第二章-课后习题解答学习资料
- 格式:ppt
- 大小:116.50 KB
- 文档页数:8
第二章新民主主义革命理论1、什么是新民主主义革命的总路线?如何理解新民主主义革命的领导权问题?(1)1948年,毛泽东在《晋绥干部会议上的讲话》中完整地表述了新民主主义革命总路线的内容,即无产阶级领导的,人民大众的,反对帝国主义、封建主义和官僚资本主义的革命。
新民主主义的政治、经济、文化纲领是新民主主义革命总路线的展开和具体化,指明了新民主主义革命的发展方向。
中国革命必须走农村包围城市、武装夺取政权的革命道路。
新民主主义革命的总路线指明了革命的目的、对象、动力、领导力量以及革命的性质和前途。
具体内容如下:①新民主主义革命的目的新民主主义革命的目的是推翻买办的封建的生产关系以及腐朽的政治上层建筑,从根本上解放被束缚的生产力。
②新民主主义革命的对象近代中国社会的性质和主要矛盾,决定了中国革命的主要敌人就是帝国主义、封建主义和官僚资本主义。
帝国主义是中国革命的首要对象,是中国社会进步和发展的最大障碍,是近代中国贫困落后和一切灾难祸害的总根源。
封建地主阶级是帝国主义统治中国和封建军阀实行专制统治的社会基础,是中国经济现代化和政治民主化的主要障碍。
官僚资本主义是依靠帝国主义、勾结封建势力、利用国家政权力量而发展起来的买办的封建的国家垄断资本主义。
官僚资本主义对广大劳动人民的残酷剥削和对民族工商业的巧取豪夺,严重地束缚了中国社会生产力的发展,因此也是中国革命的对象。
③新民主主义革命的动力新民主主义革命的动力包括无产阶级、农民阶级、城市小资产阶级和民族资产阶级。
无产阶级是中国革命最基本的动力。
中国无产阶级是新的社会生产力的代表,是近代中国最进步的阶级,是中国革命的领导力量。
农民是中国革命的主力军,其中的贫农是无产阶级最可靠的同盟军,而中农是无产阶级可靠的同盟军。
城市小资产阶级是无产阶级的可靠同盟者。
民族资产阶级也是中国革命的动力之一。
④新民主主义革命的领导力量无产阶级的领导权是中国革命的中心问题,也是新民主主义革命理论的核心问题。
第二章1.什么是前趋图?为什么要引入前趋图?答:前趋图(PrecedenceGraph)是一个有向无循环图,记为DAG(DirectedAcyclicGraph),用于描述进程之间执行的前后关系。
2.画出下面四条诧句的前趋图:S1=a:=x+y;S2=b:=z+1;S3=c:=a-b;S4=w:=c+1;答:其前趋图为:3.4.5.6.a.未建立任何进程的程序,都不能作为一个独立的单位来运行。
7.试说明PCB的作用?为什么说PCB是进程存在的唯一标志?a.PCB是进程实体的一部分,是操作系统中最重要的记录型数据结构。
PCB中记录了操作系统所需的用于描述进程情况及控制进程运行所需的全部信息。
因而它的作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位,一个能和其它进程并发执行的进程。
b.在进程的整个生命周期中,系统总是通过其PCB对进程进行控制,系统是根据进程的PCB而不是任何别的什么而感知到该进程的存在的,所以说,PCB是进程存在的唯一标志。
11.试说明进程在三个基本状态之间转换的典型原因。
答:(1)就绪状态→执行状态:进程分配到CPU资源(2)执行状态→就绪状态:时间片用完(3)执行状态→阻塞状态:I/O请求(4)阻塞状态→就绪状态:I/O完成12.为什么要引入挂起状态?该状态有哪些性质?答:引入挂起状态处于五种不同的需要:终端用户需要,父进程需要,操作系统需要,对换需要和负荷调节需要。
处于挂起状态的进程不能接收处理机调度。
10.在3)。
17.在撤销一个进程时所要完成的主要工作是什么?答:(1)根据被终止进程标识符,从PCB集中检索出进程PCB,读出该进程状态。
(2)若被终止进程处于执行状态,立即终止该进程的执行,臵调度标志真,指示该进程被终止后重新调度。
(3)若该进程还有子进程,应将所有子孙进程终止,以防它们成为不可控进程。
(4)将被终止进程拥有的全部资源,归还给父进程,或归还给系统。
第二章课后习题2、为方便储户,某银行拟开发计算机储蓄系统.储户填写的存款单或取款单由业务员输入系统,如果是存款,系统记录存款人姓名、住址、存款类型、存款日期、利率等信息,并印出存款单给储户;如果是取款,系统计算利息并印出利息清单给储户。
写出问题定义并分析系统的可行性。
答:如果是存款,储户填写存款单,然后交给业务员键入系统,同时系统还要记录存款人姓名、住址(或电话号码)、身份证号码、存款类型、存款日期、利率等信息,完成后由系统打印存款单给储户。
如果是取款,储户填写取款单,然后交给业务员,业务员把取款金额输入系统并要求储户输入密码以确认身份,核对密码正确无误后系统计算利息并印出利息清单给储户。
为了满足储户的需求,该系统需要迅速的对用户的要求做出反馈,要对用户输入的信息作出最快的处理,所以就需要很大的主存容量,以及强大的数据库支持。
由于是所面向的用户是广泛的储蓄用户群,所以需要系统强大的安全性能支持。
可行性研究方法条件、假定和限制建议开发软件运行的最短寿命:5年进行系统方案选择比较的期限:2个月经费来源和使用限制:定制银行硬件、软件、运行环境和开发环境的条件和限制:银行中心拥有大型机以及用来支持的数据库,各个银行网点都有安好的PC机,安装有Windows2000及以上的操作系统。
建议开发软件投入使用的最迟时间:开发完成后试运行1个月.可行性研究方法通过与银行熟练业务员进行深入讨论,制定详细用户调查问卷,真正了解用户以及银行业务员的实际需求,根据业务员提供的信息以及问题定义再综合调查问卷中用户提出的意见进行改进。
最终确定项目需要解决的问题,并确定问题能不能被解决。
决定可行性的主要因素1)项目开发成本2)所需设备置办成本3)技术是否能满足需求4)操作人员的熟练程度5)资源有效性对现有系统的分析1处理流程和数据流程系统流程图存款流程图:取款流程图:数据流图:2工作负荷当前大多数银行所使用的银行储蓄系统在办理业务时手续繁琐,人工业务操作过多,办理一个客户的业务就需耗费较长的时间,其他客户只有等待。
}弹簧下悬挂一物体,弹簧静伸长为δ。
设将物体向下拉,使弹簧有静伸长3δ,然后无初速度地释放,求此后的运动方程。
解:设物体质量为m ,弹簧刚度为k ,则:mg k δ=,即:n ω==取系统静平衡位置为原点0x =,系统运动方程为: δ⎧+=⎪=⎨⎪=⎩00020mx kx x x (参考教材P14)解得:δω=()2cos n x t t弹簧不受力时长度为65cm ,下端挂上1kg 物体后弹簧长85cm 。
设用手托住物体使弹簧回到原长后无初速度地释放,试求物体的运动方程、振幅、周期及弹簧力的最大值。
@解:由题可知:弹簧的静伸长0.850.650.2()m =-= 所以:9.87(/)0.2n g rad s ω=== 取系统的平衡位置为原点,得到:系统的运动微分方程为:20n x x ω+=其中,初始条件:(0)0.2(0)0x x =-⎧⎨=⎩ (参考教材P14)所以系统的响应为:()0.2cos ()n x t t m ω=-弹簧力为:()()cos ()k n mg F kx t x t t N ω===- 。
因此:振幅为、周期为2()7s π、弹簧力最大值为1N 。
重物1m 悬挂在刚度为k 的弹簧上并处于静平衡位置,另一重物2m 从高度为h 处自由落到1m 上而无弹跳,如图所示,求其后的运动。
解:取系统的上下运动x 为坐标,向上为正,静平衡位置为原点0x =,则当m 有x 位移时,系统有: 2121()2T E m m x =+ 212U kx =由()0T d E U +=可知:12()0m m x kx ++= $即:12/()n k m m ω=+系统的初始条件为:⎧=⎪⎨=-⎪+⎩2020122m gx k m x gh m m (能量守恒得:221201()2m gh m m x =+) 因此系统的响应为:01()cos sin n n x t A t A t ωω=+其中:ω⎧==⎪⎨==-⎪+⎩200021122n m g A x k x m g ghk A k m m即:ωω=-2()(cos )n n m g x t t t k一质量为m 、转动惯量为I 的圆柱体作自由纯滚动,圆心受到一弹簧k 约束,如图所示,求系统的固有频率。
第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。
A •强化法B •系统脱敏法C.代币法D •来访者中心疗法2•在对学生进行心理辅导时,常使用的“强化法”属于()。
A •行为改变技术B •认知改变法C.运动改变法D •精神分析法3•在心理辅导的行为演练中,系统脱敏法是由()首创。
A .皮亚杰B •沃尔帕C艾利斯D •罗杰斯4•心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。
A •强化法B •系统脱敏法C.理性一情绪疗法D •来访者中心疗法5 •行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。
A .皮亚杰B •斯金纳C.艾利斯D .奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。
A .强化法B .理性一情绪疗法C.代币法D .来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。
A .系统脱敏法B •代币法C.行为塑造法D .来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。
这种心理辅导方法是()。
A .强化法B •系统脱敏法C.来访者中心法D .理性一情绪疗法9.()不是行为改变的基本方法。
A .强化法B .代币法C.自我控制法D .演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。
A .全身松弛训练B .系统脱敏法C.行为塑造法D .肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师教师耐心解答并给予表扬和鼓励。
的这种做法属于行为改变方法中的()。
第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。
A.强化法B.系统脱敏法C.代币法D.来访者中心疗法2.在对学生进行心理辅导时,常使用的“强化法”属于()。
A.行为改变技术B.认知改变法C.运动改变法D.精神分析法3.在心理辅导的行为演练中,系统脱敏法是由()首创。
A.皮亚杰B.沃尔帕C.艾利斯D.罗杰斯4.心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。
A.强化法B.系统脱敏法C.理性一情绪疗法D.来访者中心疗法5.行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。
A.皮亚杰B.斯金纳C.艾利斯D.奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。
A.强化法B.理性一情绪疗法C.代币法D.来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。
A.系统脱敏法B.代币法C.行为塑造法D.来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。
这种心理辅导方法是()。
A.强化法B.系统脱敏法C.来访者中心法D.理性一情绪疗法9.()不是行为改变的基本方法。
A.强化法B.代币法C.自我控制法D.演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。
A.全身松弛训练B.系统脱敏法C.行为塑造法D.肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师耐心解答并给予表扬和鼓励。
教师的这种做法属于行为改变方法中的()。
A.强化法B.示范法C.消退法D.行为塑造法12.认知疗法于20世纪六七十年代在()产生。
新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I ) 2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32, (4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623b a ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m •••=4165413121mm m m m ••=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462r t s -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ;(6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y 21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R .(3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5.(4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n .(2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n .点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的.B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35. 点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ),2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118. 答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=- 2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =;(2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x==,所以3x =; (4)设lg 0.001x =,则3100.00110x-==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z =-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-.4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x=(5) 100.3x= (6) 3xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=- 5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)b x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43xx-==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()log (1)log (1)()()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79) 1.函数y =21x是幂函数. 2.解析:设幂函数的解析式为f (x )=x α,因为点(2,2)在图象上,所以2=2α.所以α=21,即幂函数的解析式为f (x )=x 21,x ≥0.3.(1)因为流量速率v 与管道半径r 的四次方成正比,所以v =k ·r 4; (2)把r =3,v =400代入v =k ·r 4中,得k =43400=81400,即v =81400r 4; (3)把r =5代入v =81400r 4,得v =81400×54≈3 086(cm 3/s ), 即r =5 cm 时,该气体的流量速率为3 086 cm 3/s .第二章 复习参考题A 组(P82)1.(1)11; (2)87; (3)10001; (4)259. 2.(1)原式=))(()()(212121212212122121b a b a b a b a -+++-=b a b b a a b b a a -++++-2121212122=ba b a -+)(2;(2)原式=))(()(1121----+-a a a a a a =aa a a 11+-=1122+-a a . 3.(1)因为lg 2=a ,lg 3=b ,log 125=12lg 5lg =32lg 210lg2•=3lg 2lg 22lg 1+-,所以log 125=ba a +-21. (2)因为2log 3a =,3log 7b =37147log 27log 56log 27⨯=⨯=2log 112log 377++=7log 2log 11)7log 2(log 33333÷++÷=b ab a ÷++÷111)1(3=13++ab ab . 4.(1)(-∞,21)∪(21,+∞);(2)[0,+∞).5.(32,1)∪(1,+∞);(2)(-∞,2);(3)(-∞,1)∪(1,+∞).6.(1)因为log 67>log 66=1,所以log 67>1.又因为log 76<log 77=1,所以log 76<1.所以log 67>log 76. (2)因为log 3π>log 33=1,所以log 3π>1.又因为log 20.8<0,所以log 3π>log 20.8.7.证明:(1)因为f (x )=3x ,所以f (x )·f (y )=3x ×3y =3x +y .又因为f (x +y )=3x +y ,所以f (x )·f (y )=f (x +y ). (2)因为f (x )=3x ,所以f (x )÷f (y )=3x ÷3y =3x -y . 又因为f (x -y )=3x -y ,所以f (x )÷f (y )=f (x -y ).8.证明:因为f (x )=lgxx+-11,a 、b ∈(-1,1), 所以f (a )+f (b )=lgbb a a +-++-11lg11=lg )1)(1()1)(1(b a b a ++--, f (ab b a ++1)=lg (ab b a ab ba +++++-1111)=lg b a ab b a ab +++--+11=lg )1)(1()1)(1(b a b a ++--. 所以f (a )+f (b )=f (abba ++1).9.(1)设保鲜时间y 关于储藏温度x 的函数解析式为y =k ·a x (a >0,且a ≠1).因为点(0,192)、(22,42)在函数图象上,所以022192,42,k a k a ⎧=⋅⎪⎨=⋅⎪⎩解得⎪⎩⎪⎨⎧≈==.93.0327,19222a k 所以y =192×0.93x ,即所求函数解析式为y =192×0.93x . (2)当x =30 ℃时,y ≈22(小时);当x =16 ℃时,y ≈60(小时),即温度在30 ℃和16 ℃的保鲜时间约为22小时和60小时. (3)图象如图:图2-210.解析:设所求幂函数的解析式为f (x )=x α,因为f (x )的图象过点(2,22), 所以22=2α,即221-=2α.所以α=21-.所以f (x )=x 21-(x >0).图略,f (x )为非奇非偶函数;同时它在(0,+∞)上是减函数.B 组1.A2.因为2a =5b =10,所以a =log 210,b =log 510,所以a 1+b 1=10log 12+10log 15=lg 2+lg 5=lg 10=1. 3.(1)f (x )=a 122+-x在x ∈(-∞,+∞)上是增函数.证明:任取x 1,x 2∈(-∞,+∞),且x 1<x 2.f (x 1)-f (x 2)=a 122+-x -a +1222+x =1222+x -1221+x =)12)(12()22(21221++-x x x x . 因为x 1,x 2∈(-∞,+∞), 所以.012.01212>+>+x x又因为x 1<x 2, 所以2122x x <即2122x x <<0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).所以函数f (x )=a 122+-x在(-∞,+∞)上是增函数. (2)假设存在实数a 使f (x )为奇函数,则f (-x )+f (x )=0,即a 121+--x +a 122+-x =0⇒a =121+-x +121+x =122+x +121+x=1, 即存在实数a =1使f (x )=121+--x 为奇函数.4.证明:(1)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以[g (x )]2-[f (x )]2=[g (x )+f (x )][g (x )-f (x )]=)22)(22(xx x x x x x x e e e e e e e e -----++++ =e x ·e -x =e x -x =e 0=1, 即原式得证.(2)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以f (2x )=222x x e e -+,2f (x )·g (x )=2·2x x e e --·2x x e e -+=222xx e e --.所以f (2x )=2f (x )·g (x ).(3)因为f (x )=2x x e e --,g (x )=2xx e e -+,所以g (2x )=222x x e e -+,[g (x )]2+[f (x )]2=(2x x ee -+)2+(2xx e e --)2=4222222x x x x e e e e --+-+++=222xx e e -+.所以g (2x )=[f (x )]2+[g (x )]2.5.由题意可知,θ1=62,θ0=15,当t =1时,θ=52,于是52=15+(62-15)e -k ,解得k ≈0.24,那么θ=15+47e -0.24t . 所以,当θ=42时,t ≈2.3;当θ=32时,t ≈4.2.答:开始冷却2.3和4.2小时后,物体的温度分别为42 ℃和32 ℃.物体不会冷却到12 ℃.6.(1)由P=P 0e -k t 可知,当t =0时,P=P 0;当t =5时,P=(1-10%)P 0.于是有(1-10%)P 0=P 0e -5k ,解得k =51-ln 0.9,那么P=P 0e t )9.0ln 51(.所以,当t =10时,P=P 0e 9.01051n I ⨯⨯=P 0e ln 0.81=81%P 0.答:10小时后还剩81%的污染物. (2)当P=50%P 0时,有50%P 0=P 0et )9.0ln 51(,解得t =9.0ln 515.0ln ≈33.答:污染减少50%需要花大约33h . (3)其图象大致如下:图2-3。
【第二章】1.某公司需用一台设备,买价为9000元,可用8年。
如果租用,则每年年初需付租金1500元。
假设利率为8%。
要求:试决定企业应租用还是购买该设备。
解: 用先付年金现值计算公式计算8年租金的现值得:V 0 = A ×PVIFA i ,n ×(1 + i )= 1500×PVIFA 8%,8×(1 + 8%) = 1500×5.747×(1 + 8%) = 9310.14(元) 因为设备租金的现值大于设备的买价,所以企业应该购买该设备2.某企业全部用银行贷款投资兴建一个工程项目,总投资额为5000万元,假设银行借款利率为16%。
该工程当年建成投产。
要求:(1)该工程建成投产后,分8年等额归还银行借款,每年年末应还多少? (2)若该工程建成投产后,每年可获净利1500万元,全部用来归还借款的本息,需多少年才能还清? 1. 解:(1)查PVIFA 表得:PVIFA 16%,8 = 4.344。
由PV A n = A·PVIFA i ,n 得: A = PV A n /PVIFA i ,n = 1151.01(万元)所以,每年应该还1151.01万元。
(2)由PV A n = A·PVIFA i ,n 得:PVIFA i ,n =PV A n /A 则PVIFA 16%,n = 3.333查PVIFA 表得:PVIFA 16%,5 = 3.274,PVIFA 16%,6 = 3.685,利用插值法:年数 年金现值系数 5 3.274 n 3.333 6 3.685由以上计算,解得:n = 5.14(年) 所以,需要5.14年才能还清贷款。
3.银风汽车销售公司针对售价为25万元的A 款汽车提供两种促销方案。
a 方案为延期付款业务,消费者付现款10万元,余款两年后付清。
b 方案为商业折扣,银风汽车销售公司为全款付现的客户提供3%的商业折扣。
第二章 市场供求一、思考题1.需求规律的内容是什么?在影响需求的其他因素既定的条件下,商品的需求量与其价格之间存在着的反向的依存关系:即商品价格上升,需求减少;商品价格下降,需求量增加。
2.什么是替代效应和收入效应?(1)收入效应。
当一种商品价格下降时,从财富存量角度衡量的消费者收入会相应增加的效应。
由于消费者收入是影响商品需求的因素之一,因此,收入增加会导致对该种商品的消费量相应增加,这就是收入效应。
(2)替代效应。
当一种商品的价格下降时,这种商品相对于其替代品而言,就变得相对便宜,那么消费者就会增加对这种商品的消费,从而减少对其替代品的消费,这就是替代效应。
3.需求变动与需求量变动的区别是什么?(1)需求量变动需求量的变动是指在其他条件不变的前提下,由于商品价格变化所引起的消费者愿意并有能力购买的商品数量的变化。
这种需求量的变化在需求曲线上表现为沿着需求曲线的点移动,如图2-4所示。
当价格由P 0升到P 1时,需求量由Q 0下降到Q 1,它在需求曲线上的对应点由B 点运动到A 点;当价格由P 0下降到P 2时,它在需求曲线上的对应点由B 向右下方运动到C ,此时,需求量增加到Q 2。
可以看出,不论价格怎样变动,需求曲线的变化始终离不开D 这条需求曲线。
图2-4 需求量的变动(2)需求变动需求的变动是指在价格不变的前提下,由于其他因素(如消费者收入、相关商品的价格PQ 0 Q 2 Q 1 P 2 P 1P 0Q等)发生变化而引起的整个供求关系的变化。
在需求曲线图上,表现为需求曲线的位移,即形成新的需求曲线。
这意味着消费者在每一价格水平下所愿意并且有能力购买的商品数量都与原来不同,如图2-5所示。
D0为原需求曲线,D1、D2为变化后的需求曲线。
在原假设条件下,价格为P0,需求量为Q0,需求曲线为D0。
现假定消费者的收入增加,其购买力随之上升。
当价格仍为P0时,需求量就由Q0增加到Q2。
与此类似,在每一价格点上都会发生这种变化,从而使需求曲线向右上方平行移动,即由D0移到D2。
1. 已知某一时期内某商品的需求函数为Q =50-5P ,供给函数为Qs=-10+5p。
(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。
(2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。
求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。
(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。
求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。
(4)利用(1)(2 )(3),说明静态分析和比较静态分析的联系和区别。
(5)利用(1)(2 )(3),说明需求变动和供给变动对均衡价格和均衡数量的影响.解答: (1)将需求函数Qd = 50-5P和供给函数Qs =-10+5P 代入均衡条件Qd = Qs ,有: 50- 5P= -10+5P得: Pe=6以均衡价格Pe =6 代入需求函数Qd =50-5p ,得: Qe=20所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 (图略)(2)将由于消费者收入提高而产生的需求函数Qd=60-5p 和原供给函数Qs=-10+5P, 代入均衡条件Q d= Qs ,有: 60-5P=-10+5P 得Pe=7以均衡价格Pe=7代入Qd方程,得Qe=25所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (图略)(3) 将原需求函数Qd =50-5p和由于技术水平提高而产生的供给函数Q =-5+5p ,代入均衡条件Qd =Qe ,有: 50-5P=-5+5P得Pe= 5.5以均衡价格Pe= 5.5 代入Qd =50-5p ,得22.5所以,均衡价格和均衡数量分别为Pe=5.5 Qe=22.5(4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图中,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q=-10+5P 和需求函数Q=50-5P表示,均衡点具有的特征是:均衡价格P=6 且当P =6 时,有Q= Q d= Qe =20 ,同时,均衡数量Qe= 20 ,且当Qe=20 时,有Pd=Ps=Pe=6 ,也可以这样来理解静态分析:在外生变量包括需求函数的参数(50,-5) 以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为P= 6 ,Qe =20依此类推,以上所描素的关于静态分析的基本要点,在(2)及其图和(3)及其图中的每一个单独的均衡点上都得到了体现。
第二章课后习题答案一、思考题(1)什么是配送中心选址?什么是物流网点布局?答题要点配送中心选址是指在一个具有若干供应点及若干需求点的经济区域内,选择一个地址设置物流配送中心的规划过程。
物流网点的合理布局是以物流系统和社会的经济效益为目标,用系统学的理论和系统工程的方法,综合考虑物资的供需状况、运输条件、自然环境等因素,对物流配送中心的设置位置、规模、供货范围等进行研究和设计。
(2)配送中心选址的目标和步骤是什么?答题要点配送中心选址的目标是:错误!未找到引用源。
费用低,即寻求设置配送中心所需费用(包括建设费用和经营费用在内的总费用)最低的地址。
错误!未找到引用源。
服务好,即选择的配送中心的地址应该能够保证商品及时、完好地送达用户。
错误!未找到引用源。
辐射强以及社会效益高,即配送中心的选址应该从整个区域的物流大系统出发,使配送中心的地域分布与区域物流资源和需求分布相适应,满足相关地区经济发展的需要。
配送中心选址的步骤是:错误!未找到引用源。
选址约束条件分析(关注配送中心选址决策常见的约束条件);错误!未找到引用源。
定性分析,筛选地址;错误!未找到引用源。
收集整理资料;错误!未找到引用源。
定量分析;错误!未找到引用源。
结果评价;错误!未找到引用源。
确定选址结果。
(3)配送中心选址时应考虑的主要因素有哪些?答题要点①资金。
资金约束将会影响到区位决策,因为不同位置的土地价格差异非常大。
错误!未找到引用源。
交通运输条件。
由于只能选择能够到达用户的运输方式,所以选址决策必须在运输能力范围内进行。
例如,对多数用户而言,公路是唯一能到达的运输方式,则配送中心位置必须在公路交通枢纽或运输干线附近选择。
错误!未找到引用源。
能源条件。
供水、供电等能源系统是配送中心赖以运作的基础,选址时,能源条件将限制配送中心的选址范围。
错误!未找到引用源。
政府对土地用途的规划。
地方政府对使用不同区块的土地有着各种不同的限制,配送中心只允许建在政府指定的区域范围内。
微观经济学原理课后习题及答案-第二章需求、供给和均衡价格第一部分教材配套习题本习题详解1. 下列各事件对x 商品的需求有何影响?(1) x 商品的生产厂商投入大量资金做广告宣传。
(2) 生产x 商品的工人的工资增加了。
(3) y 商品是x 商品的替代品,y 商品的价格下降了。
(4) 消费者的收入增加了。
解答:(1)x 商品的生产厂商投入大量资金做广告宣传,提高商品的知名度和消费者对商品的偏好,导致在每一价格下,消费者对商品需求量增加,使需求曲线向右移动。
(2) 生产x 商品的工人的工资增加了。
对x 商品的需求没有直接影响,需求曲线不变,但是工人的工资增加,增加了生产成本,使供给曲线向左上移动,需求不变供给减少,导致均衡价格上升,均衡数量减少。
(3) y商品是x 商品的替代品,y 商品的价格下降了,x 商品相对贵了,消费者用y 商品替代x 商品,导致在每一价格下,消费者对商品需求量减少,使需求曲线向左移动。
(4) 若消费者消费的是正常商品,消费者的收入增加了,在每一价格下,消费者对商品需求量增加,使需求曲线向右移动;若消费者消费的是劣商品(抵挡商品),导致在每一价格下,消费者对商品需求量减少,使需求曲线向左移动。
2. 下列各事件对棉花供给有何影响?(1) 气候恶劣导致棉花歉收。
(2) 种植棉花所需的化肥的价格上升。
(3) 政府对种植棉花的农户实施优惠政策。
(4) 棉花价格上升。
下列事件对棉花供给有何影响?(1)气候恶劣导致棉花歉收。
解答:( 1)棉花的供给曲线会左移。
因为恶劣气候导致的棉花歉收在棉花价格不变的情况下,会使棉花的供给数量减少,棉花的供给曲线会左移。
(2)棉花的供给曲线会左移。
因为化肥价格上升使得棉花的生产成本上升、利润下降,在任一价格水平下,农户都会缩小棉花种植面积,导致棉花供给数量下降, 棉花的供给曲线会左移。
(3)棉花的供给曲线会右移。
因为政府对种植棉花农户的优政策将激励农户的生产积极性,在任价格水平下,户都会大棉花种面积,导致棉花供给数量増加,棉花的供给曲线会右移。
第 二 章2-3试证明图2-5(a)的电网络与(b)的机械系统有相同的数学模型。
分析 首先需要对两个不同的系统分别求解各自的微分表达式,然后两者进行对比,找出两者之间系数的对应关系。
对于电网络,在求微分方程时,关键就是将元件利用复阻抗表示,然后利用电压、电阻和电流之间的关系推导系统的传递函数,然后变换成微分方程的形式,对于机械系统,关键就是系统的力学分析,然后利用牛顿定律列出系统的方程,最后联立求微分方程。
证明:(a)根据复阻抗概念可得:2221212112212211212112212122111()1()111oiR u C s R R C C s R C R C R C s R u R R C C s R C R C R C C sR C s R C s+++++==+++++++即220012121122121212112222()()i i o id u du d u duR R C C R C R C R C u R R C C R C R C u dt dt dt dt++++=+++取A 、B 两点进行受力分析,可得:o 112()()()i o i o dx dx dx dx f K x x f dt dt dt dt -+-=- o 22()dx dxf K x dt dt -= 整理可得:2212111221121212211222()()o o i i o id x dx d x dx f f f K f K f K K K x f f f K f K K K x dt dt dt dt ++++=+++经比较可以看出,电网络(a )和机械系统(b )两者参数的相似关系为1112221211,,,K f R K f R C C ::::2-5 设初始条件均为零,试用拉氏变换法求解下列微分方程式,并概略绘制x(t)曲线,指出各方程式的模态。
(1) ;)()(2t t x t x =+&(2))。