微波技术基础第二章课后答案
- 格式:doc
- 大小:1016.50 KB
- 文档页数:15
第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。
解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。
设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。
2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。
解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。
解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =, 则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。
4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。
解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zu y u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。
微波技术习题解答第1章练习题1.1 无耗传输线的特性阻抗Z0= 100()。
根据给出的已知数据,分别写出传输线上电压、电流的复数和瞬时形式的表达式:(1) R L= 100 (),I L = e j0(mA);(2) R L = 50(),V L = 100e j0(mV);(3) V L = 200e j0 (mV),I L = 0(mA)。
解:本题应用到下列公式:(1)(2)(3)(1) 根据已知条件,可得:V L = I L R L = 100(mV),复数表达式为:瞬时表达式为:(2) 根据已知条件,可得:复数表达式为:瞬时表达式为:(3) 根据已知条件,可得:复数表达式为:瞬时表达式为:1.2 无耗传输线的特性阻抗Z0 = 100(),负载电流I L = j(A),负载阻抗Z L = j100()。
试求:(1) 把传输线上的电压V(z)、电流I(z)写成入射波与反射波之和的形式;(2) 利用欧拉公式改写成纯驻波的形式。
解:根据已知条件,可得:V L = I L Z L = j(j100) = 100(V),1.3 无耗传输线的特性阻抗Z0 = 75(),传输线上电压、电流分布表达式分别为试求:(1) 利用欧拉公式把电压、电流分布表达式改写成入射波与反射波之和的形式;(2) 计算负载电压V L、电流I L和阻抗Z L;(3) 把(1)的结果改写成瞬时值形式。
解:根据已知条件求负载电压和电流:电压入射波和反射波的复振幅为(1) 入射波与反射波之和形式的电压、电流分布表达式(2) 负载电压、电流和阻抗V L = V(0) = 150j75,I L = I(0) = 2 + j(3) 瞬时值形式的电压、电流分布表达式1.4 无耗传输线特性阻抗Z0 = 50(),已知在距离负载z1= p/8处的反射系数为 (z1)= j0.5。
试求(1) 传输线上任意观察点z处的反射系数(z)和等效阻抗Z(z);(2) 利用负载反射系数 L计算负载阻抗Z L;(3) 通过等效阻抗Z(z)计算负载阻抗Z L。
第二章2-1 答: 将微波元件等效为网络进行分析,就是用等效电路网络参数代替原微波元件对原系统的影响。
它可将复杂的场分析变成简单易行的路分析,为复杂的微波系统提供一种简单便捷的分析工具。
2-2 答: 波导等效为双线的等效条件是两者的传输功率相等,由于模式电压,电流不唯一,导致等效特性阻抗,等效输入阻抗也不唯一,而归一化阻抗仅由反射系数确定,反射系数是可唯一测量的微波参量。
因而归一化阻抗也是唯一可确定的物理量。
故引入归一化阻抗的概念。
2-3 答: 归一化电压U 与电流I 和不归一电压U ,电流I 所表示的功率要相等,由此可得U I,的定义为U I ,2-4 答: (a) 由121220.02U U I U I ==+ 得 10[]0.021A ⎡⎤=⎢⎥⎣⎦ (b) 由12212200U U I I I =+= 得 1200[]01A ⎡⎤=⎢⎥⎣⎦(c) 由12121U nU I I n== 得 0[]01/n A n ⎡⎤=⎢⎥⎣⎦ (d) 由 传输线方程已知终端条件的解双曲函数的形式,将j γβ=,11(),()z l z l U z U I z I ''==''==代入得1202122cos sin sin cos U lU jZ lI l I j U lI Z ββββ=+=+ 即 00cos sin []sin /cos ljZ l A j l Z l ββββ⎡⎤=⎢⎥⎣⎦当 /2l θβπ==时 0100[]0.010j A j ⎡⎤=⎢⎥⎣⎦(e) 将 l θβπ== 代入(d)中解 可得2-5 解: (a) 01/00[]00/0j n jn a j n j n ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(b) 010*******02020100/.0[]/0/00/.jZ jZ Z Z A j Z j Z Z Z -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦2-6 解: (a)等效电路如图所示由 1221222U U j I I j U I =-+=+ 得 11221211()2211()22U I I j j U I I j j =-+-=+-即 1/21/2/2/2[]1/21/2/2/2j j jj Z j j j j --⎡⎤⎡⎤==⎢⎥⎢⎥--⎣⎦⎣⎦ (b)等效电路如图所示 由1212U jI I jU == 得12210()()()0U j I U j I =+--=-+ ∴0[]0j Z j -⎡⎤=⎢⎥-⎣⎦(c)等效电路如图所示由 1221222U U J I I j U I =+=- 得 112212()22()22j jU I I j j U I I =---=-+-∴ /2/2[]/2/2j j Z j j --⎡⎤=⎢⎥-⎣⎦2-7 证: 由 111112U Z I Z I =+ ① 2121222U Z I Z I =+ ② 将 22L U Z I =-代入 ② 得 122122L IZ Z Z I -=+ ∴ 212121112111122in LU I Z Z Z Z Z I I Z Z ==+=-+ 2-8 证: 由 111112I Y U Y U =+ ① 212122I Y U Y U =+ ②将 22L I Y U =-代入②得 22121/L Y Y Y UU -=+ 即212122LU Y U Y Y =-- 代入①有 2-9 证: 由互易时 det[A]=1 可得即 12A x = 且 20xB +≠ 0B ≠2-10 证: ∵11121221212222U a U a I I a U a I =+=+ 且22L U Z I = ∴ 1112212111212122222122//L in L U a U I a a Z a Z I a U I a a Z a ++===++ 2-11 解: 设波节处的参考面为1T ' 则将参照面1T '内移到1T 1min1/4l θβπ==∴ 1211110.2j S S e j θ'==-由对称性可知 22110.2S j S =-= 由无耗网络的性质可知 22121112111,/2S S θθπ=-=± ∴ 12210.98S S ==±=±∴ 0.20.98[]0.980.2j S j -±⎡⎤=⎢⎥±-⎣⎦ 2-12 解: 插入相移 21arg S θπ== 插入衰减 2211()10lg0.175L dB dB S ==电压传输系数 210.98j T S e π== 输入驻波比 11111 1.51S S ρ+==-2-13 解: 由 0[]0j a j ⎡⎤=⎢⎥⎣⎦ 可知 0[]0j S j -⎡⎤=⎢⎥-⎣⎦ 由1212U jI I jU == 可得12210()()()0U j I U j I =+--=-+ 即 0[]0j Z j -⎡⎤=⎢⎥-⎣⎦由1221I jU I jU =-= 得 0[]0j Y j ⎡⎤=⎢⎥⎣⎦2-14 解: 插入驻波比 即为输入驻波比 即 111112212211111112212211,,[]011j S a a a aS aS a a a a ρ+⎡⎤+--===⎢⎥-+++⎣⎦∴ 1111, 2.622j S S j ρ====+2-15 解: 11l θβ= 111211122122[]j j j S e S e S S e S θθθ---⎡⎤'=⎢⎥⎣⎦2-16 解: 11l θβ=内移 22l θβ=外移 30θ=不动∴ 11211222122()111213()2212223313233[]j j j j j j j j S e S e S e S S e S e S e S e S e S θθθθθθθθθθ-----⎡⎤⎢⎥'=⎢⎥⎢⎥⎣⎦由 [][]S P S P '= 也可求得 其中 120000001j j e P e θθ-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2-17 解: 代入式 (2-44a)可得∴ 2/31/3[]1/32/3S ±⎡⎤=⎢⎥±⎣⎦由 [][][1]S S +≠ 可知该网络是互易有耗的。
第2章 微波传输线2.1什么是长线?如何区分长线和短线?举例说明。
答 长线是指几何长度大于或接近于相波长的传输线。
工程上常将1.0>l 的传输线视为长线,将1.0<l 的传输线视为短线。
例如,以几何长度为1m 的平行双线为例,当传输50Hz 的交流电时是短线,当传输300MHz 的微波时是长线。
2.2传输线的分布参数有哪些?分布参数分别与哪些因素有关?当无耗传输线的长度或工作频率改变时分布参数是否变化?答 长线的分布参数一般有四个:分布电阻R 1、分布电感L 1、分布电容C 1、分布电导G 1。
分布电容C 1(F/m )决定于导线截面尺寸,线间距及介质的介电常数。
分布电感L 1(H/m )决定于导线截面尺寸,线间距及介质的磁导率。
分布电阻R 1(Ω/m )决定于导线材料及导线的截面尺寸。
分布电导G 1(S/m ) 决定于导线周围介质材料的损耗。
当无耗传输线(R 1= 0,G 1= 0)的长度或工作频率改变时,分布参数不变。
2.3传输线电路如图所示。
问:图(a )中ab 间的阻抗0=ab Z 对吗?图(b )中问ab 间的阻抗∞=ab Z 对吗?为什么?答 都不对。
因为由于分布参数效应,传输线上的电压、电流随空间位置变化,使图(a )中ab 间的电压不一定为零,故ab 间的阻抗ab Z 不一定为零;使图(b )中a 点、b 点处的电流不一定为零,故ab 间的阻抗ab Z 不一定为无穷大。
2.4平行双线的直径为2mm ,间距为10cm ,周围介质为空气,求它的分布电感和分布电容。
解 由表2-1-1,L 1=1.84×10-6(H/m ),C 1=6.03×10-12(F/m )2.5写出长线方程的的解的几种基本形式。
长线方程的解的物理意义是什么? 答(1)复数形式()()()z L L z L L I Z U I Z U z U ββj 0j 0e 21e 21--++= ()()()z L L z L L I Z U Z I Z U Z z I ββj 00j 00e 21e 21---+=(2)三角函数形式()z Z I z U z U L L ββsin j cos 0+=()z I z Z U z I L Lββcos sin j+= (3)瞬时形式()()A z t A t z u ϕβω++=cos , ()B z t B ϕβω+-+cos ()()A z t Z A t z i ϕβω++=cos ,0()B z t Z B ϕβω+--cos 0其中,()L L I Z U A 021+=,()L L I Z U B 021-= 物理意义:传输线上的电压、电流以波动的形式存在,合成波等于入射波与反射波的叠加。
第 1 章 习 题1、 求函数()D Cz By Ax u +++=1的等值面方程。
解:根据等值面的定义:标量场中场值相同的空间点组成的曲面称为标量场的等值面,其方程为)( ),,(为常数c c z y x u =。
设常数E ,则,()E D Cz By Ax =+++1, 即:()1=+++D Cz By Ax E针对不同的常数E (不为0),对应不同的等值面。
2、 已知标量场xy u =,求场中与直线042=-+y x 相切的等值线方程。
解:根据等值线的定义可知:要求解标量场与直线相切的等值线方程,即是求解两个方程存在单解的条件,由直线方程可得:42+-=y x ,代入标量场C xy =,得到: 0422=+-C y y ,满足唯一解的条件:02416=⨯⨯-=∆C ,得到:2=C ,因此,满足条件的等值线方程为:2=xy3、 求矢量场z zy y y x xxy A ˆˆˆ222++=的矢量线方程。
解:由矢量线的微分方程:zy x A dz A dy A dx ==本题中,2xy A x =,y x A y 2=,2zy A z =,则矢量线为:222zy dzy x dy xy dx ==,由此得到三个联立方程:x dy y dx =,z dz x dx =,zy dz x dy =2,解之,得到: 22y x =,z c x 1=,222x c y =,整理, y x ±=,z c x 1=,x c y 3±=它们代表一簇经过坐标原点的直线。
4、 求标量场z y z x u 2322+=在点M (2,0,-1)处沿z z y xy xx t ˆ3ˆˆ242+-=方向的方向导数。
解:由标量场方向导数的定义式:直角坐标系下,标量场u 在可微点M 处沿l 方向的方向导数为γβαcos cos cos zuy u x u l u ∂∂+∂∂+∂∂=∂∂α、β、γ分别是l 方向的方向角,即l 方向与z y xˆˆˆ、、的夹角。
第二章习题参考答案同轴线、双导线和平行板传输线的分布参数注:媒质的复介电常数εεε''-'=i ,导体的表面电阻ss R σδσωμ1221=⎪⎭⎫⎝⎛=。
本章有关常用公式:)](1[)()]()([122)()](1)[()()(22)(00000000d Z d V d V d V Z e Z Z I V e Z Z I V d I d d V d V d V e Z I V e Z I V d V d j L L d j L L dj L L d j L L Γ-=-=--+=Γ+=+=-++=+-+-+-+-ββββ )2(2200200)(d j L d j L dj L L d j L L L L L e e e Z Z Z Z e Z I V Z I V VV d βφβββ----+-Γ=Γ=+-=+-==ΓL Lj L j L L L L L e e Z Z Z Z Z Z Z Z φφΓ=+-=+-=Γ0000dtg jZ Z dtg jZ Z Z d Z L L in ββ++=000)()(1)(1)()()(0d d Z d I d V d Z in Γ-Γ+==LL VV VSWR Γ-Γ+==11minmax2.1无耗或者低耗线的特性阻抗为110C L Z = 平行双导线的特性阻抗:aDa a D D a a D D Z r r rln 11202)2(ln 11202)2(ln 112222000εεεμεπ≈-+=-+=已知平行双导线的直径mm a 22=,间距cm D 10=,周围介质为空气(1=r ε),所以特性阻抗)(6.5521100ln 120ln11200Ω==≈a D Z rε 同轴线的特性阻抗:ab a b Z r rln 60ln 121000εεμεπ==已知同轴线外导体的内直径2mm b 23=,内导体的外直径2mm a 10=,中间填充空气(1=r ε):特性阻抗)(50210223ln 60ln 600Ω===abZ r ε中间填充介质(25.2=r ε):特性阻抗)(3.33210223ln 25.260ln 600Ω===a b Z r ε2.2对于无耗传输线线有相位常数μεωωβ===k C L 11,所以可求出相速度v k C L v p =====μεωβω1111,等于电磁波的传播速度。
微波技术答案(一二章)题 解第 一 章1-1 微波是频率很高,波长很短的一种无线电波。
微波波段的频率范围为8103⨯Hz~12103⨯Hz ,对应的波长范围为1m~0.1mm 。
关于波段的划分可分为粗分和细分两种。
粗分为米波波段、分米波波段、厘米波波段、毫米波波段、亚毫米波段等。
细分为Ka K Ku X C S L UHF 、、、、、、、…等波段,详见表1-1-2。
1-2 简单地说,微波具有下列特点。
(1) 频率极高,振荡周期极短,必须考虑系统中的电子惯性、高频趋肤效应、辐射效应及延时效应;(2) 波长极短,“反射”是微波领域中最重要的物理现象之一,因此,匹配问题是微波系统中的一个突出问题。
同时,微波波长与实验设备的尺寸可以比拟,因而必须考虑传输系统的分布参数效应;(3) 微波可穿透电离层,成为“宇宙窗口”;(4) 量子特性显现出来,可用来研究物质的精细结构。
1-3 在国防工业方面:雷达、电子对抗、导航、通信、导弹控制、热核反应控制等都直接需要应用微波技术。
在工农业方面,广泛应用微波技术进行加热和测量。
在科学研究方面,微波技术的应用也很广泛。
例如,利用微波直线加速器对原子结构的研究,利用微波质谱仪对分子精细结构进行研究,机载微波折射仪和微波辐射计对大气参数进行测量等等。
第 二 章2-1 解 ∵01011Z Z Z Z +-=Γ ∴)(82.811Ω=Z2-2 解图(a )的输入阻抗021Z Z ab =; 图(b )的输入阻抗0Z Z ab =;图(c )的输入阻抗0Z Z ab =;图(d )的输入阻抗052Z Z ab =; 其等效电路自绘。
2-3 解 ∵01011Z Z Z Z +-=Γ ∵e j j 4121)1(21π=+=Γ 2-4 解(1) ∵e j Z Z Z Z 40101122π=+-=Γ ∴83.511ρ11=Γ-Γ+=(2) ∵π2 =l β ∴e e j l -j l 4π) β2(11022=Γ=Γϕ 2-5 解 ∵ljZ Z l jZ Z Z Z tg βtg β10010++= ∴)(39.673.8Ω+=j Z in)(24.6009.2201Ω+=j Z)(1005003Ω+=j Z2-6 证明∵)(00ββe e lj l j U U Γ+=-+ )(00ββ0e e l j l j Z U I Γ-=-+ 而I Z E I Z E U g 0-=-=∴e U E l j 0β2-+= 故2EU =+2-7 证明lZ j l j Z l jZ Z l jZ Z Z in tg β1tg βtg βtg β111001++=++= 而 ρ11min =Z ,对应线长为1min l 故 1min 11min 1tg β1tg βρ1l Z j l j Z ++= 整理得 1min 1min 1tg βρρtgβ1l j l j Z --=2-8 解∵38.001011=+-=ΓZ Z Z Z而给定的1Z 是感性复阻抗,故第一个出现的是电压腹点,即λ/4线应接在此处。