第七章截面图形的几何性质
- 格式:ppt
- 大小:562.50 KB
- 文档页数:19
第七章 截面几何性质基本要求与重点1.形心与重心(1)理解重心与形心,熟知常见规则图形形心的位置。
(2)记住以下常见规则几何图形的形心位置:圆及圆环、矩形、三角形。
(3)能熟练计算,由规则图形构成的组合图形的形心位置。
2.面积静矩(又称静矩或面矩)(1)了解面积静矩的积分定义,掌握其有限式定义。
(2)能熟练计算组合图形的静矩。
(3)熟知面积静矩的重要性质。
3.惯性矩与极惯性矩。
(1)理解惯性矩与极惯性矩(2)了解惯性矩与极惯性矩的定义(3)掌握惯性矩与极惯性矩之间的关系(4)掌握平行轴定理及组合图形惯性矩的计算方法。
(5)记住圆及圆环对圆心的极惯性矩(6)记住矩形截面对其对称轴的惯性矩。
4.了解惯性积、形心主轴的概念主要内容1.形心与重心(1)概念与性质重心是物体的重力中心,形心是几何体的形状中心。
对均质物体,重心与形心位置重合。
若存在几何对称同,则形心必在对称轴上。
(2)计算形心位置的计算公式分积分式与代数式两种。
其中,常用的是代数形式的计算公式:11n n ic i ic ii i c c x A y A x y A A==⋅∆⋅∆==∑∑, 2.面积静矩(又称静矩或面矩)(1)定义:分为代数式和积分式两种形式有限式:几何图形的面积乘以形心到某轴的距离的坐标值,称为该图形对该轴的静矩。
积分式:几何图形的元面积乘以点到某轴的距离的坐标值,称为该元面积对该轴的静矩;所有点的元面积静矩之和,为几何图形的对该轴的静矩。
(2)面积静矩的重要性质:若图形对某轴的面积静矩为零,则该轴过这一图形的形心;反之亦然。
也就是说,静矩为零与轴过形心互为充要条件。
(3)计算根据实际情况可选用代数式或积分式进行计算,工程中主要是利用代数式进行计算。
11S S n nx ix i i c i i y A y A ====⋅∆=⋅∑∑11S S n ny iy i i c i i x A x A ====⋅∆=⋅∑∑3.惯性矩与极惯性矩。
第七章平面图形的几何性质研究截面几何性质的意义从上章介绍的应力和变形的计算公式中可以看出,应力和变形不仅与杆的内力有关,而且与杆件截面的横截面面积A、极惯性矩I P、抗扭截面系数W P等一些几何量密切相关。
因此要研究构件的的承载能力或应力,就必须掌握截面几何性质的计算方法。
另一方面,掌握截面的几何性质的变化规律,就能灵活机动地为各种构件选取合理的截面形状和尺寸,使构件各部分的材料能够比较充分地发挥作用,尽可能地做到“物尽其用”,合理地解决好构件的安全与经济这一对矛盾。
第一节 静矩一、静距的概念Ay S z d d =Az S y d d =⎰⎰⎰⎰====AAy y AAz z Az S S A y S S d d d d zy d A yz静距是面积与它到轴的距离之积。
平面图形的静矩是对一定的坐标而言的,同一平面图形对不同的坐标轴,其静矩显然不同。
静矩的数值可能为正,可能为负,也可能等于零。
它常用单位是m 3或mm 3。
形心d A zyy zCx Cy ⎪⎪⎭⎪⎪⎬⎫⋅∆∑=⋅∆∑=A y A y Az A z C C ⎪⎪⎭⎪⎪⎬⎫==⎰⎰A ydA y A zdA z AC A C ⎪⎪⎭⎪⎪⎬⎫==A S y A S z z C y C ⎭⎬⎫⋅=⋅=C y C z z A S y A S 平面图形对z 轴(或y 轴)的静矩,等于该图形面积A 与其形心坐标y C (或z C )的乘积。
当坐标轴通过平面图形的形心时,其静矩为零;反之,若平面图形对某轴的静矩为零,则该轴必通过平面图形的形心。
如果平面图形具有对称轴,对称轴必然是平面图形的形心轴,故平面图形对其对称轴的静矩必等于零。
⎭⎬⎫⋅=⋅=C y C z z A S y A S二、组合图形的静矩根据平面图形静矩的定义,组合图形对z 轴(或y 轴)的静矩等于各简单图形对同一轴静矩的代数和,即⎪⎪⎭⎪⎪⎬⎫=+++==+++=∑∑==ni Ci i Cn n C C y ni Ci i Cn n C C z z A z A z A z A S y A y A y A y A S 1221112211 式中 y Ci 、z Ci 及A i 分别为各简单图形的形心坐标和面积;n 为组成组合图形的简单图形的个数。
课时授课计划
第七章截面的几何性质
通过例子引入(让学生知道截面的重要性)
截面尺寸和形状完全相同的杆件,因为放置的方式不同,
其承载能力是大不相同的。
思考:抗弯能力与截面形状有何关系?
一、静矩与形心
平面图形对某轴的静矩等于其面积与形心
坐标(形心到该轴的距离)的乘积。
特性:
当坐标轴通过该平面图形的形心(简称形心轴)时,静矩等于零;反之,若平面图形对某轴的静矩等于零,则该轴必通过形心。
二、惯性矩
简单图形对其形心轴的的惯性矩
(见课本111页表7-1)
三、惯性矩的平行移轴公式
已知
对z 轴的惯性矩:
平行移轴定理,或称为平行移轴公式:截面对任意轴的惯性矩,等于截面对与该轴平行的形心轴的惯性矩加上截面面积与两轴间距离平方的乘积。
四、例题分析
1、T 字形截面尺寸及形心位置如下图所示,求该截面对其形心轴的惯性矩。
2、讲解:例8-7
五、讨论
形心的计算。
⎩⎨⎧+=+=b z z a y y C
C
⎰=A c z dA y I C
2
⎰=A z dA
y I 2⎰⎰++=+=A
C C A C z dA a a y y dA a y I )2()(2
2
2。
第7章 截面图形的几何性质教学提示:在对构件进行应力和强度等计算时,需要用到构件截面图形的几何性质,即与构件截面几何形状和尺寸有关的一些量,例如形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积等。
本章的主要内容就是讨论这些几何性质的定义和计算。
教学要求:通过本章学习,要求理解形心、静矩、惯性矩、极惯性矩、惯性积和主惯性矩的概念,会用平行移轴公式计算组合截面对形心轴的惯性矩、主惯性矩等。
受力构件的承载能力,不仅与材料性能和加载方式有关,而且与构件截面的几何形状和尺寸有关。
当研究构件的强度、刚度和稳定性问题时,都要涉及到一些与截面形状和尺寸有关的几何量。
这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性矩、惯性积、主惯性矩等,统称为“截面图形的几何性质”。
研究这些几何性质时,完全不需考虑研究对象的物理和力学因素,只作为纯几何问题处理。
7.1 静矩与形心考察如图7.1所示任意截面几何图形。
在其上取面积微元d A ,设该微元在Oyz 坐标系中的坐标为(y 、z )。
定义下列积分d y AS z A =∫, d z AS y A =∫(7.1)图7.1分别为截面图形对y 轴和z 轴的静矩(或称为面积矩)。
其量纲为长度的三次方。
常用单位是3m 或3mm 。
由于均质等厚薄板的重心与薄板截面图形的形心有相同的坐标(C y 、C z ),而薄板的重心坐标由式(2.24)给出,即d d AAzCy V y A S y V AA ===∫∫d d y AAC z Vz A S z VAA===∫∫第7章 截面图形的几何性质·91··91·所以,形心坐标为d Az Cy A Sy AA==∫, d y ACz A S z AA==∫ (7.2a)或y C S A z =⋅,z C S A y =⋅(7.2b)由式(7.2)可知,若某坐标轴通过形心轴,则图形对该轴的静矩等于零,即若0C y =,则0z S =,或若0C z =,则0y S =;反之,若图形对某一坐标轴的静矩等于零,则该坐标轴必然通过图形的形心。
附录Ⅰ 截面的几何性质§I −1 截面的静矩和形心位置如图I −1所示平面图形代表一任意截面,以下两积分⎪⎭⎪⎬⎫==⎰⎰A z S A y S A y Az d d (I −1) 分别定义为该截面对于z 轴和y 轴的静矩。
静矩可用来确定截面的形心位置。
由静力学中确定物体重心的公式可得⎪⎪⎭⎪⎪⎬⎫==⎰⎰A A z z A A y y AC ACd d利用公式(I −1),上式可写成⎪⎪⎭⎪⎪⎬⎫====⎰⎰A S A A z z A S A Ay y y AC z AC d d (I −2) 或⎭⎬⎫==C y C z Az S Ay S (I −3)⎪⎪⎭⎪⎪⎬⎫==A S z A S y y C z C (I −4)如果一个平面图形是由若干个简单图形组成的组合图形,则由静矩的定义可知,整个图形对某一坐标轴的静矩应该等于各简单图形对同一坐标轴的静矩的代数和。
即:⎪⎪⎭⎪⎪⎬⎫==∑∑==ni ci i y ni ci i z z A S y A S 11(I −5)式中A i 、y ci 和z ci 分别表示某一组成部分的面积和其形心坐标,n 为简单图形的个数。
将式(I −5)代入式(I −4),得到组合图形形心坐标的计算公式为图I −1⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫==∑∑∑∑====n i i ni ci i c ni i ni ci i c A z A z A y A y 1111(I −6) 例题I −1 图a 所示为对称T 型截面,求该截面的形心位置。
解:建立直角坐标系zOy ,其中y 为截面的对称轴。
因图形相对于y 轴对称,其形心一定在该对称轴上,因此z C =0,只需计算y C 值。
将截面分成Ⅰ、Ⅱ两个矩形,则A Ⅰ=0.072m 2,A Ⅱ=0.08m 2 y Ⅰ=0.46m ,y Ⅱ=0.2m m323.008.0072.02.008.046.0072.0III IIII I I 11=+⨯+⨯=++==∑∑==A A y A y A AyA y ni ini cii c§I −2 惯性矩、惯性积和极惯性矩如图I −2所示平面图形代表一任意截面,在图形平面内建立直角坐标系zOy 。