五年级下册数学在方格纸上画出简单图形旋转后的图形人教版
- 格式:pptx
- 大小:2.16 MB
- 文档页数:22
第9讲图形的运动知识点一:旋转1.旋转的意义把一个图形绕着某一点转动一定的角度的图形变换叫做旋转。
2.旋转的三要素(1)旋转点(或旋转中心):物体旋转时所绕的点就是旋转点(或旋转中心)。
(2)旋转方向:钟表中指针运动的方向为顺时针方向;与钟表中指针运动的方向相反的方向为逆时针方向。
(3)旋转角度:对应线段的夹角或对应点与旋转中心所连线段的夹角就是旋转角度。
3.图形旋转的特征:图形旋转后,形状和大小都没有发生变化,只是方向和位置变化了。
4.图形旋转的性质:旋转时,旋转中心的位置不变,图形的每个点、每条线段、每个角都绕旋转点按旋转方向转动了大小等于旋转角度的角。
旋转前后,对应点到旋转点的距离相等,对应线段和对应角分别相等。
5.在方格纸上画简单图形旋转90°后的图形的方法(1)找出原图形的关键点;(2)明确是顺时针旋转还是逆时针旋转。
(3)根据旋转方向,借助三角尺或量角器画原图形关键点与旋转中心所连线段的垂线;(4)在所画垂线上量出或数出与原线段相等的长度(即找到原图形关键点的对应点);(5)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
知识点二:利用平移或旋转等变换方式拼图先观察变换后的图形,然后思路分析其中的每部分可以由原始图案经过什么样的变换得到,灵活运用平移和旋转可以有不同的变换方法。
考点一:确定轴对称图形的对称轴数及位置【典例1】.(2020秋•德江县期末)下面四个图形只能画出两条对称轴的是()A.B.C.D.【分析】根据轴对称图形定义:如果一个图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,即可画出每个图形对称轴.据此解答即可。
【解答】解:能画出无数条对称轴;能画出两条对称轴;能画出三条对称轴;能画出六条对称轴。
故选:B。
【点评】此题考查了根据轴对称图形定义画出轴对称图形的对称轴的方法。
【典例2】(2020秋•深圳期末)在等腰三角形、长方形、正方形、圆、扇形中,有一条对称轴的图形有()种.A.1B.2C.3【分析】依据轴对称图形的概念,及在同一个平面内,一个图形沿某条直线对折,对折后的两部分都能完全重合,则这个图形就是轴对称图形,这条直线就是其对称轴,由此即可判断出给出图形的对称轴的条数.【解答】解:在等腰三角形、长方形、正方形、圆、扇形中,其中有一条对称轴的图形有等腰三角形和扇形2种.故选:B.【点评】解答此题的主要依据是:轴对称图形的概念及其特征.考点2:旋转【典例1】(2020•长沙模拟)如图,三角形ABC怎样旋转可以得到三角形A′BC′下面说法正确的是()A.绕B点逆时针旋转90°B.绕B点顺时针旋转90°C.绕C点顺时针旋转90°D.绕C点逆时针旋转180°【分析】根据旋转的特征,三角形ABC绕点B顺时针旋转90°,点B的位置不动,其余各部分均绕此点按相同方向旋转相同的度数即可画出旋转后的三角形A′BC′。
下图中图形B看作图形A绕点O( )时针方向旋转( ),又向( )平移( )格得到;图形D看作图形C绕点P( )时针方向旋转( ),又向( )平移( )格,再向( )平移( )格得到。
答案:顺 90°下 3 逆 90°上 3 左 3解析:根据图形的平移和旋转的特征,找到图形的关键点。
图形A绕点O顺时针方向旋转90°,又向下平移3格得到的图形B;图形C绕点P逆时针方向旋转90°,又向上平移3格,再向左平移3格得到图形D。
五年级数学下册人教版《平移和旋转的应用》精准讲练根据观察,图形B看作图形A绕O点顺时针方向旋转90°,又向下平移3格得到;图形D看作图形C绕点P逆时针方向旋转90°,又向上平移3格,再向左平移3格得到。
顺时针旋转90°,得到的图形是。
( )答案:×解析:将这个图形顺时针旋转90°得到的图形先画出来,再对比判断即可。
顺时针旋转90°,得到的图形应该是。
所以判断错误。
下列各组图形,只通过平移或旋转,不能形成长方形的是()。
A.B.C.D.答案:C解析:根据题意,逐项进行旋转平移,然后解答。
A.可以绕两个三角形的交点顺时针旋转180度,形成长方形;B.先向上平移一格,再绕两个图形的相交点逆时针旋转90度,形成长方形;C.通过平移旋转无法形成长方形;D.可以把右下的图形先向上平移4格,再向左平移5格,左下的图形先向上平移4格,再向右平移5格就得到了长方形。
故答案为:C按要求作图。
(每小格边长表示2米)(1)B点在A点的()面的()米处。
A点在C点()偏()()°方向上。
(2)把梯形先向右平移4格,再把梯形绕B点逆时针旋转90度,用数对表示旋转后梯形D点的位置是()(画出图形)。
(3)把这个梯形按3∶1的比画出放大后的图形,放大后图形的面积是()。
答案:(1)通过观察图形可知,B点在A点的南面的2×2=4米处。
案例名称:人教版教材五年级下册《图形的旋转》讲课教师:王彦伟(北京东城区教师研修中心,中学高级教师)【教学设计】教学目标:(1)知识与技能:进一步认识图形的旋转,明确含义,感悟特征及性质。
能够运用数学语言清楚描述旋转运动的过程。
会在方格纸上画出线段旋转90度后的图形。
(2)过程与方法:经历观察实例、操作想象、语言描述、绘制图形等活动,积累几何活动经验,发展空间观念。
(3)情感态度价值观:欣赏图形旋转变换所创造的美,学会用数学的眼光观察、思考生活,体会数学的价值。
教学重点:通过多种学习活动沟通联系,理解旋转含义,感悟特征及性质。
教学难点:用数学语言描述物体的旋转过程及会在方格纸上画出线段旋转90度后的图形。
教学过程设计◆认识旋转要素1.呈现生活实例,引出研究问题(1)出示动态挂钟,请同学判断挂钟中哪些物体在做旋转运动。
问题:看一看挂钟上哪些物体在运动?用我们学过的知识描述一下它们在做怎样运动?引导:大家都认可钟面上的指针在旋转,但是钟摆到底是在平移还是旋转意见不统一。
这是我们今天要弄明白的一个问题。
(2)师生举例,温故引新①学生举例。
问题:在二年级的时候我们初步学习了生活中的旋转现象,能举几个例子吗?②教师举例。
课件展示生活中的旋转现象。
(动态)王老师也收集了一些,我们一起来看看。
(出示课件)选择你喜欢的一个,说说它是怎么旋转的?问题:通过刚才的观察,你认为什么样的运动就是旋转?出示课题:看来同学们已经初步认识了生活中的旋转现象,今天我们进一步学习图形的旋转,从数学的角度研究图形旋转到底有哪些特征。
【设计意图:通过课前调研,教师从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:"钟摆的运动方式属于平移还是旋转?"学生有明显的争议,以此产生认知冲突,引发探究的欲望。
特别是教师注意选取旋转角度不是360°的实例作为教材补充实例,如道闸等,丰富学生的认知。
第1课时旋转(1)教学内容教科书P83~84例1、例2及“做一做”,完成教科书P85“练习二十一”中第1~3题。
教学目标1.进一步认识图形的旋转,明确含义,感悟其特征及性质。
会运用数学语言简单描述旋转运动的过程。
2.经历观察实例、操作想象、语言描述等活动,培养学生的推理能力。
积累几何活动经验,发展空间观念。
3.体验数学与生活的联系,学会用数学的眼光观察、思考生活,感受数学的美,体会数学的应用价值。
教学重点通过多种学习活动沟通联系,理解旋转的含义,初步感悟旋转的性质。
教学难点用数学语言描述物体的旋转过程。
教学准备课件,三角尺。
教学过程一、认识旋转要素1.课件出示生活实例,引出研究问题。
师:同学们,你们见过这些现象吗?仔细观察。
师:你们看见了什么?【学情预设】学生可能会说,看见风车在旋转,时钟转动起来等等。
师:看一看这些物体的运动,用我们学过的知识描述一下它们在做怎样的运动。
【学情预设】学生对图形的旋转已经具有了一定的认识,能够比较准确地感知生活中简单的旋转现象,并能对其进行判断。
仅有少数学生能够判断“道闸挡车杆的运动”和“秋千运动”是旋转现象,说明学生对旋转角度不是360°及比较复杂的旋转现象还不能做出正确判断。
师:这些物体的运动,都可以称为旋转运动。
在二年级的时候我们已经初步学习了生活中的旋转现象,能举几个例子吗?学生举例。
师:我也收集了一些生活中的实例,大家一起来看看。
选择一个你喜欢的,说说它是怎样旋转的。
◎教学笔记【教学提示】学生在回答“旋转”时,最好让学生对着具体的物体比画一下是怎样旋转。
课件展示生活中的动态旋转现象。
师:通过刚才的观察,你认为什么样的运动是旋转?学生简单描述后,教师板书课题:旋转(1)。
【设计意图】由于在第一阶段学习时,具体实例多是物体围绕一个点或一个轴做整圆周运动,所以部分学生形成了认识上的误区,认为只有转一圈才是旋转,所以本节课从学生的问题入手,选取学生熟悉的但又有争议的实例作为研究旋转现象的素材,有意识地引导学生探讨:“荡秋千属于平移还是旋转?”学生有明显的争议,以此产生认知冲突,引发探究的欲望。
随堂测试第5单元图形的运动(三)一、单选题1.如图,A是正三角形中心点,沿中心点A转动图形,至少转()度,能与原三角形重合。
A. 90B. 180C. 1202.下面的图案绕中心点顺时针旋转90°后,得到的图形是()。
A. B. C. D.3.在方格纸中将一个图形先向右平移4格,再向上平移6格,接着向右平移2格,最后向下平移6格,这时图形相当于由原来的位置()。
A. 向右平移6格B. 向右平移2格C. 向左平移2格4.下面关于三角形a的运动描述正确的是()。
A. 三角形a绕点C逆时针旋转180°得到三角形bB. 三角形a绕点C顺时针旋转180°得到三角形bC. 三角形a绕点B顺时针旋转180°得到三角形bD. 三角形a绕点B顺时针旋转90°得到三角形b5.下图中,线段AO绕点O顺时针旋转90°后的线段是()。
A. AOB. BOC. COD. BC6.如果三角形的一个顶点A,可以用数对(5,6)表示,如果把这个三角形向上平移4格,再向左平移3格,这时点A用数对()表示。
A. (9,9)B. (8,10)C. (2,10)D. (3,10)二、判断题7.这个图形可以通过基本图形平移得到。
()8.旋转和平移都改变了图形的形状和大小。
()9.等边三角形绕三条高的交点旋转60°后能与原来的图形重合。
()10.将一个正方形沿着某一点旋转90°,可能与原图形重合。
()11.将绕点O沿顺时针方向旋转90°,得到。
()三、解答题12.在横线上填上“旋转” 或“平移”13.画一画,填一填。
(1)画出把长方形绕0点顺时针方向旋转90°后的图形。
(2)旋转前A点的位置是(________,________),旋转后A点的位置是(________,________)。
(3)画出把三角形向下平移4格后的图形。
(4)画出三角形的各边缩小为原来的1后的图形。
如图:等边三角形ABC绕点C顺时针旋转120º后得到三角形A'B'C,那么点A的对应点是( ),线段AB的对应线段是( ),∠B的对应角是( ),∠BCB'是 ( )°答案:点A′线段A′B′∠B′ 120解析:在同一平面内,将一个图形绕一点按某个方向旋转一定的角度,这样的运动叫作图形的旋转,由此解答即可。
五年级数学下册人教版《在方格纸上画出简单图形旋转后的图形》精准讲练等边三角形ABC绕点C顺时针旋转120º后得到三角形A'B'C,那么点A的对应点是点A′,线段AB的对应线段是线段A′B′,∠B的对应角是∠B′,∠BCB'是120°作△ABO关于直线X的轴对称图形,再把绕点B的对称点逆时针旋转90度,然后向右平移2格得到图1。
( )答案:×解析:根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的左边画出三角形AB0的对称点A′B′O′,再依次连接即可得到三角形ABO的轴对称图形A′B′O′;根据旋转的特征,三角形ABO绕点B′逆时针旋转90°,点B′的位置不动,其余各部分均绕此点按相同的方向旋转相同的角度,即可化成旋转后的三角形A″B″O″;根据平移的特征,三角形A″B″O″的各顶点分别向右平移2个后的图形三角形A′″B′″O′″;看是否与图1重合,重合答案正确,否则不正确,据此解答。
由分析作图如下:三角形A′″B′″O′″与图形1不重合。
故答案为:×下面的图形中,()是由旋转得到的。
A.B. C.D.答案:D解析:根据旋转的定义,结合旋转图形的特征,一一判断各个图形是否是旋转得到的即可。
A. 可通过平移得到;B. 可通过轴对称得到;C. 可通过轴对称得到;D. 可通过旋转得到。
故答案为:D(1)用数对分别表示三角形三个顶点A、B、C的位置,A(,)B(,)C(,)。
(2)将三角形向右平移八格,画出平移后的三角形A'B'C'。
《图形的运动(三)——旋转》教学设计教学内容人教版教材五年级下册第五单元第83页例1和第84页例2。
教材分析本节课是在学生已经初步感知了生活中的对称、平移和旋转现象,认识了图形的轴对称,探索图形成轴对称的特征和性质,能在方格纸上将一个轴对称图形补充完整,会在方格纸上画出一个简单图形沿水平方向、垂直方向平移后的图形的基础上教学的,共教学两个例题,容量大,其中例1教学旋转的含义,例2是让学学生认识图形旋转的特点。
教师在教学时既要关注新旧知识的连接点,用原有知识推动新知识的学习,又要为中学的学习打下坚实的基础。
要切实把握好“图形旋转”的具体目标及其要求的“度”。
主题图联系生活实际,选取学生熟悉的实例作为研究旋转现象的素材,引出图形的旋转运动。
特别选取了旋转角度不是360°的钟摆、秋千等,丰富学生的认知。
感受数学的应用价值、文化价值和美学价值。
教学目标1.借助钟面指针的运动,明确旋转的三要素:旋转中心、旋转方向与旋转角度。
描述与操作相结合体会旋转的含义,明确图形旋转的特征。
2.经历观察实例、操作想象、语言描述等活动,培养学生的推理能力,积累几何活动经验,发展空间观念3.体验数学与生活的联系,学会用数学的眼光观察、思考生活,感受数学的美,会数学的应用价值。
教学重点旋转的含义、认识图形旋转的特征。
教学难点能用数学语言描述物体的旋转过程、探索多个图形拼组的运动变化。
教学准备教具:《图形的运动——旋转》教学课件、钟面学具:钟面、小棒、三角形、学习单、尺子、铅笔教学过程一、活动引入,初步感知1.师生活动:做举手动作(举起、放下)两次。
问:我们做的这几个动作,让你想起数学当中的什么运动现象呢?(旋转)2.揭题引入:旋转现象生活中处处可见,我们二年级已经初步认识了,这节课来进一步研究图形的旋转。
(出示课题)二、借助钟面,体会意义1.呈现生活实例,认识旋转要素——旋转方向与旋转中心。
(1)出示有趣的图,请同学们用一个词来表达感受。