5.3一次函数(1)公开课
- 格式:ppt
- 大小:14.78 MB
- 文档页数:18
一次函数性质教案一、教学目标通过本节课的教学,学生应能够:1. 理解一次函数的定义和性质。
2. 能够根据给定的函数式确定一次函数的图像。
3. 掌握一次函数的斜率和截距的计算方法。
4. 能够应用一次函数的性质解决实际问题。
二、教学重点与难点教学重点:一次函数的定义、性质和应用。
教学难点:一次函数斜率和截距的计算方法。
三、教学准备教师准备:课件、黑板、书籍等。
学生准备:课本、笔记本。
四、教学过程1. 导入引入:通过提问激发学生思考。
教师:大家知道什么是一次函数吗?一次函数有哪些性质?学生:一次函数是形如y = ax + b的函数,性质有斜率和截距等。
教师:非常好!那么今天我们就来学习一次函数的性质和应用。
2. 理论讲解(1)一次函数的定义教师:一次函数是指具有形如y = ax + b的函数,其中a和b都是常数,且a≠0。
请注意,a的值决定了函数的斜率,b的值决定了函数的截距。
接下来,我们分别来讲解一次函数的斜率和截距。
(2)斜率的计算方法教师:一次函数的斜率是指函数图像上任意两点间的纵坐标变化量与横坐标变化量的比值。
具体计算方法如下:设直线上两点A(x1, y1)和B(x2, y2),则斜率k = (y2 - y1) / (x2 -x1)。
特别地,当x2 = x1时,斜率为0。
(3)截距的计算方法教师:一次函数的截距是指函数图像与坐标轴的交点。
具体计算方法如下:当x = 0时,y = a * 0 + b = b,因此截距为b。
3. 实例讲解教师:接下来,我们通过一些实例来加深对一次函数斜率和截距的理解。
请大家仔细观察以下例题。
例题1:已知一次函数y = 3x + 2,求其斜率和截距。
解析:根据一次函数的定义和性质,我们可以得知斜率为3,截距为2。
例题2:已知一次函数的图像过点(1, -1),斜率为2,求函数的表达式。
解析:根据斜率的计算方法,我们可以得到函数为y = 2x + b。
将点(1, -1)代入得到-1 = 2 * 1 + b,解得b = -3,因此函数表达式为y = 2x - 3。
5.3一次函数的图象(第一课时)教案教学背景:这一节内容是学生学习函数画法的起始课,对以后学习函数起着至关重要的作用,我在教学中把握住这一点,注重学生的探索、归纳过程,在情境创设中让学生经历香点燃后香的长度随着时间的变化而变化,在连线过程中,让学生感受到香的顶端在一条直线上,并且能够把这一过程呈现在平面直角坐标系中,而且可以验证也在一条直线上。
在此基础上,让学生仿照课本例题的作图步骤画出函数y=-x+2的图象,在这一过程中让学生明确如何列表、描点?为什么要连线?这一系列问题。
进而找到画一次函数图象的简便作法——两点法,通过学生的比较会发现这两个点如果是直线与坐标轴的交点会使作图更加方便。
教材分析:在学生会画一次函数的基础上,我又安排了在同一直角坐标系中画一次函数y=-2x,y=-2x+2,y=-2x-3的图象,让学生观察它们的特殊位置关系——平行,从中找出k、b的特点,这样安排一方面学生练习了一次函数的画法,另一方面培养了他们的观察能力与归纳总结能力,在练习中也配置了相关的练习加以巩固,同时安排另一种类型——求两直线的交点坐标,这个题目利于学生对一次函数图象与一次函数表达式的对应关系的理解,学生一般只能想到利用图象法解题,这是典型的数形结合思想的体现,所以特意安排了交点坐标是整数的点,教学中除了肯定学生的这种作法外,再补充一种更为普遍的解法——把两直线的表达式组成方程组求解。
使学生的思路更加开阔,也体现了一题多解。
在练习巩固中不仅复习了待定系数法,也加深了学生对一次函数图象的理解。
教学目标:1、知识与技能:理解一次函数和正比例函数的图象是一条直线,熟练地作出一次函数和正比例函数的图象。
2、过程与方法:经历一次函数的作图过程,初步了解作函数图象的一般步骤。
3、情感态度与价值观:体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂教学重点:归纳作函数图象的一般步骤,能熟练地作出一次函数的图象。
一次函数的图像说课稿朱昌二中陈春梅《一次函数的图像》说课稿朱昌二中陈春梅大家好!我说的课是北师大版数学教材八年级上册第四章《函数》的第三节《一次函数的图像》的第1课时。
我将从教学任务、方法、手段、过程、预期和板书这六大板块的设计进行挑重点的阐述。
一、教学任务设计先看学情——在七年级下册的《变量之间的关系》里,学生对用图像表示变量之间的关系已积累了丰富的经验;在本章第一节《函数》里,学生又明确了作函数图像的一般步骤。
所以,学生作一次函数的图像并不困难。
然而,学生在这章刚刚接触函数,一次函数又是学生学习的第一种函数,所以,学生对如何研究函数,如何研究函数的性质,如何把函数的解析式和图像有机地结合起来,都会感到陌生和困难。
再看内容——所有老师在讲函数时,都会花大量的时间和精力。
一是因为函数重要,重要到它是初中数学、高中数学、大学数学,乃至整个庞大数学体系的一个重要核心;二是因为函数难,它抽象难懂、错综复杂。
所以,一次函数作为学生接触的第一类基本函数,需要浓墨重彩,这就不难理解《教参》规定这节课用2课时完成的原因了。
第一节应先从简单的、特殊的一次函数(即正比例函数)着手。
基于以上分析,我对教学任务设计如下——首先是教学目标。
我们重点看一下第二维和第三维目标,它们是专门针对数学学科设定的。
其中,数学思考方面——在利用正比例函数图像探究性质的过程中,发展合情推理能力;在利用解析式反思正比例函数性质的过程中,发展演绎推理能力。
问题解决方面——经历一系列探究过程,领会“从特殊到一般”、“数形结合”和“分类讨论”等思想方法;通过类比k>0类型的正比例函数,合作探究k<0类型的正比例函数的图像和性质,培养类比学习的能力。
一次函数的图像和正比例函数的性质,自然就是本节课的教学重点;探究正比例函数的性质,则是难点。
我将通过层层递进的梯度设计、几何画板的直观演示、让学生亲历探究过程、给学生充分思考和交流的时间,使学生在知识发生和思维发展的过程中水到渠成地解决这一难点。
一次函数的图像与性质一、知识梳理1、一次函数与正比例函数的概念,它们之间的关系 函数b kx y +=,),,0(为常数b k k ≠叫一次函数。
一次函数需具备两个条件:(1)0≠k ,(2)x 的指数必须是1 当0=b 时,函数kx y =(0≠k ,为常数k )叫正比例函数 注意:b k ,的位置。
这里的k 是x 的系数,它可以换成其它的字母或多项式。
可以理解为它是x 的前面部分。
这里的b 可以理解为x 后面的部分 例1、已知函数3)3(2+-=-m x m y 是一次函数,求m 的值.例2、已知函数12)1(++-=m x m y○1若它是一次函数,则m 的取值范围是 ○2若它是正比例函数,则m 的值为 ○3若图像经过原点,则m 的值为2、画一次函数图像的步骤:(1)列表 (2)描点(3)连线列表时要取坐标的值尽可能小,尽可能是整数,这样方便描点例3、把一次函数32+-=x y ,x y 2-= , 221-=x y 图象分别画在下面的坐标系中3、一次函数b kx y +=的性质(1)0>k 时,y 随x 的增大而增大。
(2)0<k 时,y 随x 的增大而减小 例4、(1)、下列函数y 随x 的增大而减小的是( ) A.102y x =+ B.(23)y x =- C.63y x =+ D.7,(0)y ax a =+≠(2)、点A (1,5y -)和B ),3(2y -都在直线x y 21-=上,则1y 与2y 的关系是( )A.21y y ≤B.21y y =C.21y y <D.21y y >-3-2-11234-4-3-2-14321O yx4、一次函数b kx y +=,k 与b 的几何意义(1) 0>k 时直线从左到右是上升的;0<k 时直线从左到右是下降的, (2) 若两直线平行则k 相等(3) b 是函数图像与y 轴交点的纵坐标,当0>b 时,交点在y 轴的正半轴,当0<b 时,交点在y 轴的负半轴例5、(1)若直线2+=kx y ,y 随x 的增大而减小,则直线k x y -=3经过 象限 (2)下图中,不可能是关于x 的一次函数y=ax —(a —5)的图像的是( )5、求直线b kx y +=与坐标轴交点的坐标求与x 轴交点的坐标:令0=y ,得0=+b kx ,解出x . 求与y 轴交点的坐标:令0=x ,得b y =. 例6、一次函数42+-=x y 的图像与y 轴的交点坐标是 ,与x 轴的交点坐标是 , 图像与坐标轴所围成的三角形面积是三、大展身手1、若函数y= -2x m+2是正比例函数,则m 的值是 .2、已知一次函数y=kx+5的图像经过点(-1,2),则k= .3、一次函数210y x =-的图象经过( )A.第二、三、四象限B.第一、二、三象限C.第一、二、四象限D.第一、三、四象限 4、对于8y x =-,下列说法正确的是( )A.图象经过一、三象限,y 随x 的增大而增大B.图象经过二、四象限,y 随x 的增大而增大C.图象经过一、三象限,y 随x 的增大而减小D.图象经过二、四象限,y 随x 的增大而减小 5、一次函数1y kx m =++的图象经过原点,则m 的值为6、一次函数y kx d =+的图象如右图所示,则下列选项正确的是() A. k>0,b>0 B. k>0, b<0 C.k<0,b<0 D. k<0,b>0 7、直线y=kx+6与直线34y x =--平行,那么k=8、已知一次函数y=kx+b,y 随着x 的增大而减小,且kb<0,则在直角坐标系内它的大致图象是( )(A) (B) (C ) (D )yxAyxo Do xyBo xyCyxO9、已知点(-4,y 1),(2,y 2)都在直线y= 3x+2上,则y 1 y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较10、一次函数63--=x y 的图像与x 轴交点坐标是 ,与y 轴交点坐标是图像与坐标轴所围成的三角形面积是11、如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是 ( )A .10B .16C .18D .2012、已知一次函数9)2(2-+-=a x a y ,且y 随x 的增大而减小。