SPR 波导耦合
- 格式:pdf
- 大小:237.39 KB
- 文档页数:2
本科毕业设计(论文)题目SPR在细胞检测中的应用学院物理与电子工程学院年级10级专业电子科学与技术班级Y051101学号Y05110108学生姓名顾悦指导教师李方强职称论文提交日期摘要细胞生物学的众多研究项目一直被认为是生命科学研究领域的重要组成部分。
虽然目前有大量的仪器应用于细胞检测,但其各自因具有需要荧光标记、灵敏度低、对细胞具有破环性、无法实时检测等一个或多个缺点而限制了细胞检测技术的发展。
而基于表面等离子体共振(SPR)的传感方法是一种具有无需标记、高通量、高灵敏、可实时检测等特性的新颖光学检测方法。
因此,将SPR技术应用于细胞检测的应用中具有十分重要的意义。
本文主要研究,表面等离子体共振(SPR)传感技术在细胞检测中的应用。
利用MATLAB R2012b软件对基于角度调制的克莱舒曼型棱镜耦合传感模型的各参数进行数值仿真,得出各参数之间的相互关系。
通过改变模型各参数,使其在中红外波段形成最强共振吸收峰(SPW),以增加激发波长的方式来增加检测深度,从而更准确可靠地完成一些与SPW相匹配的生物细胞的测量。
关键字:SPR;细胞检测;中红外;仿真AbstractCell Biology has been seen as a very important part of life science research, and cell biology is one of the four basic life science disciplines in our country. There are a large number of instruments used in cell detection, but these instruments have one or more weak points, needing fluorescently labeled, low sensitivity, damaging cells, not real-time monitoring and etc, limiting the development of Cell Detection Technology. However, SPR sensor is a novel detection method, sensitive, high-throughput, without fluorescently labeled, capable of real-time monitoring and etc. Therefore, the SPR technology for cell detection application has very important significance.This paper mainly studies SPR sensing technology in cell detection. To numerical simulation for each parameter of Kretschmann-Raether prism sensor model based on the parameters of angle modulation with MATLAB software. By changing the parameters of the model to be formed in the maximum resonance infrared absorption peak (SPW), to increase the wavelength of the incident wave to increase the detection depth, thus completing the measurement more accurate and reliable SPW several matching the measurements of biological cells.Keywords: SPR; cell detection; infrared band; simulation目录第一章绪论 (6)1.1概述 (6)1.1.1细胞检测的意义 (6)1.1.2 细胞检测技术的研究现状 (7)1.1.3 细胞检测技术存在的问题 (12)1.2 基于SPR传感的细胞检测 (13)1.2.1 SPR现象与传感原理 (13)1.2.2 基于SPR传感的细胞检测技术概述 (15)1.2.3 SPR传感用于细胞检测的优势及瓶颈问题 (17)1.3 课题内容和意义 (18)第二章SPR传感用于细胞检测的理论分析 (19)2.1 棱镜耦合式SPR传感模型 (19)2.2 SPW的特性 (21)2.2.1 SPW的传播特性 (21)2.2.2 SPW穿透深度与激发波长的关系 (23)2.3 SPR细胞检测模型的建立及分析 (24)2.3.1 细胞的等效折射率 (24)2.3.2 SPR细胞检测的物理模型 (24)2.3.3 SPR传感的灵敏度分析 (25)第三章SPR细胞检测模型的设计 (26)3.1 Kreschmann SPR传感模型的数值模拟 (26)3.2金属膜材料与厚度的选择 (28)3.2.1金属膜材料的选择 (28)3.2.2 Ag膜厚度的选择 (29)3.3 Ag膜的制备工艺 (31)3.4 Ag膜SPR细胞检测模型的可行性分析 (31)第四章总结与展望 (32)参考文献 (33)第一章绪论1.1概述1.1.1细胞检测的意义细胞组学作为细胞生物学研究的一个前沿分支,它结合了基因组学、蛋白质组学与转录组学的技术等,主要对细胞结构以及内部DNA或蛋白质的功能进行研究。
分析表面等离子体共振和波导耦合特性表面等离子体共振(Surface Plasmon Resonance,SPR)和波导耦合是两种常用的光学传感器技术,广泛应用于生物传感、化学传感和环境监测等领域。
本文将从原理、传感器设计、器件制备和应用等方面进行分析和讨论。
一、表面等离子体共振原理表面等离子体共振是指当入射光与金属表面处的自由电子耦合形成等离子体波,且满足布拉格共振条件时,会发生共振现象。
这种共振现象产生的电磁场分布在金属和介质之间,形成一个等离子体波。
当有物质吸附在金属表面时,由于折射率的变化,会导致等离子体波的共振角度发生变化,从而可以通过测量共振角度的变化来检测物质吸附的情况。
二、传感器设计表面等离子体共振传感器通常由金属薄膜、玻璃基底和波导构成。
其中,金属薄膜是产生等离子体波的重要组成部分,常用的金属包括银、铝和金等。
金属薄膜通常具有一定的厚度,一般在几十纳米至几百纳米之间。
玻璃基底用于支撑金属薄膜,并形成感光材料与金属之间的界面。
波导则用于引导入射光进入金属薄膜,并通过测量出射光来获取传感信号。
三、器件制备表面等离子体共振传感器的制备过程通常涉及光刻、薄膜沉积和表面修饰等步骤。
首先,使用光刻技术在玻璃基底上制作波导结构,以引导光进入金属薄膜。
然后,通过物理气相沉积或溅射等方法在玻璃基底上沉积金属薄膜。
最后,可以通过自组装、化学修饰等方法对金属表面进行修饰,以增强对目标物质的选择性吸附。
四、应用表面等离子体共振传感器在生物传感、化学传感和环境监测等领域有着广泛的应用。
在生物传感中,通过修饰金属表面的生物分子可以实现对特定生物反应的检测,如蛋白质-蛋白质相互作用、抗原-抗体结合等。
在化学传感中,根据目标物质与金属表面的相互作用,可以实现对化学分子的检测,如气体传感、溶液浓度检测等。
在环境监测中,通过修饰金属表面以增强对特定环境因素的敏感性,可以实时监测空气污染、水质污染等环境问题。
综上所述,表面等离子体共振和波导耦合是两种常用的光学传感器技术,能够实现高灵敏度和实时监测等优势。
SPR生物传感器1 SPR生物传感器的工作原理SPR是一种物理光学现象,是由入射光的电磁波和金属导体表面的自由电子形成的电荷密度波相互作用产生的。
这种沿着金属导体(金、银)表面传播的电荷密度波是一种电磁波,被称为表面等离子体波(Surface Plasmon Wave,SPW)。
它是一种消逝波,在金属内部的分布是随着与表面垂直距离的增大而呈指数衰减的。
当平行表面的偏振光以一定角度照在界面上发生衰减全反射时,入射光被耦合人表面等离子体内,光能大量被吸收,在这个角度由于表面等离子体谐振将引起界面反射率显著减少。
SPR对附着在金属表面的电介质的折射率非常敏感,而折射率是所有材料的固有特征。
因此,任何附着在金属表面上的电介质均可被检测,不同电介质其表面等离子角不同。
而同一种电解质,其附着在金属表面的量不同,则SPR响应强度不同。
基于这种原理,将一种具有特异识别属性的分子(配体)固定在传感芯片表面金属膜上含分析物的样品(受体)以恒定的速度通过传感芯片,与该配体之间发生相互作用,引起金属膜表面溶液的光学参数(如折射率)发生变化,SPR光学信号也随之改变。
记录和处理这些信号可将整个反应显示出来。
基于这种原理的检测仪器被称为SPR生物传感器(SPR Biosensor)。
根据耦合方式的不同,SPR传感器在结构上可分为棱镜耦合式SPR传感器,集成光波导耦合式SPR传感器,光纤式SPR 传感器和光栅耦合式SPR传感器。
根据测量方式,则可分为:(1)角度指示型,固定入射光波长,观测反射光归一化强度达到最小时的入射角;(2)波长指示型,固定入射光的入射角,测量反射光归一化强度达到最小时的波长(3)光强指示型,固定入射光的入射角和波长,测量反射光的归一化光强;(4)相位指示型,固定入射光的角度和波长,测量入射光和反射光的相位差。
此外,根据支撑表面等离子体的金属膜不同,则有金膜型和银膜型。
对光纤SPR传感器,还有单模光纤和多模光纤之分。
Integrated optical SPR sensor based on mode conversion efficiencyH.S.Pang,T.W.Lee,M.G.Moharam,P.L.Likamwa and H.J.ChoA novel type of integrated optical surface plasmon resonance (SPR)sensor is proposed,for which the operational principle is based on the launching efficiency of eigenmodes in the sensor head.The sensor comprises an inverted-rib-type dielectric waveguide,a portion of which is covered with a thin gold layer.Eigenmodes in the sensor head are coupled modes of a surface plasmon polariton and a dielectric guided wave.The excitation efficiency of the coupled modes varies sig-nificantly depending on the refractive index of the analyte medium on the sensor head.Following this principle,the transmission coefficient of light through the sensor head can be used as a sensitive measure of the variation in the refractive index of the analyte medium.Introduction:Surface plasmon resonance (SPR)-based biomolecular detection techniques are widely used with well developed protocols [1].Current issues in developing SPR-based sensors are throughput enhance-ment and system miniaturisation [2].There have been approaches using SPR imaging systems based on an array of sensor heads on a prism for SPR sensor throughput improvement [3].Integrated optical SPR sensors have a great potential to realise high throughput and highly min-iaturised sensor systems [4,5].For integrated optical SPR sensor heads,absorption types and interferometer types were widely introduced and investigated during the time [5,6].In this Letter,we propose a novel mode-matching-type integrated optical sensor with a small sensor head length and reasonable tolerance in device fabrication.Sensor head scheme and guided modes:The present SPR sensor head was designed based on a singlemode inverted-rib-type dielectric wave-guide with a thin gold layer covering a portion of it,as shown in Fig.1.With this design,the gold layer covered region supports either only one bound mode or one bound mode and one quasi-bound mode depending on the refractive index of an analyte medium on the gold layer.front viewgold layercore cladinverted-rib-type dielectric waveguideFig.1SPR sensor based on inverted-rib-type waveguide,schematic view Inverted rib dimensions:width ¼2m m,height 1.5mm1614121086420–20.4000.30.20.10–0.1–0.2–0.3–0.410–10210abc d–1–2–3–4–5210–1–2–3–4–510–100Fig.2Electric field profiles of eigenmodes in SPR sensor head Two-dimensional plot a SPD-S mode b SPD-A modeThree-dimensional plot c SPD-S mode d SPD-A modeThe bound mode and the quasi-bound mode are coupled modes of surface plasmon polariton (SPP)and dielectric guided wave (DGW)mode.Figs.2a and b demonstrate a representative field profile of the bound mode.As demonstrated in the Figures,the fields of the bound mode on the gold layer and in the dielectric core point in the same direction and the mode is termed as SPD-S (symmetric)mode.The field profile of the quasi-bound mode,shown in Figs.2c and d ,illustrates that the quasi-bound mode has opposite field directions on the gold layer and in a dielectric core.The quasi-bound mode is termed as SPD-A (anti-symmetric)mode.n1460 1.6×101.4×101.2×101.0×108.0×106.0×104.0×102.0×10–2.0×10–4.0×10–6.0×10–8.0×10–1.0×10–1.2×100.012108h ei g ht (y )e l e c t r i cf i e l d (E y )e l e c t r i cf i e l d (E y )1.6×101.4×101.2×101.0×108.0×106.0×104.0×102.0×10–2.0×10–4.0×10–6.0×10–8.0×10–1.0×10–1.2×100.064212108h e i g ht (y )642n1464n1468n1470n1472n1476n1480n1484n1492n1472n1476n1480n1484n1492abFig.3Field profile variation depending on analyte refractive index a SPD-S mode b SPD-A modeRefractive index dependence of mode field profiles:The field profiles of SPD-S and SPD-A modes are sensitively affected by variation of the analyte medium’s refractive index on the gold layer.Figs.3a and b show the electric field profiles of SPD-S and SPD-A modes,respectively,depending on the analyte refractive index.The analyte’s refractive index was scanned from 1.460to 1.492.As illustrated in Fig.3a ,the SPD-S mode shows strong field strength in the dielectric core and relatively weak field strength on the gold layer when the refractive index of the analyte on the gold film is small.Conversely,SPD-A has strong field strength in the dielectric core region in the high refractive index range,as shown in Fig.3b .Mode excitation efficiency and transmittance:The field profile with strong field strength in the dielectric core region,which is similar to the field profiles of the dielectric waveguide (DEWG)mode,makes better mode conversion from DEWG mode to one of the SPD modes.Because the field profiles of the eigenmodes in the sensor head are sig-nificantly affected by the refractive index condition of the analyte on the sensor head,the mode conversion efficiency and finally the transmission characteristics of the sensor head are strongly affected by an analyte medium’s refractive index.In this work,the power conversion efficiency was calculated using the overlap integral equation [7]:a n m ¼2ðþÀð11E i ÂH Ãn m dxdyFig.4represents modal power conversion efficiencies and decay con-stants of SPD-S and SPD-A mode as a function of refractive index.ELECTRONICS LETTERS 31st July 2008Vol.44No.160.500.450.400.35p o w e r c o n v e r s i o n c o e f f i c i e n t0.301.4551.460 1.4651.470analyte refractive indexpower conversion coefficient: DEWG to SPD modesmode decay constantSPD-S mode SPD-A mode1.475 1.480 1.485 1.490 1.4950.250.200.15Fig.4Analyte refractive index dependence of power conversion coefficient and decay constants of SPD-S and SPD-A modesBased on the mode power conversion efficiency and the decay charac-teristics of the eigenmodes in a sensor head,the dependence of the trans-mission coefficient is plotted against the refractive index of the analyte in Fig.5.Each line indicates a different sensor head length.When the sensor head length is short,the transmission characteristic is dominantly affected by mode conversion efficiency.However,for a longer sensor head length,the propagation attenuation of the mode significantly con-tributes to the transmission spectrum.0.240.220.200.180.160.140.120.100.080.060.040.020.00–0.021.4551.4601.4651.470 1.475refractive indextransmittance15 m m 20 m m 100 m m 400 m m1.4801.4851.4901.495t r a n s m i t e d p o w e rFig.5Refractive index dependence of transmissionConclusion:We present a novel type of integrated optical SPR sensor based on field profile matching of a dielectric waveguide mode and the eigenmodes in an SPR sensor head.This type of sensor head has the potential to realise an SPR sensor head with significantly reduced length and requiring reasonable device fabrication tolerance.Further study on the optimisation of sensor dimensions and the refractive indices of each dielectric layer will lead to aqueous analyte operation and sensitivity improvements.#The Institution of Engineering and Technology 200812June 2008Electronics Letters online no:20081684doi:10.1049/el:20081684H.S.Pang,M.G.Moharam and P.L.Likamwa (CREOL:The College of Optics and Photonics,University of Central Florida,4000Central Florida Blvd.,Orlando,FL 32816,USA )E-mail:hbang@T.W.Lee (Center for Computation &Technology,Louisiana State University,216Johnston Hall,Baton Rouge,LA 70803,USA )H.J.Cho (Department of Mechanical,Materials and Aerospace Engineering,University of Central Florida,4000Central Florida Blvd.,Orlando,FL 32816,USA )References1Spadavecchia,J.,Manera,M.G.,Quaranta,F.,Siciliano,P.,and Rella,R.:‘Surface plamon resonance imaging of DNA based biosensors for potential applications in food analysis’,Biosens.Bioelectron.,2005,21,pp.894–9002Homola,J.:‘Present and future of surface plasmon resonance biosensors’,Anal.Bioanal.Chem.,2003,377,pp.528–5393Piliarik,M.,Vaisocherova,H.,and Homola,J.:‘A new surface plasmon resonance sensor for high-throughput screening applications’,Biosens.Bioelectron.,2005,20,pp.2104–21104Harris,R.D.,Luff,B.J.,Wilkinson,J.S.,Piehler,J.,Brecht,A.,Gauglitz,G.,and Abuknesha,R.A.:‘Integrated optical surface plasmon resonance immunoprobe for simazine detection’,Biosens.Bioelectron.,1999,14,pp.377–3865Debackere,P.,Scheerlinck,S.,Bienstman,P.,and Baets,R.:‘Surface plasmon interferometer in silicon-on-insulator:novel concept for an integrated biosensor’,Opt.Express ,2006,14,pp.7063–70726Harris,R.D.,and Wilkinson,J.S.:‘Wave-guide surface-plasmon resonance sensors’,Sens.Actuators B,Chem.,1995,29,pp.261–2677Garmire,E.,Hammer,J.M.,Kogelnik,H.,Tamir,T.,and Zernike,F.:‘Integrated optics’(Springer-Verlag,New York,1975)ELECTRONICS LETTERS 31st July 2008Vol.44No.16。