意轴的一次矩为它对该轴的静矩,即dA ydAdSx xdA dS y == 整个图形对y 、z 轴的静矩分别为 ∫∫==AAy ydASx xdAS (I-1) 2.形心与静矩关系 图I-1设平面图形形心C 的坐标为 则 0 C C z y ,A S y x= , AS x y = (I-2)推论1 如果y 轴通过形心(即0=x ),则静矩0=y S ;同理,如果x 轴通过形心(即0=y ),则静矩0=Sx ;反之也成立。
推论2 如果x 、y 轴均为图形的对称轴,则其交点即为图形形心;如果y 轴为图形对称轴,则图形形心必在此轴上。
3.组合图形的静矩和形心设截面图形由几个面积分别为n A A A A ……321,,的简单图形组成,且一直各族图形的形心坐标分别为……332211,,,y x y x y x ;;,则图形对y 轴和x 轴的静矩分别为∑∑∑∑========ni ni ii xi x ni ii ni yi y y A S S x A S 1111S (I-3)截面图形的形心坐标为∑∑===ni ini ii AxA x 11 , ∑∑===ni ini ii AyA y 11 (I-4)4.静矩的特征(1) 界面图形的静矩是对某一坐标轴所定义的,故静矩与坐标轴有关。
(2) 静矩有的单位为。
3m (3) 静矩的数值可正可负,也可为零。
图形对任意形心轴的静矩必定为零,反之,若图形对某一轴的静矩为零,则该轴必通过图形的形心。
(4) 若已知图形的形心坐标。
则可由式(I-1)求图形对坐标轴的静矩。
若已知图形对坐标轴的静矩,则可由式(I-2)求图形的形心坐标。
组合图形的形心位置,通常是先由式(I-3)求出图形对某一坐标系的静矩,然后由式(I-4)求出其形心坐标。
(二).惯性矩 惯性积 惯性半径1. 惯性矩定义 设任意形状的截面图形的面积为A (图I-3),则图形对O 点的极惯性矩定义为∫=Ap dA I 2ρ (I-5)图形对y 轴和x 轴的光性矩分别定义为∫=Ay dA x I 2 , (I-6)dA y I Ax ∫=2惯性矩的特征(1) 界面图形的极惯性矩是对某一极点定义的;轴惯性矩是对某一坐标轴定义的。
材料力学 分析与思考题集第一章 绪论和基本概念一、选择题1.关于确定截面内力的截面法的适用范围,有下列四种说法:【D.适用于不论等截面或变截面、直杆或曲杆、基本变形或组合变形、横截面或任意截面的普通情况。
2.关于下列结论的正确性:【C 1.同一截面上正应力τσ与剪应力必须相互垂直3.同一截面上各点的剪应力必相互平行。
】3.下列结论中那个是正确的:【B.若物体各点均无位移,则该物体必定无变形】4.根据各向同性假设,可认为构件的下列量中的某一种量在各方向都相同:【B 材料的弹性常数】5.根据均匀性假设,可认为构件的下列量中的某个量在各点处都相同:【C 材料的弹性常数】6.关于下列结论:【C 1.应变分为线应变ε和切应变γ 2.应变为无量纲量 3.若物体的各部分均无变形,则物体内各点的应变均为零】7.单元体受力后,变形如图虚线所示,则切应变γ为【B 2α】二、填空题1.根据材料的主要性能作如下三个基本假设 连续性假设 , 均匀性假设 和 各向同性假设 。
2.构件的承载能力包括强度、刚度和稳定性三个方面。
3.图示结构中,杆1发生轴向拉伸变形,杆2发生轴向压缩变形,杆3发生弯曲变形。
4.图示为构件内A 点处取出的单元体,构件受力后单元体的位置为虚线表示,则称dx du /为A 点沿x 方向的线应变,dy dv /为【A 点沿y 方向的线应变】,)(21a a +为【A 在xy 平面内的角应变】。
5.认为固体在其整个几何空间内无间隙地充满了物质,这样的假设称为连续性假设。
根据这一假设,构件的应力、应变和位移就可以用坐标的连续性函数来表示。
6.在拉(压)杆斜截面上某点处分布内力集度称为应力(或全应力),它沿着截面法线方向的分量称为正应力,而沿截面切线方向的分量称为切应力。
第二章 杆件的内力分析一、选择题1.单位宽度的薄壁圆环受力如图所示,p 为径向压强,其n-n 截面上的内力N F 有四个答案:【B 2/pD 】2.梁的内力符号与坐标系的关系是:【B 剪力、弯矩符号与坐标系无关】3.梁的受载情况对于中央截面为反对称(如图)。