单选练习(三)——高三易错题再练 1(调研卷)
- 格式:doc
- 大小:40.00 KB
- 文档页数:4
高三下学期新高考第一次调研测试数学试卷-带参考答案与解析注意专项:1.答卷前 考生务必将自己的姓名 考生号 考场号 座位号填写在答题卡上。
2.回答选择题时 选出每小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。
如简改动 用橡皮擦干静后 再选涂其他答案标号回答非选择题时 将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后 将本试卷和答题卡一并交回。
一、选择题(本大题共8小题 每小题5分 共40分.在每小题给出的四个选项中 只有一项是符合题目要求的.)1.设复数1i z =+,则复数1z z +(其中z 表示z 的共轭复数)表示的点在( )上 A .x 轴B .y 轴C .y x =-D .y x =2.已知角α和β,则“αβ=”是“tan tan αβ=”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3 侧面展开图是一个半圆面,则该圆锥的体积为( )A .12πB .9πC .3πD 4.已知双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6,则此双曲线的右焦点到一条渐近线的距离为( )A B .2CD .5.一对夫妻带着3个小孩和一个老人 手拉着手围成一圈跳舞 3个小孩不相邻的站法种数是( ) A .6B .12C .18D .366.已知递增的等比数列{}n a 10a > 公比为q 且1a 3a 4a 成等差数列,则q 的值为( )A B C D 7.已知平面内的三个单位向量a b c 且12a b ⋅=32a c ⋅=,则b c ⋅=( )A .0B .12C D 0 8.设方程22log 1xx ⋅=的两根为1x ()212x x x <,则( )A .101x << 22x >B .121x x >C .1201x x <<D .123x x +>二 选择题(本大题共3小题 每小题6分 共18分.在每小题给出的选项中 有多项符合题目要求.全部选对的得6分 部分选对的得部分分 有选错的得0分.)9.下列说法正确的是( )A .若事件A 和事件B 互斥 ()()()P AB P A P B = B .数据4 7 5 6 10 2 12 8的第70百分位数为8C .若随机变量ξ服从()217,N σ ()17180.4P ξ<≤=,则()180.1P ξ>=D .已知y 关于x 的回归直线方程为0.307ˆ.yx =-,则样本点()2,3-的残差为 1.9- 10.设函数()f x ()g x 的定义域都为R 且()f x 是奇函数 ()g x 是偶函数,则下列结论正确的是( )A .()()f x g x 是奇函数B .()()f x g x 是偶函数C .若()()321g x f x x x -=++,则()()111f g +=D .若函数()f x 在(),-∞+∞上单调递减且()11f =-,则满足()121f x -≤-≤的x 的取值范围是[]1,3 11.已知体积为2的四棱锥P ABCD - 底面ABCD 是菱形 2AB = 3PA =,则下列说法正确的是( )A .若PA ⊥平面ABCD ,则BAD ∠为π6B .过点P 作PO ⊥平面ABCD 若AO BD ⊥,则BD PC ⊥C .PA 与底面ABCD 所成角的最小值为6πD .若点P 仅在平面ABCD 的一侧 且AB AD ⊥,则P点轨迹长度为三 填空题(本大题共3小题 每小题5分 共15分.)12.已知关于x 的不等式10ax ->的解集为M 2M ∈且1M ∉,则实数a 的取值范围是______. 13.已知抛物线22y x =的弦AB 的中点的横坐标为2,则弦AB 的最大值为______. 14.已知()1cos 3αβ+=-cos cos 1αβ+=,则cos cos 22αβαβ-+=______()sin sin sin αβαβ+=+______. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.(本小题满分13分)在如图所示的ABC △中 sin 0B =. (1)求B ∠的大小(2)直线BC 绕点C 顺时针旋转π6与AB 的延长线交于点D 若ABC △为锐角三角形 2AB = 求CD 长度的取值范围.16.(本小题满分15分)已知椭圆()2222:10x y W a b a b+=>>的右顶点为A 左焦点为F 椭圆W 上的点到F 的最大距离是短半轴长倍 且椭圆W 过点31,2⎛⎫⎪⎝⎭.记坐标原点为O 圆E 过O A 两点且与直线6x =相交于两个不同的点P Q (P Q 在第一象限 且P 在Q 的上方) PQ OA = 直线QA 与椭圆W 相交于另一个点B . (1)求椭圆W 的方程 (2)求QOB △的面积. 17.(本小题满分15分)如图 在四棱锥P ABCD -中 AB CD ∥ 4AB = 2CD = 2BC = 3PC PD == 平面PCD ⊥平面ABCD PD BC ⊥. (1)证明:BC ⊥平面PCD(2)若点Q 是线段PC 的中点 M 是直线AQ 上的一点 N 是直线PD 上的一点 是否存在点M N 使得MN =请说明理由.18.(本小题满分17分)已知函数()ln f x x x =的导数为()f x '.(1)若()1f x kx ≥-恒成立 求实数k 的取值范围(2)函数()f x 的图象上是否存在三个不同的点()11,A x y ()22,B x y ()33,C x y (其中123x x x <<且1x2x 3x 成等比数列) 使直线AC 的斜率等于()2f x '?请说明理由.19.(本小题满分17分)2023年10月11日 中国科学技术大学潘建伟团队成功构建255个光子的量子计算机原型机“九章三号” 求解高斯玻色取样数学问题比目前全球是快的超级计算机快一亿亿倍.相较传统计算机的经典比特只能处于0态或1态 量子计算机的量子比特(qubit )可同时处于0与1的叠加态 故每个量子比特处于0态或1态是基于概率进行计算的.现假设某台量子计算机以每个粒子的自旋状态作为是子比特 且自旋状态只有上旋与下旋两种状态 其中下旋表示“0” 上旋表示“1” 粒子间的自旋状态相互独立.现将两个初始状态均为叠加态的粒子输入第一道逻辑门后 粒子自旋状态等可能的变为上旋或下旋 再输入第二道逻辑门后 粒子的自旋状态有p 的概率发生改变 记通过第二道逻辑门后的两个粒子中上旋粒子的个数为X . (1)若通过第二道逻辑门后的两个粒子中上旋粒子的个数为2 且13p = 求两个粒子通过第一道逻辑门后上旋粒子个数为2的概率(2)若一条信息有()*1,n n n >∈N 种可能的情况且各种情况互斥 记这些情况发生的概率分别为1p2p … n p ,则称()()()12n H f p f p f p =++⋅⋅⋅+(其中()2log f x x x =-)为这条信息的信息熵.试求两个粒子通过第二道逻辑门后上旋粒子个数为X 的信息熵H(3)将一个下旋粒子输入第二道逻辑门 当粒子输出后变为上旋粒子时则停止输入 否则重复输入第二道逻辑门直至其变为上旋粒子 设停止输入时该粒子通过第二道逻辑门的次数为Y (1Y = 2 3 ⋯ n ⋯).证明:当n 无限增大时 Y 的数学期望趋近于一个常数. 参考公式:01q <<时 lim 0nn q →+∞= lim 0nn nq →+∞=.2024届新高考教学教研联盟高三第一次联考数学参考答案一 选择题(本大题共8小题 每小题5分 共40分.)1.C 【解析】11331i i 1i 22z z +=+-=-+ 所以对应的点33,22⎛⎫- ⎪⎝⎭在直线y x =-上. 2.D 【解析】当2παβ==时 tan α tan β没有意义 所以由αβ=推不出tan tan αβ=当tan tan αβ=时()πk k αβ=+∈Z所以由tan tan αβ=推不出αβ=故“αβ=”是“tan tan αβ=”的既不充分也不必要条件. 3.C 【解析】设圆锥的底面半径为r 母线为l 由于圆锥的侧面展开图是一个半圆面,则2ππr l = 所以2l r =所以圆锥的高h ==圆锥的体积为2211ππ3π33V r h ==⨯⨯⨯=.4.A 【解析】因为双曲线()222106x y b b -=>的一条渐近线的倾斜角为π6 πtan 6= 所以该渐近线的方程为3y x = 所以2263b ⎛= ⎝⎭解得b =(舍去) 所以c =此双曲线的右焦点坐标为()30y -==5.B 【解析】3232A A 12=.6.A 【解析】由题意知1432a a a += 即321112a a q a q += 又数列{}n a 递增 10a > 所以1q > 且3212q q += 解得q =7.D 【解析】如图 a OA = c OC = b OB =(或b OD =)由32a c ⋅=得cos COA ∠= 又[]0,πCOA ∠∈ 所以π6COA ∠=由12a b ⋅=得1cos 2BOA ∠= 又[]0,πBOA ∠∈ 所以π3BOA ∠=(或1cos 2DOA ∠= 又[]0,πDOA ∠∈ 所以π3DOA ∠=)所以b c 夹角为π6或π2所以32b c ⋅=或0.8.C 【解析】由题意得 120x x << 由22log 1xx ⋅=得21log 02xx ⎛⎫-= ⎪⎝⎭令()()21log 02xf x x x ⎛⎫=-> ⎪⎝⎭,则()1102f =-< ()1321044f =-=> 1102f ⎛⎫=-> ⎪⎝⎭由()1102f f ⎛⎫⋅<⎪⎝⎭ ()()120f f ⋅<得11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 故A 错 由21222111log log 022xxx x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭得21222111log log 22xxx x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭由11,12x ⎛⎫∈ ⎪⎝⎭ ()21,2x ∈得21222111log log 022x xx x ⎛⎫⎛⎫+=-< ⎪ ⎪⎝⎭⎝⎭所以1201x x << 故C 对 B 错由11,12x ⎛⎫∈ ⎪⎝⎭()21,2x ∈ 所以123x x +< D 错误.二 选择题(本大题共3小题 每小题6分 共18分.)9.BCD 【解析】对于A 若事件A 和事件B 互斥 ()0P AB = 未必有()()()P AB P A P B = A 错 对于B 对数据从小到大重新排序 即:2 4 5 6 7 8 10 12 共8个数字 由870% 5.6⨯= 得这组数据的第70百分位数为第6个数8 B 正确 对于C 因为变量ξ服从()217,N σ 且()17180.4P ξ<≤=,则()()()181717180.50.40.1P P P ξξξ>=>-<≤=-= 故C 正确对于D 由0.307ˆ.yx =- 得样本点()2,3-的残差为()30.30.72 1.9---⨯=- 故D 正确 故选BCD . 10.ACD 【解析】令()()()F x f x g x =,则()()()F x f x g x -=-- 因为()f x 是奇函数 ()g x 是偶函数 所以()()f x f x -=- ()()g x g x -= 所以()()()()F x f x g x F x -=-=- 所以()()()F x f x g x =是奇函数 A 正确同样 令()()()F x f x g x =,则()()()()()()F x f x g x f x g x F x -=--=-=- 所以()F x 是奇函数 B 错误令1x =-代入()()321g x f x x x -=++,则()()()()32111111g f ---=-+-+= 又()()11g g -=()()11f f -=- 所以()()111g f += C 正确因为()f x 为奇函数 又()11f =- 所以()11f -=由于()f x 在(),-∞+∞上单调递减 要使()121f x -≤-≤成立,则121x -≤-≤ 所以13x ≤≤ D 正确.11.BCD 【解析】114sin sin 2333P ABCD NBCD V S h AB AD BAD h h BAD -=⋅=⋅∠⋅=∠=,则当PA ⊥平面ABCD 时 3h PA ==,则1sin 2BAD ∠= 即BAD ∠为π6或5π6A 错误如图1 若PO ⊥平面ABCD ,则PO BD ⊥ 又AO BD ⊥则BD ⊥平面PAO 有BD PA ⊥ 又BD AC ⊥ 所以BD ⊥平面PAC BD PC ⊥ B 正确 设PA 与底面ABCD 所成角为θ 又11sin 233P ABCD ABCD ABCD V S h S PA θ-===则2sin ABCDS θ=因为4sin 4ABCD S BAD =∠≤,则1sin 2θ≥则PA 与底面ABCD 所成角的最小值为π6C 正确如图2 当AB AD ⊥ 根据123P ABCD ABCD V S h -== 得32h = 即P 点到底面ABCD 的距离为32过A 点作底面ABCD 的垂线为l 过点P 作PO l ⊥交l 于点O,则PO ===点P 的轨迹是以O 为圆心为半径的圆轨迹长度为 D 正确.三 填空题(本大题共3小题 每小题5分 共15分.)12.1,12⎛⎤⎥⎝⎦【解析】2M ∈且1M ∈ 所以210,10,a a ->⎧⎨-≤⎩所以112a <≤.13.5 【解析】方法一:当直线AB 的斜率不存在时 直线AB 的方程为2x = 代入22y x =得2y =或2y =- 所以4AB =当直线AB 的斜率存在时 显然不为零 设直线AB 的方程为y kx b =+代入22y x =消y 并整理得()222220k x kb x b +-+=设()11,A x y ()22,B x y 判别式480kb ∆=->时有122212222,,kb x x k b x x k -⎧+=-⎪⎪⎨⎪=⎪⎩因为弦AB 的中点的横坐标为2 所以2224kb k --= 所以212kb k =-21AB x =-==所以2211145AB k k ⎛⎫⎛⎫=≤++-= ⎪ ⎪⎝⎭⎝⎭当且仅当221114k k +=-即223k =时取到等号 故弦AB 的最大值为5.方法二:设抛物线的焦点为F ,则AB AF BF ≤+又121211122AF BF x x x x +=+++=++当弦AB 的中点的横坐标为2时 有124x x += 所以5AB ≤当直线过焦点F 时取到等号 故弦AB 的最大值为5.14.12 23(任意填对一空给3分) 【解析】由()1cos 3αβ+=-得212cos 123αβ+-=-,则21cos 23αβ+=由cos cos 1αβ+=得2cos cos 122αβαβ-+=,则1cos cos 222αβαβ-+=所以3cos cos222αβαβ-+=()2sin cos cos sin 2222sin sin 32sin cos cos 222αβαβαβαβαβαβαβαβ++++===+--+. 四 解答题(本大题共5小题 共77分.解答应写出文字说明 证明过程或演算步骤.)15.【解析】(1sin 0B =sin B = 两边同时平方可得:2cos 1sin 2B B += 由22sin cos 1B B +=整理得22cos cos 10B B +-= 解得1cos 2B =或cos 1B =- 又()0,πB ∈,则π3B =.sin 0B -=2sin cos 022B B=得cos 02B =或1sin 22B = 又()0,πB ∈,则π26B = π3B =.(2)由(1)得π3ABC ∠=,则2π3CBD ∠= 由题可知π6BCD ∠=,则π6D ∠=设BC a =,则BD BC a ==由余弦定理有2222cos CD BC BD BC BD CBD =+-⋅∠所以CD =由正弦定理有sin sin BC ABA ACB =∠所以2sin 2sin 31sin sin ACB A a ACB ACB π⎛⎫+∠ ⎪⎝⎭====∠∠ 因为ABC △为锐角三角形,则π0,2π0,2ACB A ⎧<∠<⎪⎪⎨⎪<∠<⎪⎩得ππ62ACB <∠<所以tan 3ACB ⎛⎫∠∈+∞ ⎪⎝⎭,则(1tan ACB ∈∠所以3tan CD ACB==+∠即CD的取值范围为.16.【解析】(1)依题有a c += 又222a b c =+所以2,a cb =⎧⎪⎨=⎪⎩所以椭圆W 的方程为2222143x y c c +=又点31,2⎛⎫⎪⎝⎭在椭圆W 上 所以221191434c c +⨯=解得1c =所以椭圆W 的方程为22143x y +=. (2)设()6,P P y ()6,Q Q y 0P Q y y >> ()0,0O ()2,0A因为PQ OA = 所以2P Q y y -= ①圆E 过点O 与A 且与直线6x =相交于两个不同的点P Q ,则圆心E 的坐标为1,2P Q y y +⎛⎫⎪⎝⎭又EO EP = =解得24P Q y y = ②(另法一:设直线6x =与x 轴交于点G ,则有GA GO GQ GP =又4GA = 6GO = 所以24P Q y y = ② 另法二:由OA PQ =知 612P Qy y +=- 10P Q y y += ②)由①②解得6P y = 4Q y =所以()6,4Q 40162M k -==-所以直线QA 的方程为2y x =-与椭圆方程联立消去y 得271640x x -+= 解得B 点的横坐标27B x =所以267Q B QB x x =-=-=又O 到直线QA 的距离d ==所以QOB △的面积11402277S QB d =⋅=⨯=.17.【解析】(1)如图 取CD 的中点O 因为3PC PD ==,则PO CD ⊥因为平面PCD ⊥平面ABCD 平面PCD 平面ABCD CD = PO ⊂平面PCD所以PO ⊥平面ABCD 又BC ⊂平面ABCD所以PO BC ⊥ 又BC PD ⊥ PO ⊂平面PCD PD ⊂平面PCD PD PO P =所以BC ⊥平面PCD .(2)因为3PC PD == O 为CD 的中点 1OC =所以PO ==过点O 作OE BC ∥交AB 于点E ,则由BC ⊥平面PCD 可得BC CD ⊥,则以O 为原点 OE OCOP 分别为x 轴 y 轴 z 轴建立如图所示的空间直角坐标系则()0,0,0O ()2,3,0A -10,2Q ⎛ ⎝()0,1,0D -(P所以72,2AQ ⎛=- ⎝(DP = ()2,2,0AD =-设与AQ DP 都重直的向量为(),,n x y z =,则720,2220,n AQ x y nDP y ⎧⋅=-++=⎪⎨⎪⋅=+=⎩得3,2,x y z y ⎧=⎪⎪⎨⎪=⎪⎩令4y =,则(6,4,n =设直线AQ与直线DP 的距离为d则12cos ,36AD n d AD AD n n⋅-=⋅===>则不存在点M 和N 使得MN =. 18.【解析】(1)()1f x kx ≥-恒成立即ln 1x x kx ≥-恒成立 又0x > 所以1ln x k x+≥恒成立今()()1ln 0g x x x x =+> 所以()22111x g x x x x ='-=-当01x <<时 ()0g x '< 函数()g x 单调递减 当1x >时 ()0g x '> 函数()g x 单调递增所以当1x =时 ()g x 取到极小值也是最小值 且()11g =所以1k ≤故实数k 的取值范围为(],1-∞.(2)1x 2x 3x 成等比数列且123x x x << 设公比为()1q q >,则21x qx = 231x q x =()ln f x x x =求导得()1ln f x x ='+ 所以()2211ln 1ln ln f x x q x =+=++'直线AC 的斜率为()21131331123131ln 2ln ln ln ln 1q x q x y y x x x x x x x x q +---==---若存在不同的三点A B C 使直线AC 的斜率等于()2f x '则有()21112ln 2ln ln 1ln ln 1q x q x q x q +-=++-整理成221ln 01q q q --=+. 令()()221ln 11x h x x x x -=->+,则()()()()222222114011x xh x x x x x -=-=+'≥+所以()221ln 1x h x x x -=-+在1x >时单调递增 而()10h = 故方程221ln 01q q q --=+在1q >时无实数解 所以不存在不同的三点A B C 使直线AC 的斜率等于()2f x '.19.【解析】(1)设i A =“两个粒子通过第一道逻辑门后上旋粒子个数为i 个” 0i = 1 2B =“两个粒子通过第二道逻辑门后上旋粒子个数为2个” 则()()2021124P A P A ⎛⎫=== ⎪⎝⎭ ()221211C 22P A ⎛⎫== ⎪⎝⎭()019P B A =∣ ()129P B A =∣ ()249P B A =∣则()()()211121414929494i i i P B P A P BA ===⨯+⨯+⨯=∑∣故()()()()()()222214449194P A P BA P AB P A B P B P B ⨯====∣∣. (2)由题知0X = 1 2由(1)知()()()2211112114244P X p p p p ==+-+-=同理可得()()()()21212211111C 11C 14242P X p p p p p p ⎡⎤==-++-+-=⎣⎦则()()()101124P X P X P X ==-=-==故X 的信息熵22111111132log log 42444222H f f f ⎛⎫⎛⎫⎛⎫⎛⎫=++=⨯--=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (3)由题知()()11n P Y n p p -==- 其中1n = 2 3 …则()()()01111211n EY p p p p n p p -=⋅-+⋅-+⋅⋅⋅+⋅-+⋅⋅⋅又()()111111nni i i i i p p p i p --==⋅-=⋅-∑∑则()()()()1111111211ni n i i p p p n p --=⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ①()()()()()11211111211ni ni p i p p p n p -=-⋅⋅-=⋅-+⋅-+⋅⋅⋅+⋅-∑ ②-①②得:()()()()()1011111111ni n ni p i p p p p n p --=⋅-=-+-+⋅⋅⋅+---∑()()()()111111nnn np p n p n p p p p ---=--=---由题知 当n 无限增大时 ()1np -趋近于零 ()1nn p -趋近于零,则EY 趋近于1p. 所以当n 无限增大时 Y 的数学期望䞨近于一个常数.。
高三数学易错数列多选题 易错题综合模拟测评检测试卷一、数列多选题1.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( )A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.2.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列B .12n naC .22222123213n na a a a -++++= D .122334111111n n b b b b b b b b +++++< 【答案】BCD 【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n na --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2n n n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确. 故选:BCD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.3.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( ) A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB 【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.4.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC. 【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.5.已知首项为1的数列{}n a 的前n 项和为n S ,当n 为偶数时,11n n a a --=;当n 为奇数且1n >时,121n n a a --=.若4000m S >,则m 的值可以是( ) A .17 B .18C .19D .20【答案】BCD【分析】由已知条件得出数列奇数项之间的递推关系,从而得数列21{3}k a -+是等比数列,由此可求得奇数项的表达式(也即得到偶数项的表达式),对2k S 可先求得其奇数项的和,再得偶数项的和,从而得2k S ,计算出与4000接近的和,184043S =,173021S =,从而可得结论. 【详解】依题意,2211k k a a -=+,21221k k a a +=+,*k N ∈,所以2211k k a a -=+,2122121212(1)123k k k k a a a a +--=+=++=+,∴()2121323k k a a +-+=+.又134a +=,故数列{}213k a -+是以4为首项,2为公比的等比数列,所以121423k k a --=⋅-,故S 奇()21321141232(44242)43321k k k k k a a a k k -+-===+⨯++⨯--+++-=---,S 偶21232412()242k k k a a a k k a a a +-=+=+++=+++--,故2k S S =奇+S 偶3285k k +=--,故121828454043S =--=,173021S =,故使得4000m S >的最小整数m 的值为18.故选:BCD . 【点睛】关键点点睛:本题考查数列的和的问题,解题关键是是由已知关系得出数列的奇数项满足的性质,求出奇数项的表达式(也可求出偶数项的表达式),而求和时,先考虑项数为偶数时的和,这样可分类求各:先求奇数项的和,再求偶数项的和,从而得所有项的和,利用这个和的表达式估计和n S 接近4000时的项数n ,从而得出结论.6.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.7.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可.由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b bS S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当==2n n b c 时等号成立) 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.8.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,且112n n n S a a +=⋅-,则( )A .12d =B .11a =C .数列{}n a 中可以取出无穷多项构成等比数列D .设(1)nn n b a =-⋅,数列{}n b 的前n 项和为n T ,则2n T n =【分析】利用已知条件可得11212n n n S a a +++=-与已知条件两式相减,结合{}n a 是等差数列,可求d的值即可判断选项A ,令1n =即可求1a 的值,可判断选项B ,分别计算{}n a 的通项即可判断选项C ,分别讨论两种情况下21212n n b b -+=,即可求2n T 可判断选项D. 【详解】 因为112n n n S a a +=-,所以11212n n n S a a +++=-, 两式相减,得()11212n n n n n a a a a da ++++=-=, 因为0d ≠,所以21d =,12d =,故选项 A 正确; 当1n =时,1111122a a a ⎛⎫=+- ⎪⎝⎭,易解得11a =或112a =-,故选项B 不正确;由选项A 、B 可知,当112a =-,12d =时,()1111222n na n =-+-⨯=-,{}n a 可取遍所有正整数,所以可取出无穷多项成等比数列,同理当()()1111122n a n n =+-⨯=+时也可以取出无穷多项成等比数列,故选项C 正确; 当()112n a n =+时,()221212n n b a n ==+,()212112112n n b a n n --=-=--+=-, 因为21221212n n n n b b a a --+=-+=, 所以()()()212342122n n n n T b b b b b b -=++++++=, 当12n n a =-时,2212112n n b a n n ==⨯-=-,2121213122n n n b a n ---⎛⎫=-=--=-⎪⎝⎭, 所以22131122n n b b n n -+=-+-=, 此时()()()22212223212n n n n n nT b b b b b b ---=++++++=, 所以2n T n ≠,故选项D 不正确. 故选:AC. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.二、平面向量多选题9.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )A .//PB CQ B .2133BP BA BC =+ C .0PA PC ⋅< D .2S =【答案】BCD 【分析】本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】解:因为20PA PC +=,2QA QB =,所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;因为()121333BP BA AP BA BC BA BA BC =+=+-=+,故选项B 正确; 因为112223132APQ ABCAB hS S AB h ⨯⨯==⋅△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.10.下列各式结果为零向量的有( ) A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确. 故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.。
创作人:历恰面日期:2020年1月1日2021届高三联考调研考试语文参考答案及评分HY一、现代文阅读(9分)1.(3分)C(“时代最早的猿猴造型〞有误,原文是“目前所见……文物〞。
)2.(3分)B(?银猿饰?不一定是汉代文物。
)3.(3分)B(“由写实到浪漫的形貌嬗变〞是“大约在唐末五代时期〞。
)二、古代诗文阅读(36分)(一)文言文阅读(19分)4.(3分)C5.(3分)A(“殁〞还指“死于非命〞。
)6.(3分)B(“一帆风顺〞表述错误,他的仕途因为桑哥遭遇挫折。
)7.(10分)(1)(5分)皇帝屡次召(他)到榻前,当面告诉诏令(的主要内容),他都详细地起草进呈,皇帝表示很满意。
(“面谕〞“具草〞“称善〞各1分,句子大意2分)(2)(5分)桑哥败露之后,皇帝下令有关机构毁坏他的墓碑,阎复等人也因为这件事情而被牵连罢官。
(“有司〞“坐〞“是〞各1分,句子大意2分)(二)古代诗歌阅读(11分)8.(5分)本诗塑造了一位虽屡遭迫害(1分)但壮志未泯(2分)的抗清志士形象(2分) 。
(意思对即可;假设答其他,言之成理即可酌情给分。
)9.(6分)全诗通过对秋夜山林叶落鸟惊的“无静〞和第二天潭水空明、松林积翠的描写,借景抒情、以景衬情,突出作者在特殊形势下异乡思归的孤寂(或者“心绪难宁〞)和反清复明的焦灼(或者“坚决〞)。
(技巧2分,情感4分,意思对即可;假设答其他,言之成理即可酌情给分。
)(三)名篇名句默写(6分)10.(6分) (每答对一空给1分,有错别字、添字、漏字现象,那么该空不给分。
)⑴苔痕上阶绿∕草色入帘青⑵何方圆之不周兮∕夫孰异道而相安⑶舞幽壑之潜蛟∕泣孤舟之嫠妇三、文学类文本阅读(25分)11.(1)(5分)答C给3分,答E给2分,答D给1分(A.“抢了本属于自己的〞原文没有表达;B.“射击程度并不高明〞表述错误;D.“他很吃惊自己枪法不准〞不准确,他吃惊的是为何没打中,疑心对方有提防。
)(2)(6分)①对冈纳心怀妒忌和怨恨。
高三数学易错数列多选题 易错题自检题学能测试试卷一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a =B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.3.如图,已知点E 是ABCD 的边AB 的中点,()*n F n ∈N为边BC 上的一列点,连接n AF 交BD 于n G ,点()*n G n ∈N 满足()1223n n n n n G D a G A a G E +=⋅-+⋅,其中数列{}n a 是首项为1的正项数列,n S 是数列{}n a 的前n 项和,则下列结论正确的是( )A .313a =B .数列{}3n a +是等比数列C .43n a n =-D .122n n S n +=--【答案】AB 【分析】化简得到()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,根据共线得到1230n n a a +--=,即()1323n n a a ++=+,计算123n n a +=-,依次判断每个选项得到答案. 【详解】()()112232n n n n n n G D a G A a G A G B +=⋅-+⋅+, 故()()12323n n n n n n G D a a G A a G B +=--⋅-+⋅,,n n G D G B 共线,故1230n n a a +--=,即()1323n n a a ++=+,11a =,故1342n n a -+=⨯,故123n n a +=-.432313a =-=,A 正确;数列{}3n a +是等比数列,B 正确;123n n a +=-,C 错误;2124323412nn n S n n +-=-=---,故D 错误.故选:AB . 【点睛】本题考查了向量运算,数列的通项公式,数列求和,意在考查学生的计算能力,转化能力和综合应用能力.4.设数列{}{},n n a b 的前n 项和分别为,n n S T ,1121,n n n S S S n++==,且212n n n n a b a a ++=,则下列结论正确的是( ) A .20202020a = B .()12n n n S += C .()112n b n n =-+D .1334n T n ≤-< 【答案】ABD 【分析】可由累乘法求得n S 的通项公式,再由()12n n n S +=得出n a n =,代入212n n n n a b a a ++=中可得()112n b n n =++.由裂项相消法求出n T ,利用数列的单调性证明1334n T n ≤-<.【详解】由题意得,12n n S n S n++=, ∴当2n ≥时,121121112n n n n n S S S n n S S S S S n n ---+=⋅⋅⋅⋅⋅=⋅⋅⋅⋅--()13112n n +⋅=,且当1n =时也成立,∴ ()12n n n S +=,易得n a n =,∴ 20202020a =,故,A B 正确; ∴ ()()()211111112222n n b n n n n n n +⎛⎫==+=+- ⎪+++⎝⎭,∴11111111111111112324351122212n T n n n n n n n n ⎛⎫⎛⎫=+-+-+-++-+-=++-- ⎪ ⎪-++++⎝⎭⎝⎭3111342124n n n n ⎛⎫=+-+<+ ⎪++⎝⎭, 又n T n -随着n 的增加而增加, ∴1113n T n T -≥-=,∴1334n T n ≤-<,C 错误,D 正确, 故选:ABD. 【点睛】使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.5.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】 先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n nn b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1n a 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=,所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++,所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .6.已知数列{}n a 的前n 项和为2n 33S n n =-,则下列说法正确的是( )A .342n a n =-B .16S 为n S 的最小值C .1216272a a a +++=D .1230450a a a +++=【答案】AC 【分析】利用和与项的关系,分1n =和2n ≥分别求得数列的通项公式,检验合并即可判定A; 根据数列的项的正负情况可以否定B;根据前16项都是正值可计算判定C;注意到121617193300()a a a S a a a +++=+----16302S S =-可计算后否定D.【详解】1133132a S ==-=,()()()2213333113422n n n a S S n n n n n n -=-=---+-=-≥,对于1n =也成立,所以342n a n =-,故A 正确;当17n <时,0n a >,当n=17时n a 0=,当17n >时,n a 0<,n S ∴只有最大值,没有最小值,故B 错误;因为当17n <时,0n a >,∴21216163316161716272a a a S +++==⨯-=⨯=,故C 正确;121617193300()a a a S a a a +++=+----2163022272(333030S S =-=⨯-⨯-)54490454=-=, 故D 错误. 故选:AC.【点睛】本题考查数列的和与项的关系,数列的和的最值性质,绝对值数列的求和问题,属小综合题.和与项的关系()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩,若数列{}n a 的前 k 项为正值,往后都是小于等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-,若数列{}n a 的前 k 项为负值,往后都是大于或等于零,则当n k ≥时有122n k n a a a S S ++⋯+=-+.若数列的前面一些项是非负,后面的项为负值,则前n 项和只有最大值,没有最小值,若数列的前面一些项是非正,后面的项为正值,则前n 项和只有最小值,没有最大值.7.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式n nn a ⎡⎤⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+, 所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.8.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】 由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,二、平面向量多选题9.在三棱锥P ABC -中,三条侧棱,,PA PB PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为,BC PB 上的点,且::1:2BE EC PF FB ==,则下列说法正确的是( ) A .EG PG ⊥ B .EG BC ⊥ C .//FG BC D .FG EF ⊥ 【答案】ABD 【分析】取,,PA a PB b PC c ===,以{},,a b c 为基底表示EG ,FG ,EF ,结合向量数量积运算性质、向量共线定理即可选出正确答案. 【详解】如图,设,,PA a PB b PC c ===,则{},,a b c 是空间的一个正交基底, 则0a b a c b c ⋅=⋅=⋅=,取AB 的中点H ,则22111()33233PG PH a b a b ==⨯+=+, 1121111,3333333EG PG PE a b b c a b c BC c b =-=+--=--=-,11113333FG PG PF a b b a =-=+-=,1121133333EF PF PE b c b c b ⎛⎫=-=-+=-- ⎪⎝⎭,∴0EG PG ⋅=,A 正确;0EG BC ⋅=,B 正确;()FG BC R λλ≠∈,C 不正确;0FG EF ⋅=,D 正确.故选:ABD.【点睛】本题考查了平面向量共线定理,考查了由数量积求两向量的位置关系,考查了平面向量基本定理的应用,属于中档题.10.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 【答案】BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=22(1)(2)10m n -+-(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.。
高三一轮复习高三易错题练习(6份)含答案参考答案1. BC2. BD3. D4. B5. B6. D7. C8. B9. BC 10. A11. 5.8m ,制动距离不仅与列车重量有关,还与列车的行驶速度相关;3.3m/s 2, 12. 0, 0.2 13. m(g+a)sin θ ,斜面向上 14. 1m/s 215.解:设小铁块的质量为 m ,加速度为a 1,受木板的滑动摩擦力为mg N f μμ==有 1ma f = 得 212m/s ==g a μ设在拉出木板的过程中,小铁块位移为s 1,木板的位移为s 2,那么21121t a s = 2221t a s = L s s +=12代入数据得 72.022162122+⨯=⨯t t 解得 6.0=t s16.解: a =162=8 m/s 2,mg -f =ma ,f =mg -ma =160N大约是39.5格,因此h =39.5⨯4=158 m 〔在150~165范畴内均可〕 W f =mgh -12mv 2=1.25⨯105 Jh 2=500-158=342 m 。
t 2=342/6=57 s ,t =71 s 。
17.〔1〕一般列车的制动过程是一个匀减速直线运动,利用运动学公式220102t v v as -= 代入数据解得:a =-0.309m/s 2。
〔2〕列车提速后的制动加速度依旧原先的数值,利用运动学公式22022t v v as -= 代入数据解得:s =1250m 。
〔3〕假设道口处有险情,在安全栅栏放下的瞬时,列车同时刹车,列车将最终停止在道口处。
依照运动学公式02t v v at =+ 代入数据解得:t =126s 。
08-09年度高三物理寒假基础练习2参考答案1. A2. A3. C4. C D5. B6. C7. AC8. B9. ACD 10. BD11. mg μ30023t mgv μ 12. 12m/s 0.2m/s 2 13. r :R r R / 14. 221mv mgv μ 2mv15.解:〔1〕人所受的静摩擦力提供向心力,当m f r m >2ω时,人将滑动。
高三模拟考试试题及答案一、选择题(每题3分,共30分)1. 下列各组词语中,没有错别字的一组是:A. 箴言膺品斟酌一愁莫展B. 瞠目瞠目结舌瞠乎其后瞠然C. 瞠目瞠目而视瞠乎其后瞠然D. 瞠目瞠目结舌瞠乎其后瞠然结舌2. 根据题目所给的语境,下列句子中使用词语恰当的是:A. 他虽然年过花甲,但仍然精神矍铄,活跃在学术界。
B. 面对突如其来的灾难,他表现出了临危不惧的勇气。
C. 他的作品虽然文笔优美,但内容空洞,缺乏深度。
D. 在激烈的竞争中,他凭借自己的实力脱颖而出。
3. 下列句子中,没有语病的一句是:A. 我们一定要认真贯彻党的教育方针,努力提高教育质量,培养出更多优秀人才。
B. 通过这次活动,使我们深刻认识到团结协作的重要性。
C. 他不仅学习成绩优异,而且乐于助人,深受同学们的喜爱。
D. 这篇文章深入浅出,对于初学者来说,是很好的入门读物。
4-10. (此处省略其他选择题,可根据需要自行添加)二、填空题(每空2分,共20分)1. 请根据题目所给的古诗文,填入正确的字词。
“床前明月光,_________地上霜。
”(李白《静夜思》)答案:疑是2. 请根据题目所给的数学公式,填入正确的数值。
圆的面积公式为 \( A = πr^2 \),若半径 \( r = 5 \),则面积\( A \) 为:答案: \( 78.5 \)(π取3.14)3-10. (此处省略其他填空题,可根据需要自行添加)三、简答题(每题10分,共20分)1. 请简述《红楼梦》中林黛玉的性格特点。
答案:林黛玉性格多愁善感,才情出众,聪明机智,但同时身体孱弱,命运多舛。
2. 请简述牛顿第二定律的内容及其在物理学中的重要性。
答案:牛顿第二定律指出,物体的加速度与作用在其上的合外力成正比,与物体的质量成反比,公式为 \( F = ma \)。
这一定律是经典力学的基础,对于理解物体运动规律具有重要意义。
四、阅读理解(共20分)(此处省略阅读理解材料及问题,可根据需要自行添加)五、作文题(共10分)请以“我的梦想”为题,写一篇不少于800字的作文。
一、函数的概念与基本初等函数多选题1.已知函数()sin sin xxf x e e=+,以下结论正确的是( )A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe '=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈; 当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e ⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确. 因()f x 在,2x ππ⎛⎫∈ ⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误. 对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x xπ=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin x xf x e e -=+,()()sin sin cos 0x x f x x e e -'=->,3123322fe e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.2.1837年,德国数学家狄利克雷(P .G.Dirichlet ,1805-1859)第一个引入了现代函数概念:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,那么y 是x 的函数”.由此引发了数学家们对函数性质的研究.下面是以他的名字命名的“狄利克雷函数”:1,()0,R x Q D x x Q ∈⎧=⎨∈⎩(Q 表示有理数集合),关于此函数,下列说法正确的是( )A .()D x 是偶函数B .,(())1x R D D x ∀∈=C .对于任意的有理数t ,都有()()D x t D x +=D .存在三个点112233(,()),(,()),(,())A x D x B x D x C x D x ,使ABC 为正三角形 【答案】ABCD 【分析】利用定义判断函数奇偶性,可确定A 的正误,根据“狄利克雷函数”及有理数、无理数的性质,判断其它三个选项的正误. 【详解】A :由()D x 定义知:定义域关于原点对称,当x Q ∈则x Q -∈,当R x Q ∈则Rx Q -∈,即有()()D x D x -=,故()D x 是偶函数,正确;B :由解析式知:,()1x R D x ∀∈=或()0D x =,即(())1D D x =,正确;C :任意的有理数t ,当x Q ∈时,x t Q +∈即()()D x t D x +=,当R x Q ∈时,R x t Q +∈即()()D x t D x +=,正确;D :若存在ABC 为正三角形,则其高为1,所以当((0,1),A B C 时成立,正确; 故选:ABCD 【点睛】关键点点睛:应用函数的奇偶性判断,结合新定义函数及有理数、无理数的性质判断各选项的正误.3.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D . 【详解】 解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称, 即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得, (4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确; 故选:BCD 【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.4.设函数(){}22,,2f x min x x x =-+其中{},,min x y z 表示,,x y z 中的最小者.下列说法正确的有( ) A .函数()f x 为偶函数B .当[)1,x ∈+∞时,有()()2f x f x -≤C .当x ∈R 时,()()()ff x f x ≤D .当[]4,4x ∈-时,()()2f x f x -≥ 【答案】ABC 【分析】画出()f x 的图象然后依据图像逐个检验即可. 【详解】解:画出()f x 的图象如图所示:对A ,由图象可知:()f x 的图象关于y 轴对称,故()f x 为偶函数,故A 正确; 对B ,当12x ≤≤时,120x -≤-≤,()()()222f x f x x f x -=-≤-=; 当23x <≤时,021x <-≤,()()22f x x f x -≤-=;当34x <≤时,122x <-≤,()()()22242f x x x x f x -=--=-≤-=; 当4x ≥时,22x -≥,此时有()()2f x f x -<,故B 成立;对C ,从图象上看,当[)0,x ∈+∞时,有()f x x ≤成立,令()t f x =,则0t ≥,故()()f f x f x ⎡⎤≤⎣⎦,故C 正确;对D ,取32x =,则111224f f ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,3122f ⎛⎫= ⎪⎝⎭,()()2f x f x -<,故D 不正确. 故选:ABC . 【点睛】方法点睛:一般地,若()()(){}min ,f x S x T x =(其中{}min ,x y 表示,x y 中的较小者),则()f x 的图象是由()(),S x T x 这两个函数的图象的较低部分构成的.5.已知()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,2()2f x x x =-+,下列说法正确的是( )A .(0,)x ∈+∞时,函数解析式为2()2f x x x =-B .函数在定义域R 上为增函数C .不等式(32)3f x -<的解集为(,1)-∞D .不等式2()10f x x x -+->恒成立 【答案】BC 【分析】对于A ,利用奇函数定义求(0,)x ∈+∞时,函数解析式为2()2f x x x =+;对于B ,研究当(,0)x ∈-∞时,()f x 的单调性,结合奇函数图像关于原点对称,知()f x 在R 上的单调性;对于C ,求出(1)3f =,不等式(32)3f x -<,转化为(32)(1)f x f -<,利用单调性解不等式;对于D ,分类讨论(0,)x ∈+∞与(,0)x ∈-∞两种情况是否恒成立. 【详解】对于A ,设(0,)x ∈+∞,(,0)x -∈-∞,则2()2f x x x -=--,又()f x 是奇函数,所以2()()2f x f x x x =--=+,即(0,)x ∈+∞时,函数解析式为2()2f x x x =+,故A 错;对于B ,2()2f x x x =-+,对称轴为1x =,所以当(,0)x ∈-∞时,()f x 单调递增,由奇函数图像关于原点对称,所以()f x 在R 上为增函数,故B 对;对于C ,由奇函数在R 上为增函数,则(0,)x ∈+∞时,2()23f x x x =+=,解得11x =,23x =-(舍去),即(1)3f =,所以不等式(32)3f x -<,转化为(32)(1)f x f -<, 又()f x 在R 上为增函数,得321x -<,解得1x <, 所以不等式的解集为(,1)-∞,故C 对; 对于D ,当(,0)x ∈-∞时,2()2f x x x =-+2222()121231(21)(1)0f x x x x x x x x x x x -+-=-+-+-=-+-=-+-<,当(0,)x ∈+∞时,2()2f x x x =+222()12131f x x x x x x x x -+-=+-+-=-不恒大于0,故D 错;故选:BC 【点睛】方法点睛:考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别. 考查了利用奇偶性求函数解析式,求函数解析式常用的方法: (1)已知函数类型,用待定系数法求解析式; (2)已知函数奇偶性,用奇偶性定义求解析式;(3)已知()f x 求[()]f g x ,或已知[()]f g x 求()f x ,用代入法、换元法或配凑法; (4)若()f x 与1()f x或()f x -满足某个等式,可构造另一个等式,通过解方程组求解;6.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种互相转化,相对统一的和谐美. 定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”.则下列有关说法中,正确的是( )A .对于圆O :221x y +=的所有非常数函数的太极函数中,一定不能为偶函数B .函数()sin 1f x x =+是圆O :()2211x y +-=的一个太极函数C .存在圆O ,使得()11x x e f x e -=+是圆O 的一个太极函数D .直线()()12110m x m y +-+-=所对应的函数一定是圆O :()()()222210x y R R -+-=>的太极函数【答案】BCD 【分析】利用“太极函数”的定义逐个判断函数是否满足新定义即可. 【详解】对于A ,如下图所示,若太极函数为偶函数,且ACEPCOPODDFBS SSS===,所以该函数平分圆O 的周长和面积,故A 错误;对于B ,()sin 1f x x =+也关于圆心(0,1) 对称,平分圆O 的周长和面积,所以函数()sin 1f x x =+是圆()22:11O x y +-=的一个太极函数;故B 正确;对于C ,()()+12121+1+1+1x x x x x e e f x e e e --===-,.()()11111+11++1xxx x xxe e ef x f x e e e ------====-,该函数为奇函数,图象关于原点对称. 所以存在圆O :221x y +=使得()11x x e f x e -=+是圆O 的一个太极函数,如下图所示,故C 正确;对于D ,对于直线()()12110m x m y +-+-=的方程,变形为()()210m x y x y -+--=,令2010x y x y -=⎧⎨--=⎩,得21x y =⎧⎨=⎩,直线()()12110m x m y +-+-=经过圆O 的圆心,可以平分圆O 周长和面积,故D 正确. 故选:BCD. 【点睛】本题考查函数对称性的判定与应用,将新定义理解为函数的对称性为解题的关键,考查推理能力,属于较难题.7.已知函数()f x 满足:当-<3≤0x 时,()()1xf x e x =+,下列命题正确的是( )A .若()f x 是偶函数,则当03x <≤时,()()1xf x e x =+B .若()()33f x f x --=-,则()()32g x f x e =+在()6,0x ∈-上有3个零点 C .若()f x 是奇函数,则1x ∀,[]23,3x ∈-,()()122f x f x -<D .若()()3f x f x +=,方程()()20f x kf x -=⎡⎤⎣⎦在[]3,3x ∈-上有6个不同的根,则k 的范围为2312k e e-<<- 【答案】BC 【分析】A 选项,利用函数的奇偶性求出解析式即可判断;B 选项,函数()f x 关于直线3x =-对称,利用导数研究函数的单调性作出函数图像,由函数图像可知当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点可判断;C 选项,由函数图像关于原点对称求出函数的值域进行判断;D 选项,函数周期为3,作出函数图像知方程()0f x =在[]3,3x ∈-上有两个不同的根,则2312k e e-<≤-时方程()f x k =在[]3,3x ∈-上有4个不同的根. 【详解】A 选项,若03x <≤,则30x -≤-<,()()1xf x e x --=-+,因为函数()f x 是偶函数,所以()()()1xf x f x ex -=-=-+,A 错误;B 选项,若()()33f x f x --=-,则函数()f x 关于直线3x =-对称,当-<3≤0x 时,()()2xf x ex '=+,当()3,2x ∈--时,()0f x '<,函数()f x 单调递减,当()2,0x ∈--时,()0f x '>,函数()f x 单调递增,且()323f e -=-,()2120f e -=-<,()10f -=, 作出函数大致图像如图所示,则当()6,0x ∈-时,函数()f x 与直线32y e =-有3个交点,即函数()()32g x f x e =+在()6,0x ∈-上有3个零点,B 正确;C 选项,由B 知当[3,0)x ∈-时,()2[,1)f x e -∈-,若函数()f x 为奇函数,则当[]3,3x ∈-时()()1,1f x ∈-,所以1x ∀,[]23,3x ∈-,()()122f x f x -<,C 正确;D 选项,若()()3f x f x +=,则函数()f x 的周期为3,作出函数在[]3,3x ∈-上的图像如图所示,若方程()()20f x kf x -=⎡⎤⎣⎦即()()[]0f x f x k -=在[]3,3x ∈-上有6个不同的根,因为方程()0f x =在[]3,3x ∈-上有两个不同的根,所以()f x k =在[]3,3x ∈-上有4个不同的根,又()323f e -=-,()2120f e -=-<,所以2312k e e-<≤-,D 错误. 故选:BC 【点睛】本题考查函数的图像与性质综合应用,涉及函数的单调性、奇偶性、对称性,函数的零点与方程的根,综合性较强,属于较难题.8.已知定义域为R 的奇函数()f x ,满足22,2()2322,02x f x x x x x ⎧>⎪=-⎨⎪-+<≤⎩,下列叙述正确的是( )A .存在实数k ,使关于x 的方程()f x kx =有7个不相等的实数根B .当1211x x -<<<时,恒有12()()f x f x >C .若当(0,]x a ∈时,()f x 的最小值为1,则5[1,]2a ∈ D .若关于x 的方程3()2f x =和()f x m =的所有实数根之和为零,则32m =- 【答案】AC 【分析】根据奇函数()()f x f x -=-,利用已知定义域的解析式,可得到对称区间上的函数解析式,然后结合函数的图象分析各选项的正误,即可确定答案 【详解】函数是奇函数,故()f x 在R 上的解析式为:222,22322,20()0,022,022,223x x x x x f x x x x x x x ⎧<-⎪+⎪----≤<⎪⎪==⎨⎪-+<≤⎪⎪>⎪-⎩绘制该函数的图象如所示:对A :如下图所示直线1l 与该函数有7个交点,故A 正确;对B :当1211x x -<<<时,函数不是减函数,故B 错误; 对C :如下图直线2:1l y =,与函数图交于5(1,1),(,1)2, 故当()f x 的最小值为1时有5[1,]2a ∈,故C 正确对D :3()2f x =时,函数的零点有136x =、212x =+、212x =-; 若使得其与()f x m =的所有零点之和为0,则32m =-或38m =-,如图直线4l 、5l ,故D 错误故选:AC 【点睛】本题考查了分段函数的图象,根据奇函数确定对称区间上函数的解析式,进而根据函数的图象分析命题是否成立9.已知定义在R 上的函数()f x 满足:()()0f x f x +-=,且当0x ≥时,()x f x e x b =+-.若((2sin ))(sin )0f k b x f x ++-≤.在x ∈R 上恒成立,则k 的可能取值为( ) A .1 B .0C .1-D .2-【答案】CD 【分析】先判断函数的奇偶性和单调性,得到sinx ≥k (2+sinx ), 再根据题意,利用检验法判断即可. 【详解】因为定义在R 上的函数()f x 满足:()()0f x f x +-=, 所以()f x 为奇函数,0x ≥时,()x f x e x b =+-,显然()f x 在[0,)+∞上单调递增, 所以()f x 在R 上单调递增,由((2sin ))(sin )0f k b x f x ++-≤恒成立, 可得(sin )((2sin ))f x f k x +在R 上恒成立, 即sin (2sin )x k x +, 整理得:(1)sin 2k x k -当1k =时,02≥,不恒成立,故A 错误; 当0k =时,sin 0x ≥,不恒成立,故B 错误; 当1k =-时,sin 1x ≥-,恒成立,故C 正确; 当2k =-时,4sin 3x ≥-,恒成立,故D 正确.故选:CD 【点睛】本题主要考查了函数的奇偶性和单调性,不等式恒成立问题,属于中档题.10.已知正数,,x y z ,满足3412x y z ==,则( ) A .634z x y << B .121x y z+= C .4x y z +> D .24xy z <【答案】AC 【分析】令34121x y z m ===>,根据指对互化和换底公式得:111log 3log 4log 12m m m x y z===,,,再依次讨论各选项即可. 【详解】由题意,可令34121x y z m ===>,由指对互化得:111,,log 3log 4log 12m m m x y z ===, 由换底公式得:111log 3,log 4,log 12m m m x y z ===,则有111x y z+=,故选项B 错误; 对于选项A ,124log 12log 9log 03m m m z x -=-=>,所以2x z >,又4381log 81log 64log 064m m m x y -=-=>,所以43y x >,所以436y x z >>,故选项A 正确;对于选项C 、D ,因为111x y z +=,所以xyz x y=+,所以()()()()2222222440x y xy x y xy x y z xy x y x y -+--==-<++,所以24xy z >,则()24z x y z +>,则4x y z +>,所以选项C 正确,选项D 错误;故选:AC. 【点睛】本题考查指对数的运算,换底公式,作差法比较大小等,考查运算求解能力,是中档题.本题解题的关键在于令34121x y z m ===>,进而得111,,log 3log 4log 12m m m x y z ===,再根据题意求解.二、导数及其应用多选题11.已知函数()21xx x f x e+-=,则下列结论正确的是( ) A .函数()f x 存在两个不同的零点 B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e =,则t 的最小值为2 【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得15x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e --+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC. 【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.12.函数ln ()xf x x=,则下列说法正确的是( ) A .(2)(3)f f >B .ln eππ>C .若()f x m =有两个不相等的实根12x x 、,则212x x e <D .若25,x y x y =、均为正数,则25x y < 【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项.由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】由ln (),0x f x x x=>得:21ln ()xf x x -'= 令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:x(0,)e e(,)e +∞()'f x+0 -()f x单调递增极大值1e单调递减故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f === 66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<,且()f x 在(0,)e单调递增ln f f π∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ==== 252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确. 故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.13.在湖边,我们常看到成排的石柱子之间两两连以铁链,这就是悬链线(Catenary ),其形状因与悬在两端的绳子因均匀引力作用下掉下来之形相似而名.选择适当的坐标系后,悬链线的方程是一个双曲余弦函数()cosh 2x x aax e ef x a a a -+⎛⎫=⋅=⋅ ⎪⎝⎭,其中a 为非零常数,在此坐标平面上,过原点的直线与悬链线相切于点()()00,T x f x ,则x a ⎡⎤⎢⎥⎣⎦的值可能为( )(注:[]x 表示不大于x 的最大整数)A .2-B .1-C .1D .2【答案】AC 【分析】求出导数,表示出切线,令0x t a=,可得()()110t tt e t e --++=,构造函数()()()11x x h x x e x e -=-++,可得()h x 是偶函数,利用导数求出单调性,结合零点存在性定理可得021x a -<<-或012xa<<,即可求出. 【详解】()2x xaae ef x a -+=⋅,()2x x aae ef x --'∴=,∴切线斜率002x x aae ek --=,()0002x x aae ef x a -+=⋅,则切线方程为()0000022x x x x aaaaee e ey a x x --+--⋅=-,直线过原点,()0000022x x x x aaa ae e e ea x --+-∴-⋅=⋅-令0x t a=,则可得()()110t tt e t e --++=, 令()()()11xxh x x e x e -=-++,则t 是()h x 的零点,()()()()11x x h x x e x e h x --=++-=,()h x ∴是偶函数,()()x x h x x e e -'=-+,当0x >时,()0h x '<,()h x 单调递减,()1120h e -=>,()22230h e e -=-+<,()h x ∴在()1,2存在零点t ,由于偶函数的对称性()h x 在()2,1--也存在零点,且根据单调性可得()h x 仅有这两个零点,021x a ∴-<<-或012xa<<, 02x a ⎡⎤∴=-⎢⎥⎣⎦或1. 故选:AC. 【点睛】本题考查利用导数求切线,利用导数研究函数的零点,解题的关键是将题目转化为令0x t a=,()()110t t t e t e --++=,求()()()11x xh x x e x e -=-++的零点问题.14.设函数()ln f x x x =,()212g x x =,给定下列命题,其中正确的是( ) A .若方程()f x k =有两个不同的实数根,则1,0k e⎛⎫∈- ⎪⎝⎭; B .若方程()2kf x x =恰好只有一个实数根,则0k <;C .若120x x >>,总有()()()()1212m g x g x f x f x ->-⎡⎤⎣⎦恒成立,则m 1≥;D .若函数()()()2F x f x ag x =-有两个极值点,则实数10,2a ⎛⎫∈ ⎪⎝⎭. 【答案】ACD 【分析】利用导数研究函数的单调性和极值,且将题意转化为()y f x =与y k =有两个不同的交点,即可判断A 选项;易知1x =不是该方程的根,当1x ≠时,将条件等价于y k =和ln xy x=只有一个交点,利用导数研究函数的单调性和极值,从而可推出结果,即可判断B 选项;当120x x >>时,将条件等价于1122()()()()mg x f x mg x f x ->-恒成立,即函数()()y mg x f x =-在(0,)+∞上为增函数,通过构造新函数以及利用导数求出单调区间,即可求出m 的范围,即可判断C 选项;2()ln (0)F x x x ax x =->有两个不同极值点,根据导数的符号列出不等式并求解,即可判断D 选项. 【详解】解:对于A ,()f x 的定义域(0,)+∞,()ln 1f x x '=+, 令()0f x '>,有ln 1x >-,即1x e>, 可知()f x 在1(0,)e 单调递减,在1+e∞(,)单调递增,所以极小值等于最小值, min 11()()f x f e e∴==-,且当0x →时()0f x →,又(1)0f =,从而要使得方程()f x k =有两个不同的实根,即()y f x =与y k =有两个不同的交点,所以1(,0)k e∈-,故A 正确; 对于B ,易知1x =不是该方程的根,当1x ≠时,()0f x ≠,方程2()kf x x =有且只有一个实数根,等价于y k =和ln xy x=只有一个交点, 2ln 1(ln )-'=x y x ,又0x >且1x ≠, 令0y '>,即ln 1x >,有x e >, 知ln xy x=在0,1()和1e (,)单减,在+e ∞(,)上单增, 1x =是一条渐近线,极小值为e ,由ln xy x=大致图像可知0k <或=k e ,故B 错误;对于C ,当120x x >>时,[]1212()()()()m g x g x f x f x ->-恒成立, 等价于1122()()()()mg x f x mg x f x ->-恒成立, 即函数()()y mg x f x =-在(0,)+∞上为增函数, 即()()ln 10y mg x f x mx x =-''--'=≥恒成立,即ln 1+≥x m x在(0,)+∞上恒成立, 令ln 1()x r x x +=,则2ln ()xr x x -'=,令()0r x '>得ln 0x <,有01x <<,从而()r x 在(0,1)上单调递增,在(1,)+∞上单调递减, 则max ()(1)1r x r ==,于是m 1≥,故C 正确;对于D ,2()ln (0)F x x x ax x =->有两个不同极值点, 等价于()ln 120F x x ax +-'==有两个不同的正根, 即方程ln 12x a x+=有两个不同的正根, 由C 可知,021a <<,即102a <<,则D 正确. 故选:ACD.【点睛】关键点点睛:本题考查导数的应用,利用导数研究函数的单调性和极值,以及利用导数解决函数的零点问题和恒成立问题从而求参数范围,解题的关键在于将零点问题转化成两个函数的交点问题,解题时注意利用数形结合,考查转化思想和运算能力.15.设函数()()()1f x x x x a =--,则下列结论正确的是( ) A .当4a =-时,()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为194B .当1a =时,函数()f x 的图像与直线427y =有2个交点 C .当2a =时,()f x 的图像关于点()1,0中心对称D .若函数()f x 有两个不同的极值点1x ,2x ,则当2a ≥时,()()120f x f x +≤ 【答案】BCD 【分析】运用平均变化率的定义可分析A ,利用导数研究()f x 的单调性和极值,可分析B 选项,证明()()20f x f x +-=可分析C 选项,先得出1x ,2x 为方程()23210x a x a -++=的两个实数根,结合韦达定理可分析D 选项. 【详解】对于A ,当4a =-时,()()()14f x x x x =-+,则()f x 在11,2⎡⎤-⎢⎥⎣⎦上的平均变化率为()()()119123192221412⎛⎫⨯-⨯--⨯-⨯ ⎪⎝⎭=---,故A 错误;对于B ,当1a =时,()()23212f x x x x x x =-=-+,()()()2341311f x x x x x '=-+=--,可得下表:因为327f ⎛⎫= ⎪⎝⎭,()10f =,()42227f =>,结合()f x 的单调性可知,方程()427f x =有两个实数解,一个解为13,另一个解在()1,2上,故B 正确; 对于C ,当2a =时,()()()()()()()231211111f x x x x x x x x ⎡⎤=--=---=---⎣⎦, 则有()()()()()()33211110f x f x x x x x +-=---+---=,故C 正确; 对于D ,()()()1f x x x x a =--,()()()()()2121321f x x x a x x a x a x a '=--+--=-++,令()0f x '=,可得方程()23210x a x a -++=,因为()()22412130a a a ∆=-+=-+>,且函数()f x 有两个不同的极值点1x ,2x ,所以1x ,2x 为方程()23210x a x a -++=的两个实数根,则有()12122132x x a a x x ⎧+=+⎪⎪⎨⎪=⎪⎩,则()()()()()()1211122211f x f x x x x a x x x a +=--+--()()()()33221212121x x a x x a x x =+-++++()()()()()22212112212121212x x x x x x a x x x x a x x ⎡⎤=+-++++-++⎣⎦()()()22211221212221233a x x x x x x x x a ⎡⎤=+-+-+++⎢⎥⎣⎦ ()()()()()21242212113327a a a x x a a --⎡⎤=+-++=-+⋅⎢⎥⎣⎦因为2a ≥,所以()()120f x f x +≤,故D 正确; 故选:BCD . 【点睛】关键点点睛:本题考查利用导数研究函数的单调性,平均变化率,极值等问题,本题的关键是选项D ,利用根与系数的关系,转化为关于a 的函数,证明不等式.16.定义在(0,)+∞上的函数()f x 的导函数为()'f x ,且()()f x f x x'<,则对任意1x 、2(0,)x ∈+∞,其中12x x ≠,则下列不等式中一定成立的有( )A .()()()1212f x x f x f x +<+B .()()()()21121212x xf x f x f x f x x x +<+ C .()1122(1)x x f f <D .()()()1212f x x f x f x <【答案】ABC 【分析】构造()()f x g x x=,由()()f x f x x '<有()0g x '<,即()g x 在(0,)+∞上单调递减,根据各选项的不等式,结合()g x 的单调性即可判断正误.【详解】 由()()f x f x x '<知:()()0xf x f x x'-<, 令()()f x g x x =,则()()()20xf x f x g x x'-='<, ∴()g x 在(0,)+∞上单调递减,即122112121212()()()()0()g x g x x f x x f x x x x x x x --=<--当120x x ->时,2112()()x f x x f x <;当120x x -<时,2112()()x f x x f x >; A :121()()g x x g x +<,122()()g x x g x +<有112112()()x f x x f x x x +<+,212212()()x f x x f x x x +<+,所以()()()1212f x x f x f x +<+; B:由上得21121212()()()()x f x x x x f x x x -<-成立,整理有()()()()21121212x xf x f x f x f x x x +<+; C :由121x >,所以111(2)(1)(2)(1)21x x x f f g g =<=,整理得()1122(1)x x f f <; D :令121=x x 且121x x >>时,211x x =,12111()()()()g x g x f x f x =,12()(1)(1)g x x g f ==,有121()()g x x g x >,122()()g x x g x <,所以无法确定1212(),()()g x x g x g x 的大小. 故选:ABC 【点睛】思路点睛:由()()f x f x x '<形式得到()()0xf x f x x'-<,1、构造函数:()()f x g x x =,即()()()xf x f x g x x'-'=. 2、确定单调性:由已知()0g x '<,即可知()g x 在(0,)+∞上单调递减.3、结合()g x 单调性,转化变形选项中的函数不等式,证明是否成立.17.已知函数()1ln f x x x x=-+,给出下列四个结论,其中正确的是( ) A .曲线()y f x =在1x =-处的切线方程为10x y ++= B .()f x 恰有2个零点C .()f x 既有最大值,又有最小值D .若120x x >且()()120f x f x +=,则121=x x 【答案】BD 【分析】本题首先可根据()10f -=以及13f判断出A 错误,然后根据当0x >时的函数单调性、当0x <时的函数单调性、()10f -=以及()10f =判断出B 正确和C 错误,最后根据()()120f x f x +=得出()121f x f x ⎛⎫=⎪⎝⎭,根据函数单调性即可证得121=x x ,D 正确. 【详解】函数()1ln f x x x x=-+的定义域为()(),00,-∞⋃+∞, 当0x >时,()1ln f x x x x=-+,()2221111x x f x x x x -+-'=--=;当0x <时,1ln f x x x x,()2221111x x f x x x x -+-'=--=, A 项:1ln 1110f,22111131f,则曲线()y f x =在1x =-处的切线方程为031y x ,即33y x =--,A 错误;B 项:当0x >时,222215124x x x f xx x ,函数()f x 是减函数,当0x <时,222215124x x x f xx x ,函数()f x 是减函数,因为()10f -=,()10f =,所以函数()f x 恰有2个零点,B 正确; C 项:由函数()f x 的单调性易知,C 错误;D 项:当1>0x 、20x >时, 因为()()120f x f x +=, 所以1222222221111ln lnf x f x x x x fx x x x , 因为()f x 在()0,∞+上为减函数,所以121x x =,120x x >, 同理可证得当10x <、20x <时命题也成立,D 正确, 故选:BD. 【点睛】本题考查函数在某点处的切线求法以及函数单调性的应用,考查根据导函数求函数在某点处的切线以及函数单调性,导函数值即切线斜率,若导函数值大于0,则函数是增函数,若导函数值小于0,则函数是减函数,考查函数方程思想,考查运算能力,是难题.18.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误; D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->,所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n na a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.19.下列命题正确的有( ) A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a bab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD 【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围. 【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点,所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-;D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞故选:ACD 【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.20.已知函数()21,0log ,0kx x f x x x +≤⎧=⎨>⎩,下列是关于函数()1y f f x =+⎡⎤⎣⎦的零点个数的判断,其中正确的是( ) A .当0k >时,有3个零点 B .当0k <时,有2个零点 C .当0k >时,有4个零点 D .当0k <时,有1个零点【答案】CD 【分析】令y =0得()1f f x =-⎡⎤⎣⎦,利用换元法将函数分解为f (x )=t 和f (t )=﹣1,作出函数f (x )的图象,利用数形结合即可得到结论. 【详解】令()10y f f x =+=⎡⎤⎣⎦,得()1f f x =-⎡⎤⎣⎦,设f (x )=t ,则方程()1f f x =-⎡⎤⎣⎦等价为f (t )=﹣1,①若k >0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有两个根其中t 2<0,0<t 1<1,由f (x )=t 2<0,此时x 有两解,由f (x )=t 1∈(0,1)知此时x 有两解,此时共有4个解, 即函数y =f [f (x )]+1有4个零点.②若k <0,作出函数f (x )的图象如图:∵f (t )=﹣1,∴此时方程f (t )=﹣1有一个根t 1,其中0<t 1<1,由f (x )=t 1∈(0,1),此时x 只有1个解,即函数y =f [f (x )]+1有1个零点. 故选:CD .【点睛】本题考查分段函数的应用,考查复合函数的零点的判断,利用换元法和数形结合是解决本题的关键,属于难题.三、三角函数与解三角形多选题21.在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,有以下四个命题中正确的是( ) A .22S a bc +3B .当2a =,sin 2sin BC =时,ABC 不可能是直角三角形 C .当2a =,sin 2sin B C =,2A C =时,ABC 的周长为223+D .当2a =,sin 2sin B C =,2A C =时,若O 为ABC 的内心,则AOB 的面积为31- 【答案】ACD 【分析】利用三角形面积公式,余弦定理基本不等式,以及三角换元,数形结合等即可判断选项A ;利用勾股定理的逆定理即可判断选项B ;利用正弦定理和三角恒等变换公式即可判断选项C ;由已知条件可得ABC 是直角三角形,从而可以求出其内切圆的半径,即可得AOB 的面积即可判断选项D. 【详解】 对于选项A :2221sin 1sin 222cos 2222cos bc AS A b c a bc b c bc A bc Ac b==⨯++-+++- 1sin 4cos 2A A ≤-⨯-(当且仅当b c =时取等号).令sin A y =,cos A x =,故21242S ya bc x ≤-⨯+-,因为221x y +=,且0y >,故可得点(),x y 表示的平面区域是半圆弧上的点,如下图所示:目标函数2yz x =-上,表示圆弧上一点到点()2,0A 点的斜率, 数形结合可知,当且仅当目标函数过点132H ⎛ ⎝⎭,即60A =时,取得最小值3- 故可得3,023yz x ⎡⎫=∈-⎪⎢⎪-⎣⎭, 又21242S yx bc x ≤-⨯+-,故可得213324S a bc ⎛≤-⨯= +⎝⎭, 当且仅当60A =,b c =,即三角形为等边三角形时,取得最大值,故选项A 正确; 对于选项B :因为sin 2sin B C =,所以由正弦定理得2b c =,若b 是直角三角形的斜边,则有222a c b +=,即2244c c +=,得23c =,故选项B 错误; 对于选项C ,由2A C =,可得π3B C =-,由sin 2sin B C =得2b c =,由正弦定理得,sin sin b c B C=,即()2sin π3sin c c C C =-, 所以sin32sin C C =,化简得2sin cos 22cos sin 2sin C C C C C +=, 因为sin 0C ≠,所以化简得23cos 4C =, 因为2b c =,所以B C >,所以3cos C =,则1sin 2C =,所以sin 2sin 1B C ==,所以π2B =,π6C =,π3A =,因为2a =,所以233c =,33b =,所以ABC 的周长为223+,故选项C 正确; 对于选项D ,由C 可知,ABC 为直角三角形,且π2B =,π6C =,π3A =,。
一、函数的概念与基本初等函数多选题1.已知函数()sin()(0)f x x ωϕω=+>满足()()00112f x f x =+=-,且()f x 在()00,1x x +上有最小值,无最大值.则( )A .0112f x ⎛⎫+=- ⎪⎝⎭B .若00x =,则()sin 26f x x ππ⎛⎫=-⎪⎝⎭C .()f x 的最小正周期为3D .()f x 在(0,2019)上的零点个数最少为1346个 【答案】AC 【分析】根据正弦函数图象的对称性可判断A ;根据已知三角函数值求角的方法,可得052,6x k k Z ωϕππ+=-∈,0(1)2,6x k k Z πωϕπ++=-∈,两式相减可求出ω,进而求得周期,从而可判断B 和C 选项;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期,为了算出零点“至少”有多少个,可取(0)0f =,进而可判断D . 【详解】解:由题意得,()f x 在()00,1x x +的区间中点处取得最小值, 即0112f x ⎛⎫+=- ⎪⎝⎭,所以A 正确; 因为()()00112f x f x =+=-, 且()f x 在()00,1x x +上有最小值,无最大值, 所以不妨令052,6k k Z ωϕππ+=-∈, ()012,6x k k Z πωϕπ++=-∈,两式相减得,23πω=, 所以23T πω==,即B 错误,C 正确;因为3T =,所以函数()f x 在区间(0,2019)上的长度恰好为673个周期, 当(0)0f =,即k ϕπ=时,()f x 在区间(0,2019)上的零点个数至少为673211345⨯-=个,即D 错误.故选:AC . 【点睛】本题考查与三角函数有关的命题的真假关系,结合三角函数的图象与性质,利用特殊值法以及三角函数的性质是解题的关键,综合性较强.2.已知()f x 为定义在R 上且周期为5的函数,当[)0,5x ∈时,()243f x x x =-+.则下列说法中正确的是( )A .()f x 的增区间为()()15,2535,55k k k k ++⋃++,k Z ∈B .若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1C .当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4D .若()20y kx k =->与()y f x =有3个交点,则k 的取值范围为12,23⎛⎫ ⎪⎝⎭【答案】BC 【分析】首先作出()f x 的图象几个周期的图象,由于单调区间不能并,可判断选项A 不正确;利用数形结合可判断选项B 、C ;举反例如1k =时经分析可得()20y kx k =->与()y f x =有3个交点,可判断选项D 不正确,进而可得正确选项. 【详解】对于选项A :单调区间不能用并集,故选项A 不正确;对于选项B :由图知若y a =与()y f x =在[]5,7-上有10个零点,则a 的范围是()0,1, 故选项B 正确;对于选项C :()10f =,()43f =,由图知当[]0,x a ∈时,()f x 的值域为[]0,3,则a 的取值范围[]1,4,故选项C 正确;对于选项D :当1k =时,直线为2y x =-过点()5,3,()f x 也过点()5,3,当10x =时,1028y =-=,直线过点()10,8,而点()10,8不在()f x 图象上,由图知:当1k =时,直线为2y x =-与()y f x =有3个交点,由排除法可知选项D 不正确,故选:BC 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.3.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”; 对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.4.设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,也叫取整函数.令()[]f x x x =-,以下结论正确的有( ) A .()1.10.9f -= B .函数()f x 为奇函数 C .()()11f x f x +=+ D .函数()f x 的值域为[)0,1【答案】AD 【分析】根据高斯函数的定义逐项检验可得正确的选项. 【详解】对于A ,()[]1.11 1.120..9.111f --=-+=-=-,故A 正确. 对于B ,取 1.1x =-,则()1.10.9f -=,而()[]1.1-1.1 1.110.11.1f =-==, 故()()1.1 1.1f f -≠-,所以函数()f x 不为奇函数,故B 错误.对于C ,则()[][]()11111f x x x x x f x +=+-+=+--=,故C 错误.对于D ,由C 的判断可知,()f x 为周期函数,且周期为1, 当01x ≤≤时,则当0x =时,则()[]0000f =-=, 当01x <<时,()[]0f x x x x x =-=-=, 当1x =时,()[]11110f x =-=-=,故当01x ≤≤时,则有()01f x ≤<,故函数()f x 的值域为[)0,1,故D 正确.故选:AD . 【点睛】思路点睛:对于函数的新定义问题,注意根据定义展开讨论性质的讨论,并且注意性质讨论的次序,比如讨论函数值域,可以先讨论函数的奇偶性、周期性.5.已知函数4()nnf x x x =+(n 为正整数),则下列判断正确的是( ) A .函数()f x 始终为奇函数B .当n 为偶数时,函数()f x 的最小值为4C .当n 为奇数时,函数()f x 的极小值为4D .当1n =时,函数()y f x =的图象关于直线2y x =对称 【答案】BC 【分析】由已知得()()4()nnf x x x -=-+-,分n 为偶数和n 为奇数得出函数()f x 的奇偶性,可判断A 和;当n 为偶数时,>0n x ,运用基本不等式可判断B ;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,构造函数4()g t t t=+,利用其单调性可判断C ;当1n =时,取函数4()f x x x=+上点()15P ,,求出点P 关于直线2y x =对称的对称点,代入可判断D.【详解】因为函数4()nn f x x x=+(n 为正整数),所以()()4()n n f x x x -=-+-, 当n 为偶数时,()()44()()nn nnf x x x f x x x -=-+=+=-,函数()f x 是偶函数; 当n 为奇数时,()4()nnf x x f x x-=-+=--,函数()f x 是奇函数,故A 不正确;当n 为偶数时,>0n x ,所以4()4n n f x x x =+≥=,当且仅当4n n x x =时, 即2>0n x =取等号,所以函数()f x 的最小值为4,故B 正确;当n 为奇数时,令n t x =,则>0,>0;0,0x t x t <<,函数()f x 化为4()g t t t=+, 而4()g t t t=+在()()22-∞-+∞,,,上单调递增,在()()2002-,,,上单调递递减, 所以4()g t t t =+在2t =时,取得极小值4(2)242g =+=,故C 正确; 当1n =时,函数4()f x x x=+上点()15P ,,设点P 关于直线2y x =对称的对称点为()000P x y ,,则000051121+5+222y x x y -⎧=-⎪-⎪⎨⎪⨯=⎪⎩,解得00175195x y ⎧=⎪⎪⎨⎪=⎪⎩,即0171955P ⎛⎫ ⎪⎝⎭,,而将0171955P ⎛⎫⎪⎝⎭,代入4()f x x x=+不满足, 所以函数()y f x =的图象不关于直线2y x =对称,故D 不正确, 故选:BC . 【点睛】本题考查综合考查函数的奇偶性,单调性,对称性,以及函数的最值,属于较难题.6.已知()f x 是定义域为(,)-∞+∞的奇函数,()1f x +是偶函数,且当(]0,1x ∈时,()()2f x x x =--,则( )A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[-1,1]D .()f x 的图象与曲线cos y x =在()0,2π上有4个交点 【答案】BCD 【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得()()4f x f x =-,则()f x 是周期为4的周期函数,可判断A ;对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C . 对于D ,构造函数()()cos g x f x x =-,利用导数法求出单调区间,结合零点存在性定理,即可判断D . 【详解】 根据题意,对于A ,()f x 为R 上的奇函数,()1f x +为偶函数,所以()f x 图象关于1x =对称,(2)()()f x f x f x +=-=- 即(4)(2)()f x f x f x +=-+= 则()f x 是周期为4的周期函数,A 错误;对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-, 则()()201920201f f +=-;故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<, (0)0f =,函数关于1x =对称,所以函数()f x 的值域[11]-,.故C 正确. 对于D ,(0)0f =,且(]0,1x ∈时,()()2f x x x =--,[0,1],()(2)x f x x x ∴∈=--,[1,2],2[0,1],()(2)(2)x x f x f x x x ∴∈-∈=-=--, [0,2],()(2)x f x x x ∴∈=--,()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+, ()f x 的周期为4,[2,4],()(2)(4)x f x x x ∴∈=--,[4,6],()(4)(6)x f x x x ∴∈=---, [6,2],()(6)(8)x f x x x π∴∈=--,设()()cos g x f x x =-,当2[0,2],()2cos x g x x x x ∈=-+-,()22sin g x x x '=-++,设()(),()2cos 0h x g x h x x =''=-+<在[0,2]恒成立,()h x 在[0,2]单调递减,即()g x '在[0,2]单调递减,且(1)sin10,(2)2sin20g g '=>'=-+<, 存在00(1,2),()0x g x ∈'=,0(0,),()0,()x x g x g x ∈'>单调递增, 0(,2),()0,()x x g x g x ∈'<单调递减,0(0)1,(1)1cos10,()(1)0,(2)cos20g g g x g g =-=->>>=->,所以()g x 在0(0,)x 有唯一零点,在0(,2)x 没有零点, 即2(]0,x ∈,()f x 的图象与曲线cos y x =有1个交点,当[]24x ∈,时,,()()2cos 6+8cos x x g x f x x x =-=--, 则()26+sin g x x x '=-,()()26+sin x x h x g x ='=-,则()2+cos >0h x x '=,所以()g x '在[]24,上单调递增, 且()()3sin3>0,22+sin20g g '='=-<,所以存在唯一的[][]12324x ∈⊂,,,使得()0g x '=, 所以()12,x x ∈,()0g x '<,()g x 在()12,x 单调递减,()14x x ∈,,()>0g x ',()g x 在()14x ,单调递增,又()31cos30g =--<,所以()1(3)0g x g <<, 又()()2cos2>0,4cos4>0g g =-=-,所以()g x 在()12,x 上有一个唯一的零点,在()14x ,上有唯一的零点, 所以当[]24x ∈,时,()f x 的图象与曲线cos y x =有2个交点,, 当[]46x ∈,时,同[0,2]x ∈,()f x 的图象与曲线cos y x =有1个交点, 当[6,2],()(6)(8)0,cos 0x f x x x y x π∈=--<=>,()f x 的图象与曲线cos y x =没有交点,所以()f x 的图象与曲线cos y x =在()0,2π上有4个交点,故D 正确; 故选:BCD . 【点睛】本题考查抽象函数的奇偶性、周期性、两函数图像的交点,属于较难题.7.设函数g (x )=sinωx (ω>0)向左平移5πω个单位长度得到函数f (x ),已知f (x )在[0,2π]上有且只有5个零点,则下列结论正确的是( )A .f (x )的图象关于直线2x π=对称B .f (x )在(0,2π)上有且只有3个极大值点,f (x )在(0,2π)上有且只有2个极小值点C .f (x )在(0,)10π上单调递增 D .ω的取值范围是[1229,510) 【答案】CD 【分析】利用正弦函数的对称轴可知,A 不正确;由图可知()f x 在(0,2)π上还可能有3个极小值点,B 不正确;由2A B x x π≤<解得的结果可知,D 正确;根据()f x 在3(0,)10πω上递增,且31010ππω<,可知C 正确. 【详解】依题意得()()5fx g x πω=+sin[()]5x πωω=+sin()5x πω=+, 2T πω=,如图:对于A ,令52x k ππωπ+=+,k Z ∈,得310k x ππωω=+,k Z ∈,所以()f x 的图象关于直线310k x ππωω=+(k Z ∈)对称,故A 不正确; 对于B ,根据图象可知,2A B x x π≤<,()f x 在(0,2)π有3个极大值点,()f x 在(0,2)π有2个或3个极小值点,故B 不正确, 对于D ,因为5522452525A x T ππππωωωω=-+=-+⨯=,22933555B x T ππππωωωω=-+=-+⨯=,所以2429255πππωω≤<,解得1229510ω≤<,所以D 正确;对于C ,因为1123545410T ππππωωωω-+=-+⨯=,由图可知()f x 在3(0,)10πω上递增,因为29310ω<<,所以33(1)0101010πππωω-=-<,所以()f x 在(0,)10π上单调递增,故C 正确;故选:CD. 【点睛】本题考查了三角函数的相位变换,考查了正弦函数的对称轴和单调性和周期性,考查了极值点的概念,考查了函数的零点,考查了数形结合思想,属于中档题.8.德国著名数学家狄利克雷(Dirichlet ,1805~1859)在数学领域成就显著.19世纪,狄利克雷定义了一个“奇怪的函数” ()1,0,R x Qy f x x C Q ∈⎧==⎨∈⎩其中R 为实数集,Q 为有理数集.则关于函数()f x 有如下四个命题,正确的为( ) A .函数()f x 是偶函数B .1x ∀,2R xC Q ∈,()()()1212f x x f x f x +=+恒成立 C .任取一个不为零的有理数T ,f x Tf x 对任意的x ∈R 恒成立D .不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形 【答案】ACD【分析】根据函数的定义以及解析式,逐项判断即可. 【详解】对于A ,若x Q ∈,则x Q -∈,满足()()f x f x =-;若R x C Q ∈,则R x C Q -∈,满足()()f x f x =-;故函数()f x 为偶函数,选项A 正确;对于B ,取12,R R x C Q x C Q ππ=∈=-∈,则()()1201f x x f +==,()()120f x f x +=,故选项B 错误;对于C ,若x Q ∈,则x T Q +∈,满足()()f x f x T =+;若R x C Q ∈,则R x T C Q +∈,满足()()f x f x T =+,故选项C 正确;对于D ,要为等腰直角三角形,只可能如下四种情况:①直角顶点A 在1y =上,斜边在x 轴上,此时点B ,点C 的横坐标为无理数,则BC 中点的横坐标仍然为无理数,那么点A 的横坐标也为无理数,这与点A 的纵坐标为1矛盾,故不成立;②直角顶点A 在1y =上,斜边不在x 轴上,此时点B 的横坐标为无理数,则点A 的横坐标也应为无理数,这与点A 的纵坐标为1矛盾,故不成立;③直角顶点A 在x 轴上,斜边在1y =上,此时点B ,点C 的横坐标为有理数,则BC 中点的横坐标仍然为有理数,那么点A 的横坐标也应为有理数,这与点A 的纵坐标为0矛盾,故不成立;④直角顶点A 在x 轴上,斜边不在1y =上,此时点A 的横坐标为无理数,则点B 的横坐标也应为无理数,这与点B 的纵坐标为1矛盾,故不成立.综上,不存在三个点()()11,A x f x ,()()22,B x f x ,()()33C x f x ,,使得ABC ∆为等腰直角三角形,故选项D 正确. 故选:ACD . 【点睛】本题以新定义为载体,考查对函数性质等知识的运用能力,意在考查学生运用分类讨论思想,数形结合思想的能力以及逻辑推理能力,属于难题.9.已知函数12()123x x x f x x x x ++=+++++,下列关于函数()f x 的结论正确的为( ) A .()f x 在定义域内有三个零点 B .函数()f x 的值域为R C .()f x 在定义域内为周期函数 D .()f x 图象是中心对称图象【答案】ABD 【分析】将函数变形为111()3123f x x x x ⎛⎫=-++⎪+++⎝⎭,求出定义域,结合导数求函数的单调性即可判断BC ,由零点存在定理结合单调性可判断A ,由()()46f x f x --=+可求出函数的对称点,即可判断D. 【详解】解:由题意知,1111()111312311123f x x x x x x x ⎛⎫=-+-+-=-++ ⎪++++++⎝⎭, 定义域为()()()(),33,22,11,-∞-⋃--⋃--⋃-+∞,()()()22211()01213f x x x x '=++>+++,所以函数在()()()(),3,3,2,2,1,1,-∞------+∞定义域上单调递增,C 不正确; 当1x >-时,()3371230,004111523f f ⎛⎫-=-++<=+> ⎪⎝⎭,则()1,-+∞上有一个零点, 当()2,1x ∈--时,750,044f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()2,1x ∈--上有一个零点, 当()3,2x ∈--时,1450,052f f ⎛⎫⎛⎫-<-> ⎪ ⎪⎝⎭⎝⎭,所以在()3,2x ∈--上有一个零点, 当3x <-,()0f x >,所以在定义域内函数有三个零点,A 正确; 当0x <,1x +→-时,()f x →-∞,当x →+∞时,()f x →+∞, 又函数在()1,-+∞递增,且在()1,-+∞上有一个零点,则值域为R ,B 正确;()1111(4)363612311123f x f x x x x x x x ⎡⎤⎛⎫⎛⎫--=+++=--++=- ⎪ ⎪⎢⎥++++++⎝⎭⎝⎭⎣⎦, 所以()()46f x f x --=+,所以函数图象关于()2,3-对称,D 正确; 故选:ABD. 【点睛】 结论点睛:1、()y f x =与()y f x =-图象关于x 轴对称;2、()y f x =与()y f x =-图象关于y 轴对称;3、()y f x =与()2y f a x =-图象关于x a =轴对称;4、()y f x =与()2y a f x =-图象关于y a =轴对称;5、()y f x =与()22y b f a x =--图象关于(),a b 轴对称.10.已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是( ) A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤- ⎥⎝⎦, 故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.二、导数及其应用多选题11.已知(0,1)x ∈,则下列正确的是( )A .cos 2x x π+<B .22xx <C .sin 2x >D .1ln 1x x <-【答案】ABC【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+ 令()sin 2x f x =,()224xh x x =+()()f x f x -=-,()sin2xf x =是奇函数,()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t =, 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =单调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.12.关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点B .函数yf xx 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【分析】对于A ,利用导数研究函数()f x 的极值点即可; 对于B ,利用导数判断函数y f xx 的单调性,再利用零点存在性定理即得结论;对于C ,参变分离得到22ln xk x x <+,构造函数()22ln x g x x x=+,利用导数判断函数()g x 的最小值的情况;对于D ,利用()f x 的单调性,由()()12f x f x =得到1202x x <<<,令()211x t t x =>,由()()12f x f x =得21222ln t x x t t-+=,所以要证124x x +>,即证2224ln 0t t t -->,构造函数即得. 【详解】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=,当()0,2x ∈时,0f x,()f x 单调递减,当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误.B :()2ln y f x x x x x=-=+-,22221210x x y x x x -+'=-+-=-<,所以函数在0,上单调递减.又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<,所以函数yf xx 有且只有1个零点,故B 正确.C :若()f x kx >,即2ln x kx x +>,则22ln x k x x <+.令()22ln x g x x x=+,则()34ln x x xg x x-+-'=.令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增,当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错误. D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =,由()()12f x f x =,得121222ln ln x x x x +=+, ∴211222ln ln x x x x -=-,即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t-=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >, ∴证2224ln 0t t t -->.令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->, ∴124x x +>,故D 正确. 故选:BD . 【点睛】关键点点睛:利用导数研究函数的单调性、极值点,结合零点存在性定理判断A 、B 的正误;应用参变分离,构造函数,并结合导数判断函数的最值;由函数单调性,应用换元法并构造函数,结合分析法、导数证明D 选项结论.13.下列不等式正确的有( ) A2ln 3< B.ln π<C.15< D.3ln 2e <【答案】CD 【分析】 构造函数()ln xf x x=,利用导数分析其单调性,然后由()2f f >、ff >、(4)f f >、()f f e <得出每个选项的正误.【详解】 令()ln x f x x =,则()21ln xf x x-'=,令()0f x '=得x e = 易得()f x 在()0,e 上单调递增,在(),e +∞上单调递减所以①()2f f>,即ln 22>22ln ln 3>=,故A 错误;②ff >>,所以可得ln π>B 错误;③(4)f f >ln 4ln 242>=,即ln152ln 2=>所以ln15ln >15<,故C 正确;④()f f e <ln e e <3ln 21e<,即3ln 22e <所以3eln 2<,故D 正确; 故选:CD 【点睛】关键点点睛:本题考查的是构造函数,利用导数判断函数的单调性,解题的关键是函数的构造和自变量的选择.14.已知函数()32f x x ax x c =+-+(x ∈R ),则下列结论正确的是( ).A .函数()f x 一定存在极大值和极小值B .若函数()f x 在1()x -∞,、2()x ,+∞上是增函数,则21x x -≥ C .函数()f x 的图像是中心对称图形D .函数()f x 的图像在点00())(x f x ,(0x R ∈)处的切线与()f x 的图像必有两个不同的公共点 【答案】ABC 【分析】首先求函数的导数2()3210f x x ax =+-=',再根据极值点与导数的关系,判断AB 选项;证明()()2()333a a af x f x f -++--=-,判断选项C ;令0a c ==,求切线与()f x 的交点个数,判断D 选项.【详解】A 选项,2()3210f x x ax =+-='的24120a ∆=+>恒成立,故()0f x '=必有两个不等实根,不妨设为1x 、2x ,且12x x <,令()0f x '>,得1x x <或2x x >,令()0f x '<,得12x x x <<,∴函数()f x 在12()x x ,上单调递减,在1()x -∞,和2()x ,+∞上单调递增, ∴当1x x =时,函数()f x 取得极大值,当2x x =时,函数()f x 取得极小值,A 对,B 选项,令2()3210f x x ax =+-=',则1223ax x +=-,1213x x ⋅=-,易知12x x <,∴213x x -==≥,B对, C 选项,易知两极值点的中点坐标为(())33a a f --,,又23()(1)()333a a a f x x x f -+=-+++-,∴()()2()333a a af x f x f -++--=-, ∴函数()f x 的图像关于点(())33aa f --,成中心对称,C 对,D 选项,令0a c ==得3()f x x x =-,()f x 在(0)0,处切线方程为y x =-, 且3y xy x x=-⎧⎨=-⎩有唯一实数解, 即()f x 在(0)0,处切线与()f x 图像有唯一公共点,D 错, 故选:ABC . 【点睛】方法点睛:解决函数极值、最值综合问题的策略:1、求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小;2、求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论;3、函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.15.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.16.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩; 即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增;对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立, 因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③; 对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)17.某同学对函数()sin e e x xxf x -=-进行研究后,得出以下结论,其中正确的是( )A .函数()y f x =的图象关于原点对称B .对定义域中的任意实数x 的值,恒有()1f x <成立C .函数()y f x =的图象与x 轴有无穷多个交点,且每相邻两交点的距离相等D .对任意常数0m >,存在常数b a m >>,使函数()y f x =在[]a b ,上单调递减 【答案】BD 【分析】由函数奇偶性的定义即可判断选项A ;由函数的性质可知()sin 1x xx f x e e -=<-可得到sin x x x e e -<-,即sin 0x x e e x --->,构造函数()sin 0x x h x e e x x -=-->,求导判断单调性,进而求得最值即可判断选项B ;函数()y f x =的图象与x 轴的交点坐标为()0,πk (k Z ∈,且)0k ≠,可判断选项C ;求导分析()0f x '≤时成立的情况,即可判断选项D.【详解】对于选项A :函数()sin e ex xxf x -=-的定义域为{}|0x x ≠,且 ()()sin sin x x x xx xf x f x e e e e----===--,所以()f x 为偶函数,即函数()y f x =的图象关于y 轴对称,故A 选项错误; 对于选项B :由A 选项可知()f x 为偶函数,所以当0x >时,0x x e e -->,所以()sin 1x xx f x e e -=<-,可得到sin x x x e e -<-,即sin 0x xe e x --->,可设()sin 0x x h x e e x x -=-->,,()cos x x h x e e x -'=+±,因为2x x e e -+>,所以()cos 0x x h x e e x -±'=+>,所以()h x 在()0+∞,上单调递增,所以()()00h x h >=,即()sin 1x xx f x e e -=<-恒成立,故选项B 正确;对于选项C :函数()y f x =的图象与x 轴的交点坐标为()()00k k Z k π∈≠,,且,交点()0π-,与()0π,间的距离为2π,其余任意相邻两点的距离为π,故C 选项错误; 对于选项D :()()()()2cos sin 0xx x x xxe e x e e xf x ee-----+-'=≤,可化为e x (cos x -sin x )()cos sin 0xex x --+≤,不等式两边同除以x e -得,()2cos sin cos sin x e x x x x -≤+,当()32244x k k k Z ππππ⎛⎫∈++∈⎪⎝⎭,,cos sin 0x x -<,cos sin 0x x +>,区间长度为12π>,所以对于任意常数m >0,存在常数b >a >m ,32244a b k k ππππ⎛⎫∈++⎪⎝⎭,,,()k Z ∈,使函数()y f x =在[]a b ,上单调递减,故D 选项正确;故选:BD 【点睛】思路点睛:利用导数研究函数()f x 的最值的步骤: ①写定义域,对函数()f x 求导()'f x ;②在定义域内,解不等式()0f x '>和()0f x '<得到单调性; ③利用单调性判断极值点,比较极值和端点值得到最值即可.18.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( )A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根. 设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.19.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确; 任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.20.已知函数()()()221x f x x e a x =-+-有两个零点,则a 的可能取值是( ) A .1- B .0 C .1 D .2【答案】CD 【分析】求出()f x 的导数,讨论a 的范围,结合函数的单调性和零点存在性定理可判断求出. 【详解】解:∵函数()()()221x f x x e a x =-+-, ∴()()()()()12112xx f x x e a x x e a '=-+-=-+,①若0a =,那么()()0202xf x x e x =⇔-=⇔=,函数()f x 只有唯一的零点2,不合题意; ②若0a >,那么20x e a +>恒成立, 当1x <时,()0f x '<,此时函数为减函数; 当1x >时,()0f x '>,此时函数为增函数; 此时当1x =时,函数()f x 取极小值e -,由()20f a =>,可得:函数()f x 在1x >存在一个零点; 当1x <时,x e e <,210x -<-<,∴()()()()()222121x f x x e a x x e a x =-+->-+-()()211a x e x e =-+--,令()()2110a x e x e -+--=的两根为1t ,2t ,且12t t <, 则当1x t <,或2x t >时,()()()2110f x a x e x e >-+-->, 故函数()f x 在1x <存在一个零点;即函数()f x 在R 上存在两个零点,满足题意; ③若02ea -<<,则()ln 2ln 1a e -<=, 当()ln 2x a <-时,()1ln 21ln 10x a e -<--<-=,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当()ln 21a x -<<时,10x -<,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+<恒成立,故()f x 单调递减,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()(1)20xf x x e a '=-+>恒成立,故()f x 单调递增,故当()ln 2x a =-时,函数取极大值,由()()()()()2ln 2ln 222ln 21f a a a a a ⎡⎤⎡⎤-=---+--⎣⎦⎣⎦(){}2ln 2210a a ⎡⎤⎣⎦=--+<得:函数()f x 在R 上至多存在一个零点,不合题意; ④若2ea =-,则()ln 21a -=, 当()1ln 2x a <=-时,10x -<,()ln 2220a x e a e a -+<+=,即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,当1x >时,10x ->,()ln 2220a x e a e a -+>+=, 即()()()120xf x x e a '=-+>恒成立,故()f x 单调递增,故函数()f x 在R 上单调递增,函数()f x 在R 上至多存在一个零点,不合题意;⑤若2ea <-,则()ln 2ln 1a e ->=, 当1x <时,10x -<,()ln 2220a x e a e a -+<+=,。
高中2021届高三数学第三次调查研究考试试题理〔含解析〕一、选择题:在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.,,那么( )A. B. C. D.【答案】B【解析】【分析】可求出N,然后进展交集的运算即可.【详解】∵,,∴应选:B【点睛】此题考察二次不等式的解法,描绘法、列举法表示集合的概念,以及交集的运算.对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】先化简复数,再找到其对应的点所在的象限得解.【详解】由题得.所以复数对应的点为〔-1,-1〕,点在第三象限.应选:C【点睛】此题主要考察复数的除法运算和复数的几何意义,意在考察学生对这些知识的理解掌握程度和分析推理才能.,那么( )A. B. C. D.【答案】D【解析】【分析】直接利用二倍角余弦公式与弦化切即可得到结果.【详解】∵,∴,应选:D【点睛】此题考察的知识要点:三角函数关系式的恒等变变换,同角三角函数关系式的应用,主要考察学生的运算才能和转化才能,属于根底题型.满足,,,那么=( )A. B. C. D.【答案】D【解析】【分析】直接利用向量的模的公式求解.【详解】由题得.应选:D【点睛】此题主要考察向量的模的求法,意在考察学生对这些知识的理解掌握程度和分析推理才能.上的点到其焦点的间隔为,那么该抛物线的HY方程为( )A. B.C. D.【答案】A【解析】【分析】利用抛物线的定义,转化列出方程求出a,即可得到抛物线方程.【详解】抛物线的准线方程,∵抛物线上的点到其焦点的间隔为,∴,∴,即该抛物线的HY方程为,应选:A【点睛】此题考察抛物线的简单性质的应用,抛物线方程的求法,是根本知识的考察.的概率分布列如下表,那么=( )A. B. C. D.【答案】C【解析】【分析】根据随机变量的概率分布列,求出a的值,再利用和概率公式计算的值.【详解】解:根据随机变量的概率分布列知,1,解得;又,∴=1或者=3,那么应选:C.【点睛】此题考察了离散型随机变量的分布列计算问题,考察转化思想与计算才能,是根底题.7.,命題,那么( )A. 是真命题,B. 是真命题,C. 是假命题,D. 是假命题,【答案】A【解析】【分析】利用导数求出函数的最小值,可知p是真命题,根据全称命题的否认为特称命题,可得结果. 【详解】由题意可得,令,那么∴在上单调递减,在上单调递增,∴,即p是真命题,命題的否认为:,应选:A【点睛】此题考察利用导数求函数的最小值,考察全称命题的否认为特称命题,属于容易题.与的局部图像如下图,那么( )A. B.C. D.【答案】B【解析】【分析】先根据最值分析出A的值,再根据周期分析出的值.【详解】因为A>0,所以由题得应选:B【点睛】此题主要考察正弦函数余弦函数的图像和性质,意在考察学生对这些知识的理解掌握程度和分析推理才能.y=sin2x的图象可能是A. B.C. D.【答案】D【解析】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:〔1〕由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;〔2〕由函数的单调性,判断图象的变化趋势;〔3〕由函数的奇偶性,判断图象的对称性;〔4〕由函数的周期性,判断图象的循环往复.边形,如下图是利用刘徽的割圆术设计的程序框图,假设输出的,那么的值可以是( )(参考数据: ,,)A. B. C. D.【答案】C【解析】模拟执行程序,可得:,,不满足条件,,,不满足条件,,,满足条件,退出循环,输出的值是.故.应选C.11.如图,边长为的正方形中,点分别是的中点,将,,分别沿,,折起,使得、、三点重合于点,假设四面体的四个顶点在同一个球面上,那么该球的外表积为( )A. B. C. D.【答案】A【解析】【分析】把棱锥扩展为正四棱柱,求出正四棱柱的外接球的半径就是三棱锥的外接球的半径,从而可求球的外表积.【详解】解:由题意可知△A′EF是等腰直角三角形,且A′D⊥平面A′EF.三棱锥的底面A′EF扩展为边长为1的正方形,然后扩展为正四棱柱,三棱锥的外接球与正四棱柱的外接球是同一个球,正四棱柱的对角线的长度就是外接球的直径,直径为:.∴球的半径为,∴球的外表积为6π.应选:A.【点睛】此题考察几何体的折叠问题,几何体的外接球的半径的求法,考察球的外表积,考察空间想象才能.的左、右焦点分别为,,过作轴的垂线与双曲线在第一象限的交点为,,,点是双曲线右支上的动点,且恒成立,那么双曲线的离心率的取值范围是( )A. B. C. D.【答案】B【解析】【分析】根据点坐标得到线段|F2Q|和|F2A|,从而得>,进而有|AQ|=,结合|AF1|+|AQ|>|F1F2|,即可求得离心率的范围.【详解】AF2垂直于x轴,那么|F2A|为双曲线的通径的一半,|F2A|=,A的坐标为,|AF1|=.Q,∴|F2Q|=.又|F2Q|>|F2A|⇒>,故有|AQ|=;A在第一象限上即在右支上,那么有|AF1|+|AQ|>|F1F2|,即+->×2c⇒>3c⇒7a>6c⇒e=<.∵e>1,∴1<e<.答案:B【点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或者不等式,再根据的关系消掉得到的关系式,而建立关于的方程或者不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题〔将答案填在答题纸上〕的展开式中,二项式系数最大的项为________.【答案】【解析】【分析】判断二项展开式的项数,即可判断二项式系数最大的项.【详解】解:因为的展开式中,一共有7项,所以二项式系数最大的项是中间项,即第4项.所以二项式系数最大的项为,故答案为:【点睛】此题考察二项式定理系数的性质,展开式是奇数项,那么中间项二项式系数最大,偶数项,中间两项二项式系数相等且最大.满足,那么的最小值为_______.【答案】【解析】【分析】利用“乘1法〞和根本不等式即可得出.【详解】解:∵正实数满足,∴〔2a+b〕,当且仅当时取等号.∴的最小值为故答案为.【点睛】此题考察了“乘1法〞和根本不等式的应用,属于根底题.的定义城为,数列满足,且是递增数列,那么实数的取值范围是_____.【答案】【解析】【分析】根据得到关于a的不等式组,解之即得.【详解】由题得.故答案为:【点睛】此题主要考察分段函数和数列的单调性的应用,意在考察学生对这些知识的理解掌握程度和分析推理才能.中,,,,是的内心,假设,其中,,那么动点的轨迹所覆盖的面积为_______.【答案】【解析】试题分析:由,.又由.所以阴影局部面积.故填.考点:1.向量知识.2.向量的坐标表示形式.三、解答题〔解容许写出文字说明、证明过程或者演算步骤.〕中,,,,成等比数列.(1)求数列的通项公式;(2)求数列的前项和为.【答案】(1) 或者(2) 或者5n.【解析】【分析】(1) 设等差数列的公差为,由题得,解方程得到d的值,即得数列的通项公式;〔2〕利用等差数列的前n项和公式求.【详解】(1)设等差数列的公差为,那么,,因为,,成等比数列,所以,化简的,那么或者当时,.当时,,(2)由(1)知当时,.当时,那么.【点睛】此题主要考察等差数列的通项的求法和等比数列的性质,考察等差数列的前n项和的求法,意在考察学生对这些知识的理解掌握程度和分析推理才能.18.每年圣诞节,各地的餐馆都出现了用餐需预定的现象,致使--些人在没有预定的情况下难以找到用餐的餐馆,针对这种现象,专家对人们“用餐地点"以及“性别〞作出调查,得到的情况如下表所示:在家用餐在餐馆用餐总计女性男性总计(1)完成上述列联表;(2)根据表中的数据,试通过计算判断是否有的把握说明“用餐地点〞与“性别"有关;(3)假设在承受调查的所有人男性中按照“用餐地点〞进展分层抽样,随机抽取人,再在人中抽取人赠送餐馆用餐券,记收到餐馆用餐券的男性中在餐馆用餐的人数为,求的分布列和数学期望.附:【答案】〔1〕见解析;〔2〕见解析;〔3〕见解析【解析】【分析】〔1〕根据表格中数据的关系,完善列联表;〔2〕根据表中数据,计算观测值,对照临界值即可得出结论;〔3〕由题意可知的可能值为,求出相应的概率值,即可得到的分布列和数学期望. 【详解】(1)所求的列联表如下:在家用餐在餐馆用餐总计女性男性总计(2)在本次试验中故有的把握说明“用餐地点〞与“性别〞有关.(3)由题意可知的可能值为,,,的分布列为【点睛】此题考察频率分布直方图的应用,HY性检验以及离散型随机变量的期望的求法,分布列的求法,考察计算才能.19.如图,在四棱锥中,底面是梯形,,,,,侧面底面.(1)求证:平面平面;(2)假设,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】试题分析:〔1〕:取AB中点M,连接DM,可得DB⊥AD又侧面SAD⊥底面ABCD,可得BD⊥平面SAD,即可得平面SBD⊥平面SAD〔2〕以D为原点,DA,DB所在直线分别为x,y轴建立空间直角坐标系,求出设面SCB的法向量为:,面SBD的法向量为.利用向量即可求解.解析:〔1〕因为,,所以,是等腰直角三角形,故,因为,,所以∽,,即,因为侧面底面,交线为,所以平面,所以平面平面.〔2〕过点作交的延长线于点,因为侧面底面,所以底面,所以是底面与底面所成的角,即,过点在平面内作,因为侧面底面,所以底面,如图建立空间直角坐标系,设,,那么,,设是平面法向量,那么取,设是平面的法向量,那么取,所以二面角的余弦值为.的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为.〔1〕求椭圆的方程;〔2〕设圆上任意一点处的切线交椭圆于点,试判断是否为定值?假设为定值,求出该定值;假设不是定值,请说明理由.【答案】〔1〕;〔2〕见解析.【解析】【分析】〔I〕结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可。
山东省高中调研试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是山东省的简称?A. 鲁B. 苏C. 豫D. 皖答案:A2. 山东省的省会是以下哪个城市?A. 济南B. 青岛C. 烟台D. 威海答案:A3. 山东省位于我国的哪个地理区域?A. 东北B. 西北C. 华东D. 中南答案:C4. 下列哪项不是山东省的非物质文化遗产?A. 泰山石敢当B. 鲁锦C. 京剧D. 潍坊风筝答案:C5. 山东省的著名历史人物孔子,他的学说主要属于哪个学派?A. 儒家B. 道家C. 法家D. 墨家答案:A6. 山东省的海岸线总长度约为多少公里?A. 1500公里B. 3000公里C. 2000公里D. 4000公里答案:C7. 山东省的人口数量在全国范围内排名第几?A. 第一B. 第二C. 第三D. 第四答案:B8. 山东省的主要农作物有哪些?A. 小麦、玉米、水稻B. 小麦、玉米、棉花C. 小麦、水稻、棉花D. 玉米、水稻、棉花答案:B9. 下列哪项不是山东省的著名旅游景点?A. 泰山B. 曲阜孔庙C. 蓬莱阁D. 故宫答案:D10. 山东省的气候类型是什么?A. 温带季风气候B. 亚热带季风气候C. 热带季风气候D. 寒带气候答案:A二、填空题(每空1分,共10分)11. 山东省的省花是________。
答案:牡丹12. 山东省的省树是________。
答案:槐树13. 山东省的省鸟是________。
答案:白鹭14. 山东省的省石是________。
答案:泰山石15. 山东省的省歌是________。
答案:《山东之歌》三、简答题(每题5分,共10分)16. 简述山东省的地理位置和地形特点。
答案:山东省位于中国东部沿海地区,东临黄海,西接河南省,南界江苏省,北靠河北省。
地形以平原和丘陵为主,地势东高西低,有著名的泰山等山脉。
17. 描述山东省的经济发展情况。
答案:山东省是中国的经济大省之一,拥有丰富的农业资源和发达的工业基础。
高三易错题(三)1.________there is a last-minute offer, transport workers, refuse collectors, nurses and postal workers will begin lightning strikes after Easter.A. UnlessB. IfC. UntilD. While2. ---We cannot tolerate such dependence.---________________.A. Nor can weB. Nor we canC. So can weD. So we can3. But I think we’re making life worse for ourselves, ________unpleasant for ourselves.A. unnecessaryB. unnecessarilyC. unnecessaryD. necessarily4. ---Why did you leave him as he was?---But what__________ otherwise? He never listens to me.A. could I doB. should I doC. could I have doneD. must I have done5. ---Do they want to remove all those ruins?---No, they have been stopped________ they can tell us!A. WhichB. WhoC. HowD. What6. As is widely acknowledged, playing outside helps children learn through curiosity, which_______promote creativity.A. in briefB. in turnC. in conclusionD. in return7. ---What did you first do in the factory?---As soon as we arrived, we were _______to see the production line.A. taken inB. taken upC. taken backD. taken off8. Jack doesn’t smoke now, but he _______for almost twenty years.A. was smokingB. smokedC. has smokedD. had smoked9. ---What? You have donated a majority of your money to the poor?---Oh, no, ___________. I don’t want to let anybody but you know it.A. be considerateB. look outC. stay calmD. keep quiet10. People don’t understand why he quit the job ________ he was so well paid in the big company.A. ifB. untilC. onceD. when11. Between the two tall trees _______a farmhouse, in front of which________ an old man, hiseyes closed.A. lies; is sittingB. stands; sitsC. standing; does sitD. lying; sitting12. Night had already fallen when we left the station. Tired and hungry, we decided to ______forthe night at a small hotel nearby.A. put throughB. put downC. put upD. put in13. Mr. Bob, _______as a manager for many years, found it hard to be an ordinary clerk again.A. having workedB. workedC. to have workedD. working14. ---Mom, everyone________ behind my back these days due to my bad performance on thestage.----come on. Don’t care what other people talk about.A. laughsB. laughedC. has been laughingD. has been laughed15. ---Someone _______the light on.---Oh, sorry. It’s me. I’ll go and put it off.A. leftB. has leftC. leavesD. had left16. ---Jackie, ________ you make all this mess?----Sorry, Mom. I’ll take care of it immediately.A. mustB. willC. shouldD. shall17. According to experts, houses with good _______to the shops and schools can resist thedecrease in the prices.A. choiceB. convenienceC. accessD. value18. The question was frequently referred to at the conference _____it is economic to develop solarenergy when it needs such large amounts of initial investment.A. whyB. whereC. thatD. whether19. ----Jack had a lot of parities recently.----Yes. That might ______ why he did so badly in the last test.A. account forB. push forC. answer forD. compensate or20. ________arouses his interest can be found in the school library and that is why he goesthere________ happens.A. No matter what; whateverB. Whatever; no matter whatC. Anything; No matter whatD. Anything; Whatever21. ---Would you please get me one ticket for Justine Bieber’s performance?---Sorry, the tickets _________three days in advance.A. had been sold outB. will sell outC. have been sold outD. would sell out22. Durban Climate Conference calls on the developed countries to ________efforts to increasefunds and technical aid to developing countries.A. step upB. make upC. turn upD. put up23. ---You can’t imagine______ great fun chatting online is.---Really? But it may cause you a lot of trouble.A. whatB. howC. whyD. whether24. Smoking, which may be _____pleasure for some people, is a serious source of discomfort for________people around.A. the; /B. a; theC. a; /D. a; a25. The previous lecture focused on the reading problems with new words, while this lecture willturn to __________ with complex sentence structures.A. thatB. oneC. onesD. those26. ---Have you seen my email about my latest project?---Yes. Luckily, I checked my emails yesterday. Normally, I _________ my email-box for days.A. haven’t openedB. didn’t openC. hadn’t openedD. don’t open27. Operations which left patients _______and in need of long periods of recovery now leave themrelaxed and comfortable.A. injuredB. desertedC. exhaustedD. abandoned28. ---You have been invited to attend an opening ceremony this weekend, sir.---I can’t _______this as I will have some more important things to do then.A. contribute toB. resign toC. submit toD. sacrifice to29. ---I’ going to join the army. I really don’t want to leave my good friends.---______________.A. Tomorrow is another day.B. All things are difficult before they are easyC. All good things must come to an endD. All is well that ends well30. An official survey shows that electrical bicycles are now the most potential _________ to trafficaccidents.A. causeB. tendencyC. invitationD. misfortune31. Mr. Wang’s statement was hard to follow in that it was__________ related to the topic beingdiscussed.A. looselyB. preciselyC. specificallyD. typically32. Now that the banks are back on their feet, we expect extraordinary_______ from them to helprebuild the economy.A. commitmentB. appointmentC. instrumentD. requirement33. ---What impresses you most about Beijing?---The street, the length of which is four times ________it is in my hometown.A. whatB. asC. thanD. that34. Scientists have pointed out that beans of this type, ________ long enough, can be poisonous.A. if not to be cookedB. if not cookedC. if not cookingD. if not being cooked35. ---You seem to have had that laptop for years.---Yes, I should sell it _______it still runs.A. beforeB. onceC. untilD. while36. ---Would you have attended the conference had it been possible?--- Sure, but I ________trapped in my business overseas.A. wereB. wasC. had beenD. would be37. Cheer up! Everyone may have periods in their lives _________ everything seems tough!A. whenB. whereC. whichD. that38. Paper cutting, _________ traditional folk art form which originated in ancient China, is listedas _______world cultural heritage by the United Nations in 2002.A. the; aB. a; theC. the; theD. a; a39. The great damage which the earthquake on March 11 in Japan _________made a great manypeople homeless.A. brought upB. brought aboutC. brought inD. brought out40. ---What? You failed the driving test again!---____________?A. So whatB. How comeC. Why notD. What for高三错题再练(三)1-5 A A B C D 6-10 B D B D D 11-15 B C A C B 16-20 A C D A B 21-25 C A A C D 26-30 D C C C C 31-35 A. A A B D 36-40 B A D B A。