北京大学物理学院量子力学历年考研真题汇编
- 格式:pdf
- 大小:3.92 MB
- 文档页数:11
北大考研辅导班-北大粒子物理与原子核物理考研703普通物理真题(二)2000年703普通物理(含力学、热学、电磁学、光学)真题考试科目:普通物理考试时间:2000年1月23日上午招生专业:物理系各专业研究方向:各研究方向试题:一、(18分)1、(8分)理想气体的比热商(定压热容量与定体热容量之比)记为γ,试导出准静态绝热过程的P-V方程。
2、(10分)以理想气体为工作介质,将高温热源温度记为T1,低温热源温度记为T2,试导出准静态卡诺循环的效率η。
二、(16分)设太阳固定不动,某行星P围绕太阳在一椭圆轨道运动,如图所示,其中位置1为近太阳点,位置2为远太阳点。
将太阳的质量记为M,椭圆半长轴、半短轴分别记为A、B。
利用能量守恒关系和以太阳为参考点的角动量守恒关系,导出P在位置1、2两处的运动速度大小v1、v2;已知椭圆面积为πAB,导出P的轨道运动周期T。
三、(16分)半径为R,质量为m的匀质乒乓球,可处理为厚度可略的球壳。
开始时以角速度ω0围绕它的一条水平直径轴旋转,球心无水平方向速度,今将其轻放在水平地面上,乒乓球与地面之间的滑动摩擦处处相同。
试求乒乓球达到稳定运动状态时,它的转动角速度ω;北大粒子物理与原子核物理考研计算从开始到最后达到稳定运动状态的全过程中,乒乓球动能的损失量E′。
(已知半径为R,质量为m的匀质球壳相对其直径转轴的转动惯量为)四、(16分)边长为a的正六边形分别有固定的点电荷,它们的电量或为Q,或为-Q,分布如图所示。
1.试求因点电荷间相互的静电作用而使系统具有的电势能W;2.若用外力将相邻的一对正、负电荷一起(即始终保持其间距不变)缓慢地移到无穷远处,其余固定的点电荷位置保持不变,试求外力作功量A。
五、(16分)半径为r的长直密绕空心螺线管,单位长度的绕线匝数为n,所加交变电流为I=I0sinωt。
今在管的垂直平面上放置一个半径为2r,电阻为R的导线环,其圆心恰好在螺线管的轴线上。
高校量子力学研究生招生试题汇总一.复旦大学1999硕士入学量子力学试题二.天津大学1999硕士入学量子力学试题(1)三.北京大学2000年研究生入学考试试题考试科目:量子力学 考试时间:2000.1.23下午 招生专业:物理系各专业 研究方向:各研究方向 试题: 一.(20分)质量为m 的粒子,在位势V x x V '+=)()(αδ 0<a00{V V ='00><x x 00>V中运动,a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x >0区域中的几率。
它是大于1/2,还是小于1/2,为什么? 二.(10分)若|α>和|β>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋—轨道耦合项)a. 给出|α>和|β>态的守恒量完全集;b. 若0ˆˆ)(≠⋅αβr sr f ,则|α>和|β>态的那些量子数可能是不同的,为什么? (注:f(r)是r 的非零函数,r s ˆ,ˆ为电子的自旋和坐标算符。
)三.(16分)三个自旋为1/2的粒子,它们的哈密顿量为)ˆˆˆˆˆˆ(ˆ1332210s s s s s s C H ⋅+⋅+⋅= 求本征值和简并度。
四.(22分)两个自旋为1/2的粒子,在),(21z z s s 表象中的表示为))((2211βαβα,其中,2iα是第i 个粒子自旋向上的几率,2iβ是第i 个粒子自旋向下的几率。
a. 求哈密顿量)(ˆ21210xy y x V H σσσσ-= 的本征值和本征函数;(V 0为一常数)b. t=0时,体系处于态121==βα,012==βα,求t 时刻发现体系在态021==βα,112==βα的几率。
(注:iy ix σσ,为第i 个粒子泡利算符的x, y 分量)五.(10分)考虑一维谐振子,其哈密顿量)21(ˆ+=+a a h H ϖ,而0],[],[==++a a a a ,1],[=+a a a. 若|0〉是归一化的基态矢(a|0)=0),则第n 个激发态为)(n n a N n +=试求归一化因子n N ; c. 若外加一微扰,aa a ga H ++='ˆ,试求第n 个激发态的能量本征值(准至g 一级)。
北大物理部分真题北京大学量子力学真题部分北京大学量子力学的部分真题。
1992年4.设粒子处于半径为a的球壁内,(1)求基态能量。
(2)求基态粒子对球壁的压强。
1994年6.假设两个质量为m=70Me/c2的夸克可以通过位势V=-a(?1.?2-b)r2束缚在一起,其中r是两个夸克之间的距离?1和?2分别为夸克1和夸克2的包利自旋矩阵,a=68.99Me/fm2,而b是一个待定的参数,(1)b 应取什么值,才能使两个夸克束缚在一起?(2)设两个夸克是不同类型的,并取b=3/2,试求基态能量和简并度,(3)设两个夸克是同一类型的,并取b=3/2,试求基态能量和简并度。
(4)当b=0时,求两个全同夸克在基态的方均根距离, hc=1.97.3MeV.fm.为自旋1和自旋2,h都是带横岗的1995年5.设L为轨道角动量。
在(L2,Lz)表象(即以Ilm>为基矢的表象)中,写出L=1的子空间中Lx的矩阵表示式,并求出它的本征值和本征态。
1998年7.在一维无限深位阱中,V(x)=0,0<xa.</x(1)求一维无限深位阱的能量本征值,及相应的本征函数。
(2)如果有两个无相互作用的自旋为1/2的全同粒子在此中,试写出此位阱系统基态和第一激发态的能量值和波函数。
1999年6.一个质量为m的粒子在一维势场V(x)=正无穷,x<0.V(x)=1/2mw平方x平方,x>0中运动,求其能级,不必作详细计算。
2000年6.考虑体系H=T+V(x),V(x)=无穷x<0,V(x)=Ax,x>0(A>0).(1)利用变分法,取试探波函数函数1=(2比b根号π)1/2e的-x平方/2b平方,求基态能量上限E1;(2)我们知道,如试探波函数为函数2==(1比b根号π)1/2(2x/b)e 的-x平方/2b平方,则基态能量上限为E2=(81/4π)根号1/3(A平方h 平方/m)根号1/3,对这两个基态的能量上限,你能接受哪一个,为什么?2001年6.质量为m的粒子在位势V=无穷,x<0,V=cx平方,x>0中运动,c>0,(1)试利用变分法估计体系基态能量;(2)它是精确解的上限还是下限?你能给出精确的基态能量吗?2007年5.H(t)=-h平方/2mx导数平方+1/2mw零平方x平方(1+1/cosh 平方兰姆达t)t趋向于负无穷时刻,该体系处在谐振子基态I0>.在t趋向于正无穷时刻态体系跃迁到激发态In>的概率记为p零趋向于n.(a)求(b)当(c)讨论2008年VI.质量为m的粒子在位势V(x)=-兰姆达扥特(x),(兰姆达>0)中运动。
量子力学习题(三年级用)北京大学物理学院二O O三年第一章 绪论1、计算下列情况的Broglie de -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子()克2410671-⋅=μ.n;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-⋅=μ.a;(3)飞行速度为100米/秒,质量为40克的子弹。
2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?3、利用Broglie de -关系,及园形轨道为各波长的整数倍,给出氢原子能量可能值。
第二章 波函数与波动力学1、设()()为常数a Ae x x a 2221-=ϕ(1)求归一化常数 (2).?p ?,x x ==2、求ikr ikr e re r -=ϕ=ϕ1121和的几率流密度。
3、若(),Be e A kx kx -+=ϕ求其几率流密度,你从结果中能得到什么样的结论?(其中k 为实数)4、一维运动的粒子处于()⎩⎨⎧<>=ϕλ-000x x Axe x x的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。
5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证0=υ⨯∇其中ρ=υ/j6、一维自由运动粒子,在0=t时,波函数为()()x ,x δ=ϕ0求:?)t ,x (=ϕ2第三章 一维定态问题1、粒子处于位场()000000〉⎩⎨⎧≥〈=V x V x V中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动)2、一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=0000x a x x V )x ( 中运动。
(1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ϕ态,证明:,/a x2=().n a x x ⎪⎭⎫ ⎝⎛π-=-222261123、若在x 轴的有限区域,有一位势,在区域外的波函数为如DS A S B D S A S C 22211211+=+=这即“出射”波和“入射”波之间的关系,证明:01122211211222221212211=+=+=+**S S S S S S S S这表明S 是么正矩阵4、试求在半壁无限高位垒中粒子的束缚态能级和波函数()⎪⎩⎪⎨⎧>≤≤<∞=ax V a x x V X 0000 5、求粒子在下列位场中运动的能级()⎪⎩⎪⎨⎧>μω≤∞=021022x x x V X6、粒子以动能E 入射,受到双δ势垒作用()[])a x ()x (V V x -δ+δ=0求反射几率和透射几率,以及发生完全透射的条件。