调频测量电路
- 格式:doc
- 大小:39.49 KB
- 文档页数:3
《传感器原理及工程应用》第四版(郁有文)课后答案————————————————————————————————作者:————————————————————————————————日期:第一章传感与检测技术的理论基础1.什么是测量值的绝对误差、相对误差、引用误差?答:某量值的测得值和真值之差称为绝对误差。
相对误差有实际相对误差和标称相对误差两种表示方法。
实际相对误差是绝对误差与被测量的真值之比;标称相对误差是绝对误差与测得值之比。
引用误差是仪表中通用的一种误差表示方法,也用相对误差表示,它是相对于仪表满量程的一种误差。
引用误差是绝对误差(在仪表中指的是某一刻度点的示值误差)与仪表的量程之比。
2.什么是测量误差?测量误差有几种表示方法?它们通常应用在什么场合?答:测量误差是测得值与被测量的真值之差。
测量误差可用绝对误差和相对误差表示,引用误差也是相对误差的一种表示方法。
在实际测量中,有时要用到修正值,而修正值是与绝对误差大小相等符号相反的值。
在计算相对误差时也必须知道绝对误差的大小才能计算。
采用绝对误差难以评定测量精度的高低,而采用相对误差比较客观地反映测量精度。
引用误差是仪表中应用的一种相对误差,仪表的精度是用引用误差表示的。
3. 用测量范围为-50~+150kPa 的压力传感器测量140kPa 压力时,传感器测得示值为142kPa ,求该示值的绝对误差、实际相对误差、标称相对误差和引用误差。
解:绝对误差 2140142=-=∆kPa实际相对误差%43.1%100140140142=⨯-=δ 标称相对误差%41.1%100142140142=⨯-=δ 引用误差 %1%10050150140142=⨯---=)(γ 4. 什么是随机误差?随机误差产生的原因是什么?如何减小随机误差对测量结果的影响?答:在同一测量条件下,多次测量同一被测量时,其绝对值和符号以不可预定方式变化着的误差称为随机误差。
随机误差是由很多不便掌握或暂时未能掌握的微小因素(测量装置方面的因素、环境方面的因素、人员方面的因素),如电磁场的微变,零件的摩擦、间隙,热起伏,空气扰动,气压及湿度的变化,测量人员感觉器官的生理变化等,对测量值的综合影响所造成的。
实验B1 微波测量系统调试与频率测量【实验目的】1.了解微波测量系统的基本组成,学会一般的调试方法。
2.了解反射速调管微波信号源原理及特性,掌握调整参数使微波源实现最佳工作状态的方法。
3.了解微波谐振腔的基本特性,掌握测量谐振腔的谐振频率和品质因数的基本方法。
4.学会用谐振腔波长表测量微波频率。
【实验原理】一.微波测量系统微波测量系统通常由等效电源、测量装置、指示仪器三部分组成。
微波等效电源部分即微波发送器,包括微波信号源、工作状态(频率、功率等)监视单元、隔离器等。
测量装置部分也称测量电路,包括测量线、调配元件、待测元件、辅助器件(如短路器、匹配负载等)以及电磁能量检测器(如晶体检波架、功率插头等)。
测量指示仪器是显示测量信号特性的仪表,如直流电流表、测量放大器、选频放大器、功率计、示波器、数字频率计等。
二.反射速调管微波信号源微波信号源有许多类型,本实验中使用的是反射式速调管信号源1.反射速调管的工作原理反射式速调管有阴极、阳极(谐振腔)、反射极三个电极,结构原理如图2所示。
阴极发射电子;阳极利用耦合环和同轴线输出微波功率;反射极用以反射电子。
由阴极发出电子束,受直流电场加速后,进入谐振腔。
电子以不同的速度从谐振腔飞出来而进入反射极空间。
在谐振腔和反射极间的直流排斥电场,使电子未飞到反射极就停下来,反射回谐振腔。
2.反射式速调管的工作特性和工作状态在一定条件下,反射式速调管的功率和频率特性曲线如图3所示。
(1)反射式速调管只有在某些特定的反射极电压值才能振荡。
有振荡输出功率的区域叫做速调管的振荡模,用n 表示震荡模的序号。
(2)对于振荡模,当反射极电压V R 变化时,速调管的输出功率P 和振荡频率f 都随之变化。
(3)输出功率最大的振荡模叫最佳振荡模(图3中n =3的振荡模)。
(4)各个振荡模的中心频率f 0相同通常称为速调管的工作频率。
通常调整速调管的振荡频率有电子调谐和机械调谐两种方法。
变容二极管直接调频电路
变容二极管调频电路是一种经典的调频电路,主要使用半导体可控硅电子元件变容二极管作为控制元件。
它可以用来提供按需要调整的频率、振幅和相位,可以根据调频、接收和发射系统的需要以及信号源(如晶体振荡器)来调整调制频率、振幅和相位。
变容二极管作为调频控制元件,具有电容可变的特性,可实现电容的连续变化,从而实现调频电路的实现。
调频电路中的这种变容二极管可以用作一种稳定的控制元件,用来调整感应线圈的频率。
它还可以用来控制连接电路的相位和振幅,从而控制调频信号的相位和振幅,从而实现调频电路的频率、相位和振幅的调节。
变容二极管调频电路中,变容二极管通常是以受到外部射频电磁脉冲激励为基础,借助内部结构反馈成一种和射频电磁脉冲频率及相应振幅。
一般情况下,变容二极管的输出频率比其激励源的频率要低,因为变容二极管的内部的电容,本身也作为了频率的调节因素,当激励信号的频率发生变化时,变容二极管内部的电容也会发生变化,使输出频率存在随机的波动。
因此,为了完成调频功能,变容二极管需要通过外部的频率控制焊接引脚来实现控制,从而实现控制信号的稳定和调频功能。
变容二极管调频电路具有体积小、体积效率高、运行可靠性高等优点,被广泛应用在调频、中频、短波等信号处理的领域,如通讯系统、无线电测量设备、航空专业仪器、收音机等。
由于变容二极管的调频电路设计简单,采用变容二极管作为调频控制元件,它还能节省大量空间,可扩展性非常强,可用来编辑一个可编程的调频电路,从而可以实现多种功能,如调制、接收和发射等,广泛应用在电子设备和通讯产品以及其他相关产品中。
变容二极管调频电路工作原理一、调频原理调频(Frequency Modulation)是一种使载波信号的频率随调制信号的幅度变化而变化的一种调制方式。
在通信系统中,调频广泛应用于广播、电视、无线通信等领域。
调频的基本原理是通过改变振荡器的振荡频率来实现调制。
在变容二极管调频电路中,变容二极管作为可变电容元件,用于改变振荡回路的电容,从而改变振荡频率。
二、变容二极管变容二极管(Varactor Diode)是一种特殊的半导体二极管,其结电容可随外加电压的变化而变化。
变容二极管的电容变化范围较大,通常在几个皮法拉(pF)到几十皮法拉之间。
当变容二极管用于调频电路中时,其电容值的变化会导致电路的谐振频率发生变化,从而实现频率调制。
三、调频电路调频电路主要由振荡器、变容二极管和选频回路组成。
振荡器产生高频振荡信号,变容二极管作为可变电容元件,用于改变振荡回路的电容值,选频回路则负责选择和输出所需频率的信号。
在调频过程中,调制信号(例如音频信号)通过改变变容二极管的偏置电压,使其电容值发生变化,从而改变振荡频率,实现频率调制。
四、选频回路选频回路的作用是从多个频率分量中选出所需的频率分量。
在变容二极管调频电路中,选频回路通常由LC谐振回路构成。
通过调整LC回路的参数,可以选择出所需频率的信号。
同时,选频回路还能有效地滤除谐波和杂散分量,提高输出信号的质量。
五、输出信号经过调频的输出信号具有与调制信号相同的幅度和频率变化特性。
在变容二极管调频电路中,输出信号的频率随调制信号的幅度变化而变化,从而实现了频率调制。
输出信号的幅度和频率变化范围取决于变容二极管的电容变化范围和电路的参数设置。
六、应用场景变容二极管调频电路由于其结构简单、易于集成和调节方便等特点,在无线通信、卫星通信、雷达、电子对抗等领域得到广泛应用。
此外,在广播电视、遥控遥测、仪器仪表和测量设备中也有广泛应用。
通过将变容二极管调频电路与信号处理技术相结合,可以实现高性能的频率调制和解调,满足各种通信和测量需求。
调频测量电路如图1所示。
该电路将电容传感器作为振荡器谐振回路的一部分,当输入量导致电容传感器的电容量发生变化时,振荡器的震荡频率发生变化。
将频率的变化在鉴频器中转换为振幅的变化,经放大后用仪表指示或记录下来。
调频接受系统可分为直放式和外差式调频。
图1(a )为直放式调频电路,图1(b )为外差式调频电路。
外差式调频的性能较直放式的要好,但其电路复杂。
调频 震荡器
限幅
鉴频
放大
电容传感器 (a )
输出
①
②
③
④
C 0
调频 震荡器
电容传感器
缓冲 放大器
鉴频
放大
限幅
中频放大
变频 本机震荡
(b )
输出
②
③
④
C 0
①
图1 调频测量电路框图
调频震荡器的振荡频率f为:
f=1/(2πLC)
C= C1 + C0±ΔC+ C2
式中:L为谐振回路的电感;C为总电容;C1为谐振回路的固有电容;C2为传感器引线的分布电容;C0±ΔC为传感器的电容。
当被测电容为零时,振荡器有一个固有频率。
当被测信号不为零时,振荡器的频率发生变化。
经鉴频器处理后,频率信号转换为振幅的变化,波形图如图2所示。
图2 调频测量电路的波形图
①
②
④
③ f
t
t
t
t
被测信号为0时,电容C= C 1 + C 0 +C 2
作用于电容的信号,此时使传感器电容±ΔC ,C= C 1 + C 0±ΔC+ C 2
此时振荡频率为
鉴频器输。