汽轮机保护整定值表
- 格式:xlsx
- 大小:12.71 KB
- 文档页数:1
电力工程基础课程设计报告题目2×200MW发电机-变压器组继电保护设计系别电子与电气工程系专业电气工程及其自动化(电力系统)班级0920325学号092032502姓名颜丽芬指导教师黄新完成时间2012年11月29日评定成绩绪论 (3)0引言 (3)继电保护概述 (3)第一部分设计任务书 (4)0.1设计项目 (4)0.2设计要求 (4)0.3设计材料 (5)0.4设计任务 (5)第二部分设计计划书 (5)1主变压器的选择 (5)1.1主要设备型号及参数 (5)1.2系统运行主变压器和发电机中性点接地方式 (7)1.3发电机变压器组参数及系统运行方式 (8)2保护配置 (8)2.1发电机的保护部分 (9)2.2变压器部分继电保护整定 (11)2.3相间短路的后备保护 (12)3继电保护整定计算 (13)3.1发电机继电保护整定 (16)3.2继电保护整定计算结果一览表 (17)4收获和体会 (17)5参考文献 (18)绪论0引言继电保护概述电力系统在运行中,由于电气设备的绝缘老化、损坏、雷击、鸟害、设备缺陷或误操作等原因,可能发生各种故障和不正常运行状态。
最常见的而且也是最危险的故障是各种类型的短路,最常见的不正常运行状态是过负荷,最常见的短路故障是单相接地。
这些故障和不正常运行状态严重危及电力系统的安全和可靠运行,这就需要继电保护装置来反应设备的这些不正常运行状态。
所谓继电保护装置,就是指能反应电力系统中电气设备所发生的故障或不正常状态,并动作于断路器跳闸或发出信号的一种自动装置。
它的基本作用是:⑴当电力系统发生故障时,能自动地、迅速地、有选择性地将故障设备从电力系统中切除,以保证系统其余部分迅速恢复正常运行,并使故障设备不再继续遭受损坏。
⑵当系统发生不正常状态时,能自动地、及时地、有选择性地发出信号通知运行人员进行处理,或者切除那些继续运行会引起故障的电气设备。
可见,继电保护装置是电力系统必不可少的重要组成部分,对保障系统安全运行、保证电能质量、防止故障的扩大和事故的发生,都有极其重要的作用。
目录1 概述2 汽轮机的功能3 工艺限值,指示和安全措施4 汽轮机启动准备5 汽轮机启动的步骤6 汽轮机运行期间的维护7 汽轮机停运步骤8 汽轮机停运后转维修9 汽轮机维修后再启动10 常见故障和排除方法附录А汽轮机К-1000-60/3000主要参数附录ВК-1000-60/3000型汽轮机工作原理和简要描述附录С系统设备的电源及供电等级附录D 根据汽轮机的热工状态,汽轮机功率定值和升功率定值附录E1 1МYD00FТ911形成信号“汽轮机支持轴承乌金温度最大值”附录E2形成信号1MAD15CT901 “止推轴承巴比合金最高温度”附录E3形成信号1МYD0FТ901 “汽轮机轴承回油最高温度”附录E4形成信号1МАА00FТ901 “低压缸排汽最高温度”附录E5形成信号1МАY00СY907 “相对胀差正常范围内(n=3000 转/分)”附录E6形成信号1МАА10FТ911 “高压缸金属上、下温差”附录E7形成信号1MYD00FY901 “汽轮机轴承振动最大值”(竖直方向和水平方向分量)附录E8形成信号1MYA00EY911 “汽轮机热力机械参数在正常范围内”附录E9形成信号1LBА00СF901 “蒸汽发生器蒸汽总流量”附录E10形成信号1MKA00EU001 “发电机可以启动”附录F 汽轮机预报警信号附录G 汽轮机事故停机信号附录H 汽轮发电机自动降功率逻辑附录J 汽轮机冷态启动曲线图附录K 停机48-60小时后汽轮机启动曲线附录L 停机6-8小时后汽轮机启动曲线附录M 凝汽器最大允许压力附录N 蒸汽参数允许偏差附录P 汽轮机破坏真空时惰转曲线附录Q 汽轮机正常停机时惰转曲线缩略语参考文件修改记录表修改签阅表供方签阅表买方签阅表1概述1.1本规程“田湾核电站 1 号机组К-1000-60/3000型汽轮机运行规程”(LYG-1-MA.ИЭ–R001)是为了履行“田湾核电站总合同”№ LYG NPP-R-97-003/85-262-79000,而根据工程程序《对系统(设备)运行规程的要求》而制定的初步运行程序。
汽轮机组联锁、保护整定值及功能说明一.汽轮机主保护二.DEH联锁保护1.EH油温联锁(发讯元件:温度控制器)油温升至54℃,冷却水出水电磁阀打开油温升至55℃,冷却泵自启动油温降至38℃,冷却泵自停油温降至35℃,冷却水出水电磁阀关闭2.油位联锁EH油箱油位:560mm 高Ⅰ值报警(油位开关71/FL1)430mm 低Ⅰ值报警(油位开关71/FL2)300mm 低Ⅱ值报警(油位开关71/FL1)200mm 串300mm证实跳机(油位开关71/FL2)3.低油压联锁(63MP)EH油压≤11.2MPa,备用EH油泵自投,(打开20/MPT试验电磁阀或就地打开其旁路门,则备用EH油泵自启动)。
4.OPC保护:(当带部分负荷小网运行时,该保护不要求动作)(发讯设备:OPC板)其任一条件a.汽轮机转速≥103%,额定转速(即3090rpm)(转速探头,3取2)b.机组甩负荷≥30%,额定负荷时,发电机跳闸。
(BR和IEP>30% 3取2)满足,OPC电磁阀动作,调门快关,机组转速降至3000rpm以后,调门开启,维持空转。
5.MFT RUN BACK:其任一条件a.机组额定参数,额定负荷运行,锅炉MFT动作(降负荷速率为67MW/min)b.发电机失磁保护动作(降负荷速率为135MW/min)满足,机组从额定负荷125MW,自动快降至27MW。
三.其他主要保护1.发电机断水保护:当发电机转子或定子进水流量降至5t/h,同时进水压力降至0.05MPa 或升至0.5MPa时,延时30秒保护动作,使发电机油开关跳闸、同时主汽门、调门、抽汽逆止门关闭。
(流量孔板和电接点压力表)2.抽汽逆止门保护,当主汽门关闭或发电机油开关跳闸时,通过联锁装置使抽汽逆止门电磁阀动作,气控关闭1-5级抽汽逆止门。
3.高加水位保护(电接点水位计)a.当#1、#2高加水位高至Ⅰ值(550mm加650mm),高加危急疏水门自动打开;b.当#1高加水位高至Ⅱ值(650mm加850mm),报警保护动作,关闭#1高加进水门、1-2级抽汽逆止门及电动门,给水自动走旁路。
在300MW机组发变组保护中发电机零功率保护的应用摘要:在300MW机组运行过程中,由于机组的突然甩负荷可能导致汽轮机超速。
当前为了确保300MW机组在甩负荷后运行的安全性,通常采用两种方法:一种是利用汽机调速系统进行调整,使汽轮机转速迅速下降。
二是在极端运行条件下,当机组调速系统无法及时调节转速时,通过机械式过速保护或汽轮机危急遮断系统来实现主汽门的自动闭合,然而这两种方法都无法在突发负载条件下实现对汽轮的全面安全防护。
所以在300MW机组甩负荷的条件下,想要对汽轮机超速进行有效保护,就需要对零功率保护进行应用。
因此,本文针对发电机零功率保护原理、改造方案设计等内容进行详细分析,同时也提出相应注意事项。
关键词:300MW机组;发变组保护;发电机零功率保护发电机零功率保护也可以称为主变正功率突降保护或发电机低功率保护。
在300MW机组有功功率急剧下降或因电网故障造成发电机无法正常工作的情况下,发电机将迅速升压、升速,也可能导致发电机变压器组过压。
此时这一保护会将汽轮机的主汽门关闭,将汽轮机的速度降到最低,也将发电机的机端电压降到最低,然后启动厂用快切装置,并对热控的机炉逻辑出口进行触发,从而引起锅炉MFT动作,以此来提高300MW机组的安全性。
一、发电机零功率保护原理发电机零功率保护也称为发电机低功率保护。
大容量火电机组在重载工况下,由于300MW机组电压和转速的骤升,导致锅炉水位发生振荡和波动,从而对机组造成损伤。
在这种情况下,如果不能及时进行锅炉熄火,关闭主汽门等一系列措施,将会对机组的安全造成直接影响,甚至会对热力设备造成损害,因而在大容量机组中,必须安装发电机零功保护。
在机组输出功率较低的情况下,即便出现正功率骤降,也不会给热电厂带来较大安全隐患,所以只有在确定发电机功率高于故障前功率定值后,保护装置才会自动投入到发电机的零功率判据中。
同时,为了确保保护工作的可靠性,需要在故障发生之前需要加强功率元件的自保持特性[1]。
第八章汽轮机危急遮断系统-图文第一节ETS危急遮断的项目及整定值为了防止汽轮机在运行中因部分设备工作失常可能导致的汽轮机发生重大操作事故,在机组上装有危急遮断系统。
危急遮断系统监视汽机的某些运行参数,当这些参数超过其运行限制值时,该系统就送出遮断信号关闭全部汽轮机蒸汽进汽阀门,实现紧急停机。
一、ETS危急遮断的项目及整定值1、★汽机转速达到110%额定转速(OPT);(动作转速值为3300rpm)注:机械遮断110%-112%额定转速(MOPT);(动作转速值为3330rpm)2、●真空低于规定的极限值;(68kPa)3、●润滑油压下降超过极限值;(0.10MPa)4、★EH油压下降超过极限值;(9.5MPa)5、●转子轴向位移超过极限值;(≥+0.5mm或≤-0.7mm)6、●高压缸排汽温度超过极限值;(>427℃)7、★透平压比低于极限值;(调节级压力与高缸排汽压力比低于1.7)8、●汽机轴振动达到危险值;(汽机侧≥130μm,发电机侧≥180μm)9、●轴瓦、推力瓦钨金温度超过极限值;(汽机侧≥110℃,发电机侧≥120℃)10、★集控室/就地手动停机(双按钮);11、●DEH失电;12、●发电机冷却水断水保护;13、●备用四路;(电气遮断、锅炉遮断、旁路遮断、遥控遮断)带★标志的保护机械遮断油路控制信号为三取二方式。
ETS危急遮断系统的逻辑关系如图8-1所示图8-1ETS危急遮断系统的逻辑关系二、危急遮断的组成危急遮断系统分为两种情况。
一种是机组运行中,为防止部分设备失常造成设备严重损坏,装有自动停机危急遮断系统(AST),当发生异常情况时,关闭所有进汽阀,紧急停机。
;二是超速保护控制系统(OPC),使高压调节汽阀及再热调节汽阀暂时关闭,减少汽轮机进汽量及功率,但不能使汽轮机停机。
因此机组相应设有自动停机危急遮断油路(AST)和超速保护控制油路(OPC)及机械遮断油路(MOPT),此外,手动停机也借助于机械遮断油路。
第⼆部分汽轮机联锁与保护第⼆部分联锁与保护试验(保护定值暂供参考须经调试整定后再及时补充修改)1试验总则1.1 试验条件1.1.1 机组⼤⼩修后或联锁、保护回路检修后,要进⾏联锁与保护试验。
1.1.2 在特殊情况下,经⽣产技术部门研究认为有必要,可做机组的某项或全部的联锁与保护试验。
1.1.3 机组的横向保护应在机、电、炉各⾃分项联锁与保护试验合格后⽅可进⾏1.1.4 试验所有设备的指⽰仪表、信号、保护电源、⽓源、⽔源投⼊正常;试验所有电动头、调整门。
校验合格,确认试验对系统⽆影响。
1.1.5 试验前DCS、DEH系统应正常运⾏,试验中各相关报警信号发讯正确。
1.1.6 联锁与保护试验分为静态和动态两种。
1.1.7 参加动态试验的有关辅机试验应合格。
1.2 电动门、调整门校验1.2.1 按下列⽅法校验各电动门、调整门⾄正常:1.2.1.1 联系热⼯送上调整门电源、检查讯号指⽰、表计指⽰、开度指⽰正确。
将调整门⼿柄切⾄⼿动,检查调整门开关灵活,将调整门置于全关位置,⼿柄切⾄⾃动。
1.2.1.2 打开DCS相应画⾯,检查调整门阀位指⽰正确,检查调整门开度指⽰与实际位置⼀致。
联系电⽓送上电动门电源,检查讯号指⽰正确。
1.2.1.3 确认电动门在关闭状态,由检修⼈员定好上、下限圈数。
1.2.1.4 将电动门“远⽅/就地”控制⽅式切⾄“就地”,就地电动开10秒后停,再电动关⾄下限,动作正常。
检查动作圈数,时间与开启相符。
1.2.1.5 就地⼿动全开电动门,再⼿动关⾄上限所需圈数,由检修⼈员调好上限圈数。
就地电动关10秒后停,再电动开⾄上限动作正常,检查动作圈数、时间关闭相符。
1.2.1.6就地电动全⾏程开关⼀次,检查开度指⽰、灯光、讯号应正确,记录全开、全关时间,电动圈数及上、下限⼿动圈数。
1.2.1.7将该电动门“远⽅/就地”控制⽅式切⾄“远⽅”位置,打开DCS相应画⾯,全⾏程开关该电动阀⼀次,检查开度指⽰、灯光讯号应正确,全开、全关时间应与就地试验记录⼀致。
汽轮机启动运行须知一.注意事项1.当汽轮机被充分地加热并在正常情况下运行时,短时间不带负荷不会给机组造成损害。
然而,在低负荷下长期运行是不推荐的。
2.机组甩负荷以后,在主发电机上带辅助负荷(厂用电)不应大于几分钟(3分钟)。
3.任何时候均应避免在转子静止状台下有蒸汽流过汽轮机。
4.在转子静止时应避免有空气流过汽封档。
所以,当汽轮机汽封中没有密封蒸汽通入时,不要启动真空泵或者抽气器。
5.不要使中压缸进汽温度超过在一定真空度下运行所要求的值,所以避免汽轮机低压部分过热。
这是为了避免由于排汽部分的零部件膨胀而产生不必要的应力以及低压内缸中心走动而使汽封片产生摩擦。
因此,在启动期间要通入密封用蒸汽、启动抽汽设备并保持尽可能高的真空度。
6.当打闸停机或正常停机时,建议在机组惰走至10%额定转速以前应保持真空。
如在跳闸停机后出现紧急情况要求立即破坏真空时,此条不适用。
7.启动时,为使冲动级金属温度和蒸汽温度很好匹配,建议主汽阀前的启动蒸汽参数按下列原则选取:A.态冷态启动的蒸汽的焓应低。
按压力高和温度低的原则选取焓。
实际启动蒸汽参数可在蒸汽图上按上述等焓原则选取。
冷态启动用的启动蒸汽参数至少应有100ºF(55.6℃)的过热度。
B.热态启动应采用压力低和温度高的蒸汽,以减少蒸汽流过主汽阀和/或调节阀时因节流而造成的温度损失。
这是避免在转子和汽缸间产生轴向膨胀问题所必要的。
8.在进行转子实际超速试验以前,机组应在额定转速和10%额定负荷以上至少运行4小时。
9.在没有蒸汽进入汽轮机部件前时,汽轮发电机组不应长期被发电机倒拖。
建议这样的倒拖运行应限制在不超过一分钟之内。
10.机组跳闸后供应的蓄电池电源,应使危急(DC)油泵至少能运行45分钟。
11.带动机组到额定转速的蒸汽流量约为最大计算流量的2—3%。
然而,在选定设备大小和启动蒸汽容量时,推荐采用3—5%的最大计算流量。
这是为了在以外情况(如真空度变坏等)时有足够的裕量所必须的。
600MW火力发电汽轮机轴系保护与谐波抑制装置共同作用机理下的机组稳定性研究摘要:汽轮机轴系断裂事故是汽轮机事故中最严重的事故,它不但会造成主设备严重损坏,而且还极易引发火灾和人员伤亡。
在国内外众多已发生的轴系断裂事故表明,有些事故是由于汽轮机严重超速,有些是由于扭振、螺栓材质及装配工艺而发生疲劳断裂。
电网为了实现远距离电力系统互联,提高输电能力,实现大功率的中、远距离输电,我国的特高压输电线路已逐步建成。
特高压输电线路中的大容量机组、长距离输电需要电网采用可控串补(TCSC)技术提高输电能力。
输电线路中串联电容补偿、直流输电、电力系统稳定器的加装,可控硅控制系统、发电机励磁系统、汽轮机电液调节系统的反馈作用等,均有可能诱发机组产生次同步振荡现象。
解决次同步谐振带来的危害,对各火电厂而言,显得更加的迫切。
可控串联电容补偿(TCSC)、附加励磁阻尼控制(SEDC)、机端附加阻尼控制(GTSDC)等方法虽然可对次同步谐振产生抑制效果,但并不能准确评估每次抑制后,对汽轮机轴系产生的影响。
这些抑制手段与汽轮发电机组轴系扭振控制保护装置(TSR)互相配合,可有效解决这一问题。
关键词:疲劳断裂;特高压;次同步振荡;TCSC;SEDC;GTSDC;TSR;抑制。
Abstract:Steam turbine shafting fracture accident is the most serious accident insteam turbine accidents. It not only causes serious damage to main equipment, but also easily leads to fire and casualties. Many shafting fracture accidents at home and abroad show that some accidents are caused by severe overspeed of steam turbine, and some are caused by fatigue fracture due to torsional vibration, bolt material and assembly process.In order to realize the interconnection of long distance power systems, improve the transmission capacity, and realize the medium andlong distance transmission of high power, China's ultra-high voltage transmission lines have been gradually built. Large capacity units and long distance transmission in UHV transmission lines need to use thyristor controlled series compensation (TCSC) technology to improve transmission capacity. The installation of series capacitor compensation, DC transmission and power system stabilizer in transmission lines, as well as the feedback effect of silicon controlled rectifier control system, generator excitation system and turbine electro-hydraulic control system, may induce sub synchronous oscillation of units.It is more urgent for thermal power plants to solve the harm of subsynchronous resonance. Although methods such as thyristorcontrolled series capacitor compensation (TCSC), additional excitation damping control (SEDC) and generator terminal additional damping control (GTSDC) can suppress subsynchronous resonance, they cannot accurately evaluate the impact on turbine shafting after each suppression. These suppression measures can effectively solve this problem by cooperating with the turbine generator shaft torsional vibration control and protection device (TSR).Key words: Fatigue fracture;UHV;Subsynchronous oscillation;TCSC;SEDC;GTSDC; TSR;inhibition.一、概述随着电网中单机容量的不断增大,功率密度亦相应增加,轴系长度加长和轴系截面积相对下降,整个轴系不可再视为转动刚体,而是由多跨转子组成的弹性质量系统。