振动习题
- 格式:doc
- 大小:2.14 MB
- 文档页数:16
《振动力学》习题集(含答案)1.1 质量为m 的质点由长度为l 、质量为m 1的均质细杆约束在铅锤平面作微幅摆动,如图E1.1所示。
求系统的固有频率。
图E1.1解: 系统的动能为:()222121x I l x m T +=其中I 为杆关于铰点的转动惯量:2102120131l m dx x l m x dx l m I l l ⎰⎰==⎪⎭⎫⎝⎛=则有:()221221223616121x l m m x l m x ml T +=+=系统的势能为:()()()2121212414121 cos 12cos 1glx m m glx m mglx x lg m x mgl U +=+=-⋅+-=利用x xn ω= 和U T =可得: ()()lm m gm m n 113223++=ω1.2 质量为m 、半径为R 的均质柱体在水平面上作无滑动的微幅滚动,在CA=a 的A 点系有两根弹性刚度系数为k 的水平弹簧,如图E1.2所示。
求系统的固有频率。
图E1.2解:如图,令θ为柱体的转角,则系统的动能和势能分别为:22222243212121θθθ mR mR mR I T B =⎪⎭⎫ ⎝⎛+==()[]()222212θθa R k a R k U +=+⋅=利用θωθn= 和U T =可得: ()mkR a R mR a R k n 343422+=+=ω1.3 转动惯量为J 的圆盘由三段抗扭刚度分别为1k ,2k 和3k 的轴约束,如图E1.3所示。
求系统的固有频率。
图E1.3解: 系统的动能为:221θ J T =2k 和3k 相当于串联,则有:332232 , θθθθθk k =+=以上两式联立可得:θθθθ32233232 , k k k k k k +=+=系统的势能为:()232323212332222*********θθθθ⎥⎦⎤⎢⎣⎡+++=++=k k k k k k k k k k U利用θωθn= 和U T =可得: ()()3232132k k J k k k k k n +++=ω1.4 在图E1.4所示的系统中,已知()b a m i k i , ,3,2,1 和=,横杆质量不计。
振动习题答案振动习题答案振动是物体在固定轴线附近做往复运动的现象。
它在我们的日常生活中随处可见,比如钟摆的摆动、弹簧的振动等等。
振动习题是学习振动理论的重要一环,通过解答习题可以加深对振动原理的理解和应用。
下面是一些常见的振动习题及其答案,希望对大家的学习有所帮助。
1. 一个质点沿直线做简谐振动,振幅为2cm,周期为4s,求该质点的速度和加速度。
解答:简谐振动的速度和加速度与位置的关系可以通过振动的位移方程得到。
位移方程为:x = A * sin(ωt + φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。
根据周期和角频率的关系,可知ω = 2π / T,其中T为周期。
根据题目中的数据,振幅A = 2cm,周期T = 4s。
代入上述公式可得ω = 2π /4 = π / 2。
因此,位移方程可写为:x = 2 * sin(π/2 * t + φ)。
速度v = dx / dt,加速度a = dv / dt。
对位移方程求一次导数得到速度和加速度的表达式:v = d(2 * sin(π/2 * t + φ)) / dt = 2 * (π/2) * cos(π/2 * t + φ) = π * cos(π/2 * t + φ),a = d(π * cos(π/2 * t + φ)) / dt = - (π/2)^2 * sin(π/2 * t + φ) = - (π^2 / 4) *sin(π/2 * t + φ)。
2. 一个弹簧的振动周期为2s,振幅为5cm,求该弹簧的角频率和振动频率。
解答:角频率ω = 2π / T,振动频率f = 1 / T,其中T为周期。
根据题目中的数据,周期T = 2s。
代入上述公式可得角频率ω = 2π / 2 = π,振动频率f = 1 / 2 = 0.5Hz。
3. 一个质点的振动方程为x = 3sin(2πt + π/4),求该质点的振幅、周期、角频率、初相位、速度和加速度。
振动波动一、例题(一)振动1。
证明单摆是简谐振动,给出振动周期及圆频率.2. 一质点沿x 轴作简谐运动,振幅为12cm,周期为2s 。
当t = 0时, 位移为6cm ,且向x 轴正方向运动。
求: (1) 振动表达式;(2) t = 0.5s 时,质点的位置、速度和加速度;(3)如果在某时刻质点位于x =—0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。
3。
已知两同方向,同频率的简谐振动的方程分别为:x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+求:(1)合振动的初相及振幅.(2)若有另一同方向、同频率的简谐振动x 3 = 0。
07cos (10 t +ϕ 3 ), 则当ϕ 3为多少时 x 1 + x 3 的振幅最大?又ϕ 3为多少时 x 2 + x 3的振幅最小?(二)波动1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s.在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求:(1)波动方程(2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。
2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播.已知原点的振动曲线如图所示.求:(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距m 1的两点之间的位相差.3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+.S 1距P 点3个波长,S 2距P 点21/4个波长。
求:两波在P 点引起的合振动振幅。
4。
沿X 轴传播的平面简谐波方程为:310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2。
25m ,反射波振幅无变化,反射处为固定端,求反射波的方程.二、习题课(一)振动1. 一质点在x 轴上作简谐振动,振辐A = 4 cm,周期T = 2 s ,其平衡位置取作坐标原点.若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,则O 2.25m Ax t O A/2 -A x 1 x 2 质点第二次通过x = -2 cm 处的时刻为[ ](A) 1 s (B) (2/3) s (C ) (4/3) s (D ) 2 s2.已知某简谐振动的振动曲线如图所示,则此简谐振动的振动方程为(A ) ⎪⎭⎫ ⎝⎛+=3232cos 2ππt x ;(B ) ⎪⎭⎫ ⎝⎛-=332cos 2ππt x ;(C) ⎪⎭⎫ ⎝⎛+=3234cos 2ππt x ;(D ) ⎪⎭⎫ ⎝⎛-=334cos 2ππt x 。
机械振动现象练习题(含答案)1. 一个弹簧常数为3000 N/m, 质量为0.2 kg的物体,在弹簧下端受到一个向下的力2 sin(10t) N,其中t为时间(秒)。
求物体的振动方程。
根据牛顿第二定律,可以得到物体的振动方程为:m * x'' + k * x = F(t)其中,m是物体的质量,x是物体的位移,x''是位移对时间的二阶导数,k是弹簧的常数,F(t)是作用在物体上的外力。
根据题目中给出的数据,代入上述公式,我们可以得到:0.2 * x'' + 3000 * x = 2 sin(10t)这就是物体的振动方程。
2. 一个质点在受到一个力F(t) = 0.1 cos(3t) N的作用下进行振动,已知质点的质量为0.5 kg。
求质点的角频率和振动周期。
根据振动方程的形式,我们可以知道物体的振动频率和周期与力的形式有关。
在这个题目中,我们可以看出力的形式为cos(3t),它是一个正弦函数。
如果将cos(3t)函数展开,我们可以得到下面的表达式:F(t) = a cos(wt)其中,a是振幅,w是角频率。
根据题目中给出的数据,我们可以得到:a = 0.1 N,w = 3 rad/s由于振动的频率与角频率之间是有关联的,振动的周期T可以表示为:T = 2π/w代入上述数据,我们可以得到:T = 2π/3 s这就是质点的振动周期。
3. 一个质点质量为0.3 kg,在一竖直方向上的弹簧中振动,弹簧的劲度系数为2000 N/m。
当质点受到一个外力F(t) = 0.5 cos(5t) N时,求质点的振动方程。
根据题目中给出的数据,我们可以得到:m = 0.3 kg,k = 2000 N/m,F(t) = 0.5 cos(5t)代入振动方程的一般形式,我们可以得到:0.3 * x'' + 2000 * x = 0.5 cos(5t)这就是质点的振动方程。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
一、选择题:1.3001:把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时。
若用余弦函数表示其运动方程,则该单摆振动的初相为(A) π (B) π/2 (C) 0 (D) θ [ ]2.3002:两个质点各自作简谐振动,它们的振幅相同、周期相同。
第一个质点的振动方程为x 1 = A cos(ωt + α)。
当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处。
则第二个质点的振动方程为:(A))π21cos(2++=αωt A x (B) )π21cos(2-+=αωt A x (C))π23cos(2-+=αωt A x (D) )cos(2π++=αωt A x [ ]3.3007:一质量为m 的物体挂在劲度系数为k 的轻弹簧下面,振动角频率为ω。
若把此弹簧分割成二等份,将物体m 挂在分割后的一根弹簧上,则振动角频率是(A) 2 ω (B) ω2 (C) 2/ω (D) ω /2 [ ]4.3396:一质点作简谐振动。
其运动速度与时间的曲线如图所示。
若质点的振动规律用余弦函数描述,则其初相应为 (A) π/6 (B) 5π/6 (C) -5π/6 (D) -π/6 (E) -2π/3 [ ]5.3552:一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和T 2。
将它们拿到月球上去,相应的周期分别为1T '和2T '。
则有(A) 11T T >'且22T T >' (B) 11T T <'且22T T <'(C) 11T T ='且22T T =' (D) 11T T ='且22T T >' [ ] 6.5178:一质点沿x 轴作简谐振动,振动方程为)312cos(1042π+π⨯=-t x (SI)。
振动、波动练习题及答案振动、波动练习题⼀.选择题1.⼀质点在X 轴上作简谐振动,振幅A=4cm。
周期T=2s。
其平衡位置取作坐标原点。
若t=0 时刻质点第⼀次通过x= -2cm 处,且向X 轴负⽅向运动,则质点第⼆次通过x= -2cm 处的时刻为()。
A 1sB 2sC 4sD 2s332.⼀圆频率为ω的简谐波沿X 轴的正⽅向传播,t=0 时刻的波形如图所⽰,则t=0 的波形t=0 时刻,X 轴上各点的振动速度υ与X轴上坐标的关系图应()3.图⽰⼀简谐波在 t=0 时刻的波形图,波速υ =200m/s ,则图中O 点的振动加速度的表达式为()2A a 0.4 2 cos( t ) 2 23B a 0.4 2 cos( t )22C a 0.4 2cos(2 t ) 4.频率为 100Hz ,传播速度为 300m/s 的平⾯简谐波,波线上两点振动的相位差为 3 ,则这两点相距()A 2mB 2.19mC 0.5mD 28.6m5.⼀平⾯简谐波在弹性媒质中传播,媒质质元从平衡位置运动到最⼤位置处的过程中,()。
A 它的动能转换成势能它的势能转换成动C 它从相邻的⼀段质元获得能量其能量逐渐增⼤Da20.4 2 cos(2 t2)υ (m/s)Bυ (m/s)DX(m)D 它把⾃⼰的能量传给相邻的⼀段质元,其能量逐渐减⼩6.在下⾯⼏种说法中,正确的说法是:()。
A 波源不动时,波源的振动周期与波动的周期在数值上是不同的B 波源振动的速度与波速相同C 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相滞后D 在波传播⽅向上的任⼀质点振动位相总是⽐波源的位相超前7.⼀质点作简谐振动,周期为T,当它由平衡位置向X 轴正⽅向运动时,从⼆分之⼀最⼤位移处到最⼤位移处这段路程所需要的时间为()。
A TBTCTDT4 12 6 88.在波长为λ的驻波中两个相邻波节之间的距离为()。
A λB 3 λ/4C λ/2D λ /49.在同⼀媒质中两列相⼲的平⾯简谐波的强度之⽐I1I 4是,则两列波的振幅之⽐是:()A A1 4 B1 2 CA1 16 DA11A2 A2 A2 A2 410.有⼆个弹簧振⼦系统,都在作振幅相同的简谐振动,⼆个轻质弹簧的劲度系数K 相同,但振⼦的质量不同。
机械振动机械波一、选择题1.对一个作简谐振动的物体,下面哪种说法是正确的A 物体处在运动正方向的端点时,速度和加速度都达到最大值;B 物体位于平衡位置且向负方向运动时,速度和加速度都为零;C 物体位于平衡位置且向正方向运动时,速度最大,加速度为零;D 物体处在负方向的端点时,速度最大,加速度为零;2.质点作简谐振动,振动方程为)cos(φω+=t A x ,当时间2/T t =T 为周期时,质点的速度为A φωsin A v -=;B φωsin A v =;C φωcos A v-=; D φωcos A v =;3.一物体作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+=4cos πωt A x ;在4T t =T 为周期时刻,物体的加速度为 A 2221ωA -; B 2221ωA ; C 2321ωA -; D 2321ωA ; 4.已知两个简谐振动曲线如图所示,1x 的位相比2x 的位相A 落后2π;B 超前2π; C 落后π; D 超前π;5.一质点沿x 轴作简谐振动,振动方程为⎪⎭⎫ ⎝⎛+⨯=-ππ312cos 1042t x SI ;从0=t 时刻起,到质点位置在cm x 2-=处,且向x 轴正方向运动的最短时间间隔为 A s 8/1; B s 4/1;C s 2/1;D s 3/1; 6.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为2/A ,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为7.一个简谐振动的振动曲线如图所示;此振动的周期为A s 12;B s 10;C s 14;D s 11;8.一简谐振动在某一瞬时处于平衡位置,此时它的能量是A 动能为零,势能最大;B 动能为零,机械能为零;C 动能最大,势能最大;D 动能最大,势能为零;9.一个弹簧振子做简谐振动,已知此振子势能的最大值为1600J;当振子处于最大位移的1/4时,此时的动能大小为A250J ; B750J ; C1500J ; D 1000J;10.当质点以频率ν作简谐振动时,它的动能的变化频率为 A ν; B ν2 ; C ν4; D2ν;11.一质点作简谐振动,已知振动周期为T,则其振动动能变化的周期是 AT /4; BT/2; CT ; D2T;12.两个同振动方向、同频率、振幅均为A 的简谐振动合成后,振幅仍为A ,则这两个振动的相位差为A π/3;B π/3; C2π/3; D5π/6;xABC D)s21-13.已知一平面简谐波的波动方程为()bx at A y -=cos ,a 、b 为正值,则 A 波的频率为a ; B 波的传播速度为a b /; C 波长为b /π; D 波的周期为a /2π;14.一个波源作简谐振动,周期为,以它经过平衡位置向正方向运动时为计时起点,若此振动的振动状态以s m u 400=的速度沿直线向右传播;则此波的波动方程为A ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=23400200cos ππx t A y ; B ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=23400200cos ππx t A y ; C ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=2400200cos ππx t A y ; D ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=2400200cos ππx t A y ; 15.当波从一种介质进入另一种介质中时,下列哪个量是不变的 A 波长; B 频率; C 波速; D 不确定;16.一横波以速度u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 AA 点相位为π; BB 点静止不动; CC 点向下运动; DD 点向下运动;17.一简谐波沿x 轴正方向传播,4/T t =时的波形曲线如图所示;若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 A 0点的初位相为00=φ;B1点的初位相为2/1πφ-=;C2点的初位相为πφ=2;D3点的初位相为2/3πφ-=;18.频率为Hz 100,传播速度为s m /300的平面简谐波,波线上两点振动的相位差为3/π,则此两点相距A m 2;B m 19.2;C m 5.0;D m 6.28;二、填空题1.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示;若0=t 时,uOYX1 2 3 4第题图1振子在负的最大位移处,则初位相为______________________; 2振子在平衡位置向正方向运动,则初位相为________________; 3振子在位移为2/A 处,且向负方向运动,则初位相为______; 2.一物体作余弦振动,振幅为m 21015-⨯,圆频率为16-sπ,初相为π5.0,则振动方程为=x ________________________SI ;3.一放置在水平桌面上的弹簧振子,振幅为A ,周期为T ;当0=t 时,物体在2/A x =处,且向负方向运动,则其运动方程为 ;4.一物体沿x 轴作简谐运动,振幅为cm 10,周期为s 0.4;当0=t 时物体的位移为cm x 0.50-=,且物体朝x 轴负方向运动;则s t 0.1=时,此物体的位移为 m ;5.一简谐运动曲线如图a 所示,图b 是其旋转矢量图,则此简谐振动的初相位为 ;s t 1=与0=t 的相位差φ∆= ;运动周期是 ;6.两列满足相干条件的机械波在空间相遇将发生干涉现象,其中相干条件包括:1频率_____________;2振动方向_____________和相差恒定; 7.两个同振动方向、同频率、振幅均为A 的简谐运动合成后,振幅仍为A ,则这两个简谐运动的相位差为___________; 8.同方向同频率振幅均为A ,相位差为2π的两个简谐运动叠加后,振幅为________;9.一个质点同时参与两个在同一直线上的简谐振动,其表达式分别为 ()6/2cos 10421π+⨯=-t x ,()6/52cos 10322π-⨯=-t x SI则其合成振动的振幅为___________,初相为_______________;10.两个同方向同频率的简谐振动,其合振动的振幅为cm 20,与第一个简谐振动的位相差为6/1πφφ=-;若第一个简谐振动的振幅为cm cm 3.17310=,则第二个简谐振动的振幅为__________cm ,第一、二两个简谐振动的位相差21φφ-为__________;11.一平面简谐波沿x 轴正方向传播,波速s m u /100=,0=t 时刻的波形曲线如图所示;波长=λ____________;12.惠更斯原理表明,介质中波动传播到的各点都可以看作是发射子波的波源,而在其后的任意时刻,这些子波的_______________就是新的波前; 包络包迹或包络面13.干涉型消声器结构原理如图所示,构可以消除噪声;达点A 时,分成两路而在点B 相遇,而相消;已知声波速度为s m /340,如果要消除频率为Hz 300的发动机排气噪声,则图中弯道与直管长度差至少应为____________;三、判断题1.对于给定的振动系统,周期或频率由振动系统本身的性质决定,而振幅和初相则由初始条件决定;2.对于一定的谐振子而言,振动周期与振幅大小无关; 3.简谐振动的能量与振幅的平方成正比;4.在简谐振动的过程中,谐振子的动能和势能是同相变化的; 5.两个同方向同频率简谐运动合成的结果必定是简谐运动;6.在简谐波传播过程中,沿传播方向相距半个波长的两点的振动速度必定大小相同,方向相反7.在平面简谐波传播的过程中,波程差和相位差的关系是21122x ∆=∆λπφ;8.频率相同、传播方向相同、相差恒定的两列波在空间相遇会发生干涉;第题图) 0-0。
振动和波一、选择题1.(3分,答D )已知一平面简谐波的表达式为cos()y A at bx =-(,a b 为正值常量),则 (A )波的频率为a (B )波的传播速度为/b a (C )波长为/b π (D )波的周期为2/a π2.(本题3分,答B )一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 21,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为[]3. (3分,答B )一质点在x 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点,若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为(A) 1s (B) (2/3)s (C)(4/3)s (D) 2s4. (3分,答D )一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m 21的物体,则系统振动周期T 2等于 (A) 2 T 1 (B) T 1(C)T 12/ (D) T 1 /2 (E) T 1 /45.(本题3分,答A )轴一简谐波沿Ox 轴正方向传播,t = 0 时刻的波形曲线如图所示,已知周期为 2 s ,则 P 点处质点的振动速度v 与时间t 的关系曲线为:6.(3分,答B )一平面简谐波在弹性媒质时,某一时刻媒质中某质元在负最大位移处,则它的能量是(A ) 动能为零 势能最大 (B )动能为零 势能为零 (C ) 动能最大 势能最大 (D )动能最大 势能为零v (m/s)O 1 t (s)ωA(C)· v (m/s)O1 t (s)ω A(A)·1 v (m/s)t (s)(D)O-ω A1 v (m/s) t (s)-ωA(B) O ··x o A x A 21 ω(A)A 21ω(B) A 21-(C) (D)o oo A 21-xxxAxAxAxω ω2O 1 y (m)x (m)t =0 A u图17.(3分,答D )沿相反方向传播的两列相干波,其波动方程为y 1=A cos2π (νt -x /λ)y 2=A cos2π (νt + x /λ) 叠加后形成的驻波中,波节的位置坐标为(A)x =±k λ.(B)x =±k λ/2 .(C)x =±(2k +1)λ/2 .(D)x =±(2k +1)λ/4 . 其中k = 0 , 1 , 2 , 3…….8.(3分,答D )如图所示,有一平面简谐波沿x 轴负方向传播,坐标原点O 的振动规律为y =A cos(ω t+φ0),则B 点的振动方程为 (A )y =A cos[ω t-(x/u )+φ0] (B )y =A cos ω[ t+(x/u )] (C )y =A cos{ω [t-(x/u ) ]+φ0} (D )y =A cos{ω[ t+(x/u ) ]+φ0}9.(3分,答D )一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:(A )它的动能转换成势能. (B )它的势能转换成动能. (C )它从相邻的一段质元获得能量,其能量逐渐增大. (D )它把自己的能量传给相邻的一段质元,其能量逐渐减小. 10.(3分,答B )在波长为λ的驻波中,两个相邻波腹之间的距离为 (A )λ/4 (B )λ/2 (C )3λ/4 (D )λ11.(3分,答C )某时刻驻波波形曲线如图所示,则a 、b 两点振动的相位差是 (A )0 (B )/2π (C )π (D )5/4π12.(本题3分,答B)在驻波中,两个相邻波节间各质点的振动(A )振幅相同,相位相同 (B )振幅不同,相位相同 (C )振幅相同,相位不同 (D )振幅不同,相位不同 二、填空题1. (3分)已知一个简谐振动的振幅A=2cm, 角频率14s ωπ-=,以余弦函数表达式运动规律时的A -Ayxλ λ/2O ··a b · · · · · · · · ··x 2A A/2x 1初相12φπ=,试画出位移和时间的关系曲线(振动图线) 2.(4分)两个简谐振动方程分别为x 1=Acos(ω t ) ;x 2=Acos(ω t +π/3) 在同一坐标上画出两者的x-t 曲线.3. (3分)有两相同的弹簧,其劲度系数均为k .(1)把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为;(2)把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为.[答案:(1)22m k π,(2)22mkπ] 4.(4分)一弹簧振子系统具有1.0J 的振动能量,0.10m 的振幅和1.0m/s 的最大速率,则弹簧的劲度系数,振子的振动频率.[答案:2210N/m,1.6Hz ⨯]5.(3分)一平面机械波沿x =-1m 轴负方向传播,已知处质点的振动方程cos()y A t ωϕ=+,若波速为u ,求此波的波函数.[答案:cos{[(1)/]}y A t x u ωϕ=+++]6.(3分)一作简谐振动的振动系统,振子质量为2kg ,系统振动频率为1000Hz ,振幅为0.5cm ,则其振动能量为.(答案:29.9010J ⨯ )7.(3分)两个同方向同频率的简谐振动211310cos(),3x t ωπ-=⨯+221410cos()(SI)6x t ωπ-=⨯-,它们的合振幅是. (答案:2510m -⨯ )8.(3分)一平面简谐波沿Ox 轴正方向传播,波动表达式为cos[(/)/4]y A t x u ωπ=-+,则1x L =处质点的振动方程是;2x L =-处质点的振动和1x L =处质点的振动相位差为21φφ-=. (答案:1cos[(/)/4]y A t L u ωπ=-+,12()/L L u ω+)9.(5分)一余弦横波以速度u 沿x 轴正向传播,t 时刻波形曲线如图所示.试分别指出图中A ,B ,C 各质点在该时刻的运动方向.A 向下 ,B 向上 ,C 向上.10. (本题4分)一平面简谐波的表达式cos (/)cos(/)y A t x u A t x u ωωω=-=-其中/x u 表示,/x u ω表示,y 表示.[答案:波从坐标原点传至x 处所需时间(2分),x 处质点此原点处质点滞后的相位(1分),t 时刻x 处质点的振动位移(1分)]11. (本题3分)如图所示,两相干波源S 1和S 2相距为3λ/4,λ为波长,设两波在S 1 S 2连O Cyxu · · · A B线上传播,它们的振幅都是A ,并且不随距离变化,已知在该直线上S 1左侧各点的合成波强度为其中一个波强度的4倍,则两波源应满足的相位条件是__π/2_ 12. (3分)一驻波的表达式为y =2A cos(2πx/λ) cos(2πνt ),两个相邻波 腹之间的距离是.(答案:λ/2) 三、计算题1. (5分)一质点作简谐运动,其振动方程为110.24cos()()23x t SI ππ=+,试用旋转矢量法求出质点由初始状态运动到x =-0.12 m ,v <0的状态所经过的最短时间. 解:旋转矢量如图所示.图3分 由振动方程可得π21=ω,π=∆31φ1分667.0/=∆=∆ωφt s 1分2(本题10分)一质量m =0.25kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点,弹簧的劲度系数k =25N/m.(1)求振动的周期T 和频率ω. (2)如果振幅A =15cm ,t =0时物体位于x =7.5cm 处,且物体沿x 轴反方向运动,求初速度v 0及初相φ.(3)写出振动的数值表达式. 解:(1)12/10k m s ωπ-== (2分)2/0.63T s πω== (1分)(2) A=15cm , 在t =0时,07.5cm x =,00v < 由2200(/)A x v ω=+得2200 1.3m/s v A x ω=--=- (2分)100(/)/3/3tg v x φωππ-=-=或400,/3x φπ>∴=(3分)(3)21510cos(10/3)(SI)x t π-=⨯+(2分)3.(10分)在一轻弹簧下端悬挂0100g m =砝码时,弹簧伸长8cm. 现在这根弹簧下端悬挂0250g m =物体,构成弹簧振子,将物体从平衡位置向下拉动4cm ,并给以向上的21cm/s 的初速度(令这时t=0).选x 轴向下,求振动方程的数值式.解:k = m 0g / ∆l 25.12N/m 08.08.91.0=⨯=N/mx (m) ωωπ/3π/3t = 0t0.12 0.24 -0.12 -0.24 OAAO xS 1S 211s 7s 25.025.12/--===m k ω(2分) 5cm )721(4/2222020=+=+=ωv x A cm (2分) 4/3)74/()21()/(tg 00=⨯--=-=ωφx v ,φ = 0.64 rad (3分))64.07cos(05.0+=t x (SI) (1分)4.(8分)在一竖直轻弹簧的下端悬挂一小球,弹簧被拉长0 1.2cm l =而平衡.再经拉动后,该小球在竖直方向作振幅为2cm A =的振动,试证此振动为简谐振动;选小球在正最大位移处开始计时,写出此振动的数值表达式.解:设小球的质量为m ,则弹簧的劲度系数(图参考上题)0/k mg l = 选平衡位置为原点,向下为正方向. 小球在x 处时,根据牛顿第二定律得202()d x mg k l x m dt -+=将k 代入整理后得 220d x g x dt l =-所以振动为简谐振动,其角频率为0/28.589.1(rad/s)g l ωπ===(5分)设振动表达式为 c o s ()x A t ωφ=+ 由题意:t=0时,200210m0x A v -==⨯=解得:0φ=2210cos(9.1)x t π-∴=⨯m (3分)5.(10分)在一轻弹簧下端悬挂m 0=100g 的砝码时,弹簧伸长8cm,现在这根弹簧下端悬挂m =250g 的物体, 构成弹簧振子. 将物体从平衡位置向下拉动4cm,并给以向上的21cm/s 的初速度(这时t =0) ,选x 轴向下,求振动方程的数值式. 解:物体受向下的重力和向上的弹性力.k=m 0g/∆l , x 0=4×10-2m, v 0=-21×10-2m/sω=()m l g m m k Δ0==7s -1A=22020ω/v x +=5×10-2m因A cos ϕ=4×10-2m, A sin ϕ=-v 0/ω=3×10-2m,有 ϕ=0.64rad 所以x=5×10-2cos(7t +0.64) (SI)6.(本题5分)一质量为0.2kg 的质点作简谐振动,其振动方程为10.6cos(5)(SI)2x t π=-求:(1)质点的初速度;(2)质点在正向最大位移一半处所受的力.解:(1)003.0sin(5)()0, 3.0m/s 2dx v t SI t v dt π==--==(2分) (2)2F ma m x ==-ω12x A =时, 1.5N F =-(无负号扣1分) (3分) 7.(5分)一平面简谐波沿x 轴正方向传播,波速为1m/s ,在x 轴上某质点的振动频率为1Hz ,振幅为0.01m. t = 0时该质点恰好在正最大位移处,若以该质点的平衡位置为x 轴的原点. 求此一维简谐波的表达式.解. 0.01cos[2()](m)y t x =-π8.(本题10分)某质点作简谐振动,周期为2s ,振幅为0.06m ,t =0时刻,质点恰好处在负最大位移处,求(1)该质点的振动方程.(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长. 解:(1)振动方程 00.06cos(2/2)0.06cos()(SI)y t t ππππ=+=+3分 (2)0.06cos[((/))0.06cos[(/2))(SI)y t x u t x ππππ=-+=-+ 4分(3)波长4m uT λ==9.(10分)一列平面简谐波在以波速5m/s u =,沿x 轴正向传播,原点O 处质点的振动曲线如图所示.1)求解并画出25cm x =处质元的振动曲线 2)求解并画出3s t =时的波形曲线 解:1)原点O 处质元的振动方程为211210cos(),(SI)22y t ππ-=⨯-(2分)波的表达式 (2分)211210cos((/5)),(SI)22y t x ππ-=⨯--x =25m 处质元的振动方程21210cos(3),(SI)2y t ππ-=⨯-振动曲线如右y-t 图 (2分)2)t=3s 时的波形曲线方程2210cos(/10),(SI)y x ππ-=⨯-(2分)波形曲线见右y-x 图 (2分)10.(10分)某质点作简谐振动,周期为2s ,振幅为0.6m ,t =0时刻,质点恰好处在负最大4O2 y(cm)t (s)2位移处,求(1)该质点的振动方程;(2)此振动以波速u =2m/s 沿x 轴正方向传播时,形成的一维简谐波的波动表达式,(以该质点的平衡位置为坐标原点);(3)该波的波长.解:(1) 振动方程)22cos(06.00π+π=ty )cos(06.0π+π=t (SI) (3分) (2) 波动表达式])/(cos[06.0π+-π=u x t y (4分)])21(cos[06.0π+-π=x t (SI)(3) 波长4==uT λm (3分)11.(5分)如图所示,一简谐波向x 轴正向传播,波速0500/,1,u m s x m P ==点的振动方程为10.03cos(500)(SI)2y t ππ=-. (1) 按图所示坐标系,写出相应的波的表达式; (2) 在图上画出t=0时刻的波形曲线.解:(1) 2m )250/500(/===νλu m 波的表达式 ]/2)1(21500cos[03.0),(λπ--π-π=x t t x y110.03cos[500(1)2/2]0.03cos(500)(SI)22t x t x =π-π--π=π+π-π(3分)(2) t = 0时刻的波形曲线x x x y π=π-π=sin 03.0)21cos(03.0)0,( (SI) (2分)12.(10分)图示一平面余弦波在t = 0 时刻与t = 2 s 时刻的波形图(波向左传播).已知波速为u ,波的周期大于2 s ,求(1) 坐标原点处介质质点的振动方程;(2) 该波的波动表达式. 解:(1) 比较t = 0 时刻波形图与t = 2 s 时刻波形图,可知此波向左传播.在t = 0时刻,O 处质点φcos 0A =,φωsin 00A -=<v ,故2πφ-= 又t = 2 s ,O 处质点位移为)24cos(2/ππ-=νA A 所以244πππ-=-ν,ν = 1/16 Hz 振动方程为)28/cos(0ππ-=t A y (SI)(2) 波速u = 20 /2 m/s = 10 m/s,波长λ = u /ν = 160 m 波动表达式]21)16016(2cos[π-+π=x t A y (SI) x (m)uP y (m)O-2-112-0.030.03x (m)O160A y (m)8020t =0t =2 s2A。
简谐运动练习题一、基础题1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时Oy/mQx/mPNA.质元Q和质元N均处于加速运动过程中B.质元Q和质元N均处于减速运动过程中C.质元Q处于加速运动过程中,质元N处于减速运动过程中D.质元Q处于减速运动过程中,质元N处于加速运动过程中2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则A.当平台振动到最高点时,物体对平台的正压力最大B.当平台振动到最低点时,物体对平台的正压力最大C.当平台振动经过平衡位置时,物体对平台的正压力为零D.物体在上下振动的过程中,物体的机械能保持守恒4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知A.这列波的周期是0.2 sB.质点P、Q此时刻的运动方向都沿y轴正方向C.质点P、R在任意时刻的位移都相同D.质点P、S在任意时刻的速度都相同5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中A.振子所受回复力逐渐减小 B.振子位移逐渐减小C.振子速度逐渐减小 D.振子加速度逐渐减小6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是F F F F和B 一起在光滑水平面上做简谐运动,如图所示.振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为A C D .././().kxB mkx M mkx m M 08.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是A .小球在A 、B 的速度为零而加速度相同B .小球简谐振动的振幅为kqE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻A .振子所受的弹力大小为5N,方向指向x 轴的正方向B .振子的速度方向指向x 轴的正方向C .在0~4s 内振子作了1.75次全振动D .在0~4s 内振子通过的路程为0.35cm,位移为0二、提高题14、15、19题提高题10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动.O 点为原点,取向左为正,振子的位移x 随时间t 的变化如图乙所示,则由图可知A. t =0.2s 时,振子在O 点右侧6cm 处B. t =1.4s 时,振子的速度方向向右C. t =0.4s 和t =1.2s 时,振子的加速度相同D. t =0.4s 到t =0.8s 的时间内,振子的速度逐渐增大11.一根用绝缘材料制成的轻弹簧,劲度系数为k,一端固定,另一端与质量为m 、带电量为+q 的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E 后如图所示,小球开始作简谐运动,关于小球运动有如下说法中正确的是A、球的速度为零时,弹簧伸长qE/kB、球做简谐运动的振幅为qE/kC、运动过程中,小球的机械能守恒D、运动过程中,小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零12.一列沿x轴传播的简谐横波在某时刻波的图象如图所示,已知波速为20 m/s,图示时刻x=2.0m处的质点振动速度方向沿y轴负方向,可以判断A.质点振动的周期为0.20s B.质点振动的振幅为1.6cmC.波沿x轴的正方向传播 D.图示时刻,x=1.5m处的质点加速度沿y 轴正方向13.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它的平衡位置为O,在A、B间振动,如图所示,下列结论正确的是.A.小球在O位置时,动能最大,加速度最小B.小球在A、B位置时,动能最大,加速度最大C.小球从A经O到B的过程中,回复力一直做正功D.小球从A经O到B的过程中,回复力一直做负功14.如图所示,物体 A置于物体 B上,一轻质弹簧一端固定,另一端与 B相连,在弹性限度范围内,A和 B一起在光滑水平面上作往复运动不计空气阻力,均保持相对静止. 则下列说法正确的是A.A和 B均作简谐运动B.作用在 A上的静摩擦力大小与弹簧的形变量成正比C.B对 A的静摩擦力对 A做功,而 A对 B的静摩擦力对 B不做功D.B对 A的静摩擦力始终对A做正功,而 A对 B的静摩擦力始终对 B做负功15.如图所示,一轻质弹簧一端固定在墙上的O点,另一端可自由伸长到B点.今使一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小物体能在水平面上运动到C 点静止,已知AC=L;若将小物体系在弹簧上,在A点由静止释放,则小物体将做阻尼振动直到最后静止,设小物体通过的总路程为s,则下列说法中可能的是A.s>LB.s=LC.s<LD.无法判断.16.如图所示,两木块A 和B 叠放在光滑水平面上,质量分别为m 和M ,A 与B 之间的最大静摩擦力为f ,B 与劲度系数为k 的轻质弹簧连接构成弹簧振子.为使A 和B 在振动过程中不发生相对滑动,则它们的振幅不能大于 ,它们的最大加速度不能大于17.弹簧振子从距离平衡位置5 cm 处由静止释放,4 s 内完成5次全振动,则这个弹簧振子的振幅为_____________cm,振动周期为_____________s,频率为_____________Hz,4 s 末振子的位移大小为_____________cm,4 s 内振子运动的路程为_____________cm,若其他条件都不变,只是使振子改为在距平衡位置 2.5 cm 处由静止释放,该振子的周期为_______s.18.如图所示,一个轻弹簧竖直固定在水平地面上,将一个小球轻放在弹簧上,M 点为轻弹簧竖直放置时弹簧顶端位置,在小球下落的过程中,小球以相同的动量通过A 、B 两点,历时1s,过B 点后再经过1s,小球再一次通过B 点,小球在2s 内通过的路程为6cm,N 点为小球下落的最低点,则小球在做简谐运动的过程中:1周期为___;2振幅为__ ;3小球由M 点下落到N 点的过程中,动能EK 、重力势能EP 、弹性势能EP ’的变化为__;4小球在最低点N 点的加速度大小__重力加速度g 填>、=、<.19.如图所示,质量为m 的木块放在弹簧上,与弹簧一起在竖直方向上做简谐运动.当振幅为A 时,物体对弹簧的最大压力是物体重力的1.5倍,则: ①物体对弹簧的最小弹力是多大②要使物体在振动中不离开弹簧,振幅不能超过多大mAO BNB C O参考答案1.D解析试题分析:因为质元P 处于加速过程,所以质元P 向平衡位置运动,由此可知波沿x 轴负方向运动,所以质元Q 沿y 轴正方向运动,远离平衡位置,速度减小,质元N 沿y 轴正方向运动,靠近平衡位置,速度增大,故选项ABC 错误D 正确.考点:波的传播;简谐运动中质点的振动.2. B解析试题分析: 简谐运动的质点,先后以同样大小的速度通过A 、B 两点,则可判定这两点关于平衡位置O 点对称,所以质点由A 到O 时间与由O 到B 的时间相等,那么平衡位置O 到B 点的时间t 1=0.5s,因过B 点后再经过t=1s 质点以方向相反、大小相同的速度再次通过B 点,则有从B 点到最大位置的时间t 2=0.5s,故从平衡位置O 到最大位置的时间是1s,故周期是T=4s ;质点通过路程12cm 所用时间为2s,是周期的一半,所以路程是振幅的2倍,故振幅A=12/2cm=6cm,故选B.考点: 简谐运动的周期和振幅3.B解析本题考查的是简谐振动的相关问题,当平台振动到最低点时,物体对平台的正压力最大,B 正确;当平台振动经过平衡位置时,物体对平台的正压力为物体的重力,C 错误;物体在上下振动的过程中,物体的机械能不守恒,除了重力做功还有平台对物体做功;D 错误;4.ABD解析这列波的波长为4m,所以波的周期为==0.2s v T λ,A 正确.因为波沿x 轴正方向传播,所以P 点此时向上运动, Q 点此时向上振动,所以B 正确.只有相隔nT 周期的两个质点的位移,速度在任意时刻都相等,,所以C 错误,D 正确.5.AD解析在振子向平衡位置运动的过程中,弹簧的形变量变小,所以所受回复力逐渐减小,加速度逐渐减小,AD 对;振子相对平衡位置的位移逐渐减小,B 错;振子速度逐渐增大,C 错.6.B解析物体做简谐运动时kx F -=,所以选B.答案C解析木块A 作简谐运动时,由题意和牛顿第二定律可得:F ma =<>1将木块A 和振子B 一起为研究对象,它们作简谐运动的回复力为弹簧的弹力所提供,应有 ()kx m M a=+<>2 由<1>式和<2>式可得:F kxm m M =+/()8.C解析机械能增大,C 正确;简谐振动的周期与振幅无关,D 错误.故选C.考点:简谐振动9.B解析试题分析:由图可知A 在t 轴上方,位移x=0.25cm,所以弹力5F kx N =-=-,即弹力大小为5N,方向指向x 轴负方向,故A 错误;由图可知过A 点作图线的切线,该切线与x 轴的正方向的夹角小于90°,切线斜率为正值,即振子的速度方向指向x 轴的正方向,故B 正确;由图可看出,0t =、4t s =时刻振子的位移都是最大,且都在t 轴的上方,在0~4s 内经过两个周期,振子完成两次全振动,故C 错误;由于0t =时刻和4t s =时刻振子都在最大位移处,所以在0~4s 内振子的位移为零,又由于振幅为0.5cm,在0~4s 内振子完成了2次全振动,所以在这段时间内振子通过的路程为240.504cm cm ⨯⨯=,故D 错误.考点:简谐运动的振动图象.10.D解析试题分析:0.2t s =时,振子在O 点左侧;故A 错误;1.4s 时,振子在O 点右方正向平衡位置移动,故速度方向向左;故B 错误;0.4s 和1.2s 时振子分别到达正向和反向最大位置处,加速度大小相等,但方向相反;故C 错误;0.4s 到0.8s 内振子在向平衡位置移动,故振子的速度在增大;故D 正确;考点:考查了简谐运动的振幅、周期和频率;11.BD解析试题分析:球的平衡位置为Eq=kx,解得x= qE/k,在此位置球的速度最大,选项A 错误;球做简谐运动的振幅为qE/k,选项B 正确;运动过程中,由于电场力和弹力做功,故小球的机械能不守恒,选项C 错误;运动过程中,由于电场力和弹力做功,所以小球动能的改变量、弹性势能的改变量、电势能的改变量的代数和为零,选项D 正确.考点:动能定理及简谐振动.12.A解析试题分析:由图可知,该波的波长为 4.0m,又因为波速为20 m/s,故质点的振动周期为T=sm m v /200.4=λ=0.2s,故A 是正确的;观察图可知质点振动的振幅为0.8cm,即振幅是指质点偏离平衡位置的最大距离,故B 不对;由于x =2.0m 处的质点振动速度方向沿y 轴负方向,故波沿x 轴的负方向传播,C 也不对;图示时刻,x =1.5m 处的质点在x 轴上方,故它受到指向x 轴的力,即加速度的方向也是指向x 轴方向的,也就是沿y 轴的负方向,故D 是不对的. 考点:波与振动.13.A解析小球在平衡位置时动能最大,加速度为零,因此A 选项正确.小球靠近平衡位置时,回复力做正功;远离平衡位置时,回复力做负功.振动过程中总能量不变,因此B 、C 、D 选项不正确.14. AB解析试题分析: A 和B-起在光滑水平面上做往复运动,回复力F=-kx,故都做简谐运动.故A 正确;设弹簧的形变量为x,弹簧的劲度系数为k,A 、B 的质量分别为M 和m,根据牛顿第二定律得到整体的加速度为m M kx a +=,对A :可见,作用在A 上的静摩擦力大小F f 与弹簧的形变量x 成正比.故B 正确;在简谐运动过程中,B 对A 的静摩擦力与位移方向相同或相反,B 对A 的静摩擦力对A 做功,同理,A 对B 的静摩擦力对B 也做功.故C 错误;当AB 离开平衡位置时,B 对A 的静摩擦力做负功,A 对B 的静摩擦力做正功,当AB 靠近平衡位置时,B 对A 的静摩擦力做正功,A 对B 的静摩擦力做负功.故D 错误.考点: 简谐运动15.BC解析分析:根据功能关系分析:第一次:物体运动到B 处时弹簧的弹性势能全部转化为物体的动能,物体的动能又全部转化为内能.第二次:若弹簧的自由端可能恰好停在B 处,也可能不停在B 处,根据功能关系分析物体运动的总路程L 与s 的关系.解答:解:设弹簧释放前具有 的弹性势能为E P ,物体所受的摩擦力大小为f .第一次:弹簧自由端最终停在B 处,弹簧的弹性势能全部转化为内能,即E P =fs ;第二次:若最终物体恰好停在B 处时,弹簧的弹性势能恰好全部转化为内能,即有fL=E P ,得到L=s ;若物体最终没有停在B 处,弹簧还有弹性势能,则fL <E P ,得到L <s .故选BC点评:本题根据功能关系分析物体运动的路程,此题中涉及三种形式的能:弹性势能、动能和内能,分析最终弹簧是否具有弹性势能是关键.16.kmf m M )(+ m f 解析试题分析:A 和B 在振动过程中恰好不发生相对滑动时,AB 间静摩擦力达到最大,此时振幅最大.先以A 为研究对象,根据牛顿第二定律求出加速度,再对整体研究,根据牛顿第二定律和胡克定律求出振幅.当A 和B 在振动过程中恰好不发生相对滑动时,AB 间静摩擦力达到最大.根据牛顿第二定律得:以A 为研究对象:a=m f 以整体为研究对象:kA=M+ma,联立两式得,A=kmf m M )(+ 点评:本题运用牛顿第二定律研究简谐运动,既要能灵活选择研究对象,又要掌握简谐运动的特点.基础题.17.5 0.8 1.25 5 100 0.8解析根据题意,振子从距平衡位置5 cm 处由静止开始释放,说明弹簧振子在振动过程中离开平衡位置的最大距离是5 cm,即振幅为5 cm,由题设条件可知,振子在4 s 内完成5次全振动,则完成一次全振动的时间为0.8 s,即T=0.8 s,又因为f=T1,可得频率为1.25 Hz.4 s 内完成5次全振动,也就是说振子又回原来的初始点,因而振子的位移大小为 5 cm,振子一次全振动的路程为20 cm,所以5次全振动的路程为100 cm,由于弹簧振子的周期是由弹簧的劲度系数和振子质量决定,其固有周期与振幅大小无关,所以从距平衡位置2.5 cm 处由静止释放,不会改变周期的大小,周期仍为0.8 s.18.4s ;3cm ;EK 先增大后减小,EP 减少,EP’ 增加;=.解析1小球以相同动量通过A 、B 两点,由空间上的对称性可知,平衡位置O 在AB 的中点;再由时间上的对称性可知,tAO=tBO=0.5s, tBN = tNB =0.5s,所以tON =tOB +tBN =1s,因此小球做简谐运动的周期T =4tON=4s.2小球从A经B到N再返回B所经过的路程,与小球从B经A到M再返回A所经过的路程相等.因此小球在一个周期内所通过的路程是12cm,振幅为3cm.3小球由M点下落到N点的过程中,重力做正功,重力势能减少;弹力做负功,弹性势能增加;小球在振幅处速度为零,在平衡位置处速率最大,所以动能先增大后减小.4M点为小球的振幅位置,在该点小球只受重力的作用,加速度为g,方向竖直向下,由空间对称性可知,在另一个振幅位置N点小球的加速度大小为g,方向竖直向上.19.0.5mg, 2A解析试题分析:1当振幅为A时,物体对弹簧的最大压力是物体重力的1.5倍,此刻应该是在最低处,根据受力分析知道,此刻受力为弹力、重力,方向向上.此刻合外力谐振动的特点,在最高点的加速度应为0.5g,方向向下.所以所以F=0.5mg,且为支持力.2要使物体不能离开弹簧,则在最高点弹力为零,加速度为g,方向向下,根据对称性,在最低处的加速度也为g,方向向上,此刻弹力为kx=2mg,此刻合外力为F=mg,因此此刻的振幅为2A.考点:简谐振动点评:本题通过简谐振动的对称性,求出最低处、最高处的加速度,通过对称性分析出最大或最小弹力位置.通过对称性解决问题.。