异步电机矢量控制可以转子磁链定向
- 格式:ppt
- 大小:706.50 KB
- 文档页数:39
基于矢量控制的电动汽车用异步电动机弱磁控制方法窦汝振,辛明华,杜智明(中国汽车技术研究中心,天津300162)摘要:对需要异步电动机恒功率运行的应用领域,特别是电动汽车这种需要大范围扩速运行的情形,弱磁控制是一个非常重要的方法。
基于矢量控制提出一种恒交轴电压弱磁控制方法,该方法与电机参数无关,稳定性强,实现简单,试验结果验证了该方法的正确性和有效性。
关键词:矢量控制;弱磁控制;异步电动机中图分类号:TM301.2B TM343文献标识码:A文章编号:1673-6540(2009)05-0025-03F iel dW eakening Control of A synchronousM otors Based on V ector ControlDOU Ru-zhen,X I N M i n g-hua,DU Zhi-m ing(Ch i n a A uto m otive Technology&Research C enter,T i a nji n300162,Ch i n a)Abstract:The field w eaken i ng contro l is i m portan t for the i nducti on mo tor.s constant pow er ope ration that i s re-qu ired by t he e l ec tric veh icle.Based on the detail ed theo retical analysis,usi ng t he vector contro,l a constant q-ax i s sta t o r vo ltage fi e l d weaken i ng controlm e t hod t hat is stab l e,i ndependent o fm otor para m ete rs is presented.Its vali d it y is prov ed by experi m ental resu lts.K ey word s:vector con tro;l field weaken i ng con tro;l asynchronou sm otors0引言异步电动机结实耐用,在矿山机械、航空航天、轨道交通、电动汽车等领域有着广泛应用。
按照转子磁链定向旳矢量控制系统仿真1.矢量控制技术概述异步电机旳动态数学模型是一种高阶、非线性、强耦合旳多变量系统,其控制十分复杂。
矢量控制实现旳基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对机旳励磁电流和转矩电流进行控制,从而到达控制异步电动机转矩旳目旳。
将异步电动机旳异步电动定子电流矢量分解为产生磁场旳电流分量(励磁电流) 和产生转矩旳电流分量(转矩电流) 分别加以控制,并同步控制两分量间旳幅值和相位,即控制定子电流矢量,因此称这种控制方式称为矢量控制方式。
ω图1 带转矩内环节磁链闭环旳矢量控制系统构造图2.几种关键问题:●转子磁链函数发生器根据电机旳调速范围和给定旳转速信号,在恒转矩范围内恒磁通调速、转子磁通保持额定磁通;在恒功率范围内弱磁调速,转子磁通随转速指令旳增大而减小。
转子磁链函数发生器用来产生磁链大小信号。
这里采用下面旳曲线。
转子磁链旳幅值一般为1。
●转子磁链旳观测与定向转子磁链旳观测模型重要有二种:(1) 在两相静止坐标系上旳转子磁链模型电机旳定子电压和电流由传感器测得后,通过3S/2S 变换,再根据异步电机在两项静止坐标系下旳数学模型,计算转子磁链旳大小。
()r αm s αr r βr 11L i T T p ψωψ=-+ ()r βm s βr r αr 11L i T T p ψωψ=++ (2) 按磁场定向两相旋转坐标系上旳转子磁链模型三相定子电流 iA 、 iB 、iC 经3/2变换变成两相静止坐标系电流 is α 、 is β ,再经同步旋转变换并按转子磁链定向,得到M ,T 坐标系上旳电流 ism 、ist ,运用矢量控制方程式m st1s r rL i T ωωωψ-==mr smr 1L i T p ψ=+可以获得 ψr 和 ωs 信号,由ωs 与实测转速 ω 相加得到定子频率信号ω1,再经积分即为转子磁链旳相位角ϕ ,它也就是同步旋转变换旳旋转相位角。
第七章异步电动机动态模型调速系统内容提要:异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。
矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电动机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。
两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足之处。
本章第8.1节首先导出异步电动机三相动态数学模型,并讨论其非线性、强耦合、多变量性质,然后利用坐标变换加以简化,得到两相旋转坐标系和两相静止坐标系上的数学模型。
第8.2节讨论按转子磁链定向的基本原理,定子电流励磁分量和转矩分量的解耦作用,讨论矢量控制系统的多种实现方案。
第8.3节介绍无速度传感器矢量控制系统及基于磁通观测的矢量控制系统。
第8.4节讨论定子电压矢量对转矩和定子磁链的控制作用,介绍基于定子磁链控制的直接转矩控制系统。
第8.5节对上述两类高性能的异步电动机调速系统进行比较,分析了各自的优、缺点。
第8.6节介绍直接转矩控制系统的应用实例。
8.1交流异步电动机动态数学模型和坐标变换基于稳态数学模型的异步电动机调速系统虽然能够在一定范围内实现平滑调速,但对于轧钢机、数控机床、机器人、载客电梯等动态性能高的对象,就不能完全适用了。
要实现高动态性能的调速系统和伺服系统,必须依据异步电动机的动态数学模型来设计系统。
8.1.1三相异步电动机数学模型在研究异步电动机数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿气隙按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
摘要因为异步电动机的物理模型是一个高阶、非线性、强耦合的多变量系统,需要用一组非线性方程组来描述,所以控制起来极为不便。
异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。
如果把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。
直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。
本文研究了矢量控制系统中磁链调节器的设计方法。
并用MATLAB最终得到了仿真结果。
关键词:矢量控制非线性 MATLAB仿真目录摘要 (I)1 异步电动机矢量控制原理及基本方程式 (1)1.1矢量控制基本原理 (1)1.2按转子磁链定向的基本方程 (2)2 dp坐标系的异步电动机模型 (4)2.1坐标变换原理 (4)2.2建立dq坐标系下电机模型 (6)3 矢量控制系统设计 (7)3.1 矢量控制系统的电流闭环控制方式思想 (7)3.2 MATLAB系统仿真系统设计 (8)3.3 PI调节器设计 (10)4 仿真结果 (11)4.1 电机定子侧的电流仿真结果 (11)4.2 电机输出转矩仿真结果 (12)4.3 电机的转子转速仿真结果 (13)4.4 转子转子磁链仿真结果 (13)心得体会 (16)参考文献 (17)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理及基本方程式1.1矢量控制基本原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。
所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。