振动实验台及控制系统设计
- 格式:pdf
- 大小:104.60 KB
- 文档页数:2
实验一 DHVTC振动测试与控制学生实验系统的组成与使用方法一、实验目的1、了解振动测试与控制实验系统的组成、安装和调整方法。
2、学会激振器、传感器与数采分析仪的操作、使用方法。
图1-1二、DHVTC振动测试与控制学生实验系统的组成图1-1 DHVTC振动测试与控制学生实验系统示意图(1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振系统(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁性表座(17)单自由度系统如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。
1、振动与控制实验台振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振用的空气阻尼减震器、单式动力吸振器、复式动力吸振器等组成。
可完成振动与振动控制等20多个实验的试验平台。
2、激振系统与测振系统(1) 激振系统激振系统包括:DH1301正弦扫频信号源JZ-1型接触式激振器JZF-1型非接触式激振器偏心电动机、调压器力锤(包括测力传感器)(2) 测振系统动态采集分析仪MT-3T型磁电式振动速度传感器DH130压电式加速度传感器WD302电涡流位移传感器测力传感器(3) 动态采集分析系统信号调理器数据采集仪计算机系统(或笔记本电脑)控制与基本分析软件模态分析软件三、DHVTC-59型仪器的使用方法1、激振系统的使用方法DH1301型正弦扫频信号源DH1301型正弦扫频信号源是配有功率放大后的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接触式激振器。
A、技术指标:频率范围0.1~9999.99Hz谐波失真<1%最大输出功率5w输出电流0~500 m A功耗20wB、使用方法:先将DH1301信号源的输出电压调节旋钮左旋到最小位置,把激振器与输出接线柱相连,打开电源开关,设置扫频信号的起始频率和结束频率及扫描速度。
多点随机振动试验控制系统的设计随机振动试验(SRV)是一种用于评估机械结构、航空航天器、车辆、建筑物等物体的结构动态特性的测试方法。
这种测试方法被广泛应用于航空、航天、汽车和工程领域,它可以提供完整的结构响应信息,这些响应信息是静态试验无法提供的。
因此,进行随机振动试验的控制系统是至关重要的。
控制系统需要能够控制试验台的振动、信号刺激和传感器数据采集。
其中,设计一个多点随机振动试验控制系统是一项挑战,需要以下方面考虑:1.系统框架设计系统框架设计涉及到控制系统的硬件和软件结构。
硬件方面,需要确定试验台的机械结构和振动驱动器、传感器、放大器和数据采集卡等设备的选型和配置。
软件方面,需要确定采用的数据采集和信号处理软件,以及控制算法的实现方式和界面设计等。
这些方面的设计需要考虑到试验的目的和需求,为系统的可维护性、扩展性和稳定性提供保障。
2.机械结构设计机械结构设计是控制系统的重要部分,涉及到试验台的振动驱动和振动响应。
根据试验需求,需要设计试验台的机械结构以及振动驱动器和振动响应传感器的位置和数量。
机械结构设计需要考虑试验物体的大小和重量,以及试验台的强度和稳定性。
3.振动控制算法设计振动控制算法是实现试验台振动的关键,需要根据试验目的和试验物体的特性进行不同的算法选择。
通常使用的振动控制算法有PID控制器、最小二乘逆算法、自适应控制算法等,算法的选择要根据系统性能、实现难度和控制精度等因素考虑。
4.数据处理与分析数据处理和分析是SRV试验的重要环节,需要对传感器采集到的信号进行处理和分析。
数据处理包括去噪、滤波、采样和校准等方面,以得到清晰的信号。
数据分析包括模态分析、谱分析、频响函数分析、相位分析等,以获取试验物体的结构动态特性。
通过以上的设计,可以实现一个高效、稳定、精确的多点随机振动试验控制系统,为结构动态特性的研究和设计提供重要的工具。
振动模拟实验台控制系统研究的开题报告一、研究背景和意义:振动模拟实验是模拟物理环境下的进行振动试验,以验证和研究各种振动相关问题。
实验台控制系统是实现振动模拟实验的核心部分,在实验参数的控制和运行过程中起着重要的作用。
随着工业制造技术的不断发展和应用领域的广泛,振动模拟实验台控制系统的研究和应用也变得越来越重要。
本研究旨在探究振动模拟实验台控制系统的设计及相应控制方法,进一步提高振动模拟实验的稳定性和准确性,为工业制造技术的发展做出积极贡献。
二、研究内容:本研究的主要内容包括:1. 基于STM32单片机的实验控制系统设计:设计一套基于STM32单片机的实验控制系统,实现对振动模拟实验台的各项参数进行控制和监测,包括波形参数、频率、振幅等。
2. 研究振动模拟实验台的控制方法:研究不同类型的振动模拟实验台的控制方法,包括模糊控制、PID控制、神经网络控制等,并比较各种控制方法的优缺点,选取最适合的控制方法。
3. 实验验证和结果分析:对研制的实验控制系统进行实验验证,以上述不同的控制方法进行对比分析,并探究控制系统的执行效果和稳定性,并对结果进行分析和总结。
三、研究方法:本研究将采取如下的研究方法:1.文献综述:根据国内外已有的相关研究文献,分析不同的振动模拟实验平台控制技术,整理各种控制方法的优缺点,并根据现有技术水平制定研究目标。
2.硬件设计:选取相应的硬件平台,包括STM32单片机、传感器、电路板等,完成实验控制系统设计的硬件部分。
3.软件设计:针对硬件设计,进行软件开发,设计实验控制系统的控制逻辑和运行流程,并完成相关算法优化和调试。
4.实验验证:通过实验验证,测试控制系统的执行效果和稳定性,并分析各种控制方法的优缺点,提出改进措施和建议。
四、研究预期结果和应用价值:预期研究结果和应用价值如下:1. 完成一套基于STM32单片机的振动模拟实验台控制系统设计,实现对实验台各项参数的控制和监测。
2. 比较分析不同类型的振动模拟实验台的控制方法,探究各种控制方法的优缺点,并选取最适合的控制方法。
振动试验及振动试验设备概述振动试验设备通常包括振动台、振动控制系统和传感器等组成部分。
振动台是用于施加振动载荷的平台,可以根据需要进行水平、垂直或多轴振动。
振动控制系统是用于控制振动信号的发生器和振动台的调节装置,可以根据试验需求调节振动频率、加速度和时间等参数。
传感器则用于监测振动过程中的各项物理参数,包括加速度、位移、速度等。
振动试验设备可以进行不同类型的振动试验,如模态分析、振动强度测试、振动耐久性试验等。
通过振动试验可以检测物体的共振频率、结构动力学性能、疲劳寿命等重要参数,为产品设计和制造提供参考依据。
总之,振动试验是对物体在振动环境下进行性能和耐久性评估的重要手段,而振动试验设备则是实现振动试验的关键装备。
通过振动试验设备的运用,可以及时发现和解决产品设计和制造中的振动问题,提高产品的质量和可靠性。
振动试验设备是用于模拟振动作用的设备,可以模拟不同频率和振幅的振动载荷,对各类物体进行振动试验,以评估其在振动环境下的性能和可靠性。
振动试验设备的应用范围非常广泛,涵盖了汽车、航空航天、电子、医疗器械等各个领域。
它在产品研发、质量控制和故障分析等方面发挥着重要的作用。
振动试验设备主要包括振动台、振动控制系统和传感器等组成部分。
振动台是振动试验的核心部件,其设计和制造质量直接关系到振动试验的可靠性和准确性。
振动台有不同的尺寸和承载能力,可进行水平、垂直或多轴振动。
振动控制系统包括振动信号的发生器和振动台的调节装置,用于控制和调节振动的频率、振幅、时间等参数。
传感器则用于监测振动试验中的各项物理参数,包括加速度、位移、速度等,以及用于记录和分析振动试验的数据。
振动试验设备具有多种功能,可以进行模态分析、振动强度测试、振动耐久性试验等。
模态分析可以确定物体的共振频率和模态形态,帮助工程师了解和优化结构的振动特性。
振动强度测试可以评估物体在振动载荷下的强度和稳定性。
振动耐久性试验可以模拟物体在振动环境下的使用寿命和耐久性。
振动台工作原理引言振动台是一种常见的实验室设备,可用于模拟地震、振动等自然环境。
它被广泛应用于地震工程、建筑结构和材料的振动测试等领域。
本文将介绍振动台的工作原理,包括其基本构造和实现振动的原理。
一、振动台的基本构造振动台通常由振动装置、控制系统和测试平台组成。
1.振动装置振动装置是振动台的核心部分,它通过产生振动力将振动传递给测试平台。
常见的振动装置有电机、液压缸和气动装置等。
其中,电机是最常用的振动装置,其通过转动偏心轴产生离心力,使振动台发生振动。
2.控制系统控制系统用于控制振动台的振动频率、振动幅度和振动方向等参数。
通常使用控制器对振动台进行控制,根据实验需求设定相应的参数。
控制系统还可以监测振动台的工作状态,并在异常情况下进行故障诊断和保护。
3.测试平台测试平台用于固定和支撑被测试的物体或结构。
它通常由金属构架和吸振装置组成,能够减少外界干扰对实验结果的影响。
测试平台设计合理与否直接影响到振动台的实验效果。
二、振动台的振动原理振动台工作的基本原理是利用振动装置产生的振动力将其传递给测试平台,使被测物体或结构发生振动。
其振动原理可以从两个方面进行解释:力学原理和控制原理。
1.力学原理振动台的振动是由振动装置产生的离心力引起的。
当振动装置旋转时,偏心轴产生离心力,将力传递给测试平台。
由于测试平台固定了被测物体或结构,离心力将其从静止状态转变为振动状态。
振动台的振动频率和振动幅度可通过调整振动装置的转速和偏心量进行控制。
2.控制原理振动台的控制系统起到关键作用,能够实现对振动频率、振动幅度和振动方向的精确控制。
通常采用闭环控制,通过传感器实时监测振动台的振动状态,将反馈信号传递给控制器进行处理。
控制器根据设定值和反馈信号之间的差异调整振动装置的工作状态,使振动台达到预期的振动效果。
三、振动台的应用振动台作为一种重要的实验设备,被广泛应用于地震工程、建筑结构和材料的振动测试等领域。
1.地震工程地震是造成建筑结构倒塌和破坏的主要原因之一。
机车试验激振台及控制系统设计作 者 姓 名: 朱赟学科、专业 : 机械电子工程学 号 : BJ07527指 导 教 师: 韩雄飞完 成 日 期: 2011.5.20摘 要本课题通过同分析机车试验平台的运动特点设计了具有2个方向自由度得机车试验 平台及控制系统。
使用有限元软件ANSYS对机车试验平台进行了静力学校核证实结构满 足设计要求,并对关键零部件油缸,键,轴承,电动机进行了设计与校核。
本课题基于 CAN总线技术设计平台运动的控制系统。
通过本课题的设计了解了机械CAD, CAE的使用, 并学习和掌握的CAN总线控制技术。
关键词:机车试验平台;ANSYS;控制AbstractAnalysis of this issue through the same motion characteristics of motorcycle test platform is designed with two degrees of freedom was the direction of test platform and the locomotive control system. Using the ANSYS finite element software test platform on the locomotive were confirmed by static checking the structure to meet the design requirements, and key parts of cylinder, keys, bearings, motors have been designed and better. The subject of design platform based on CAN bus technology motion control systems. I am learn to master the subject of mechanical CAD, CAE's use, and learn and master the CAN bus control technology by the design of this project.Key Words:motorcycle test platform,ANSYS,control目 录摘要 (II)Abstract (III)1 绪论 (IV)1.1 选题背景及其意义 (1)1.2 国内外发展趋势 (2)2 试验平台的确定 (2)3 平台架的校核 (4)3.1 平台架的形式 (4)3.2 平台架尺寸的确定 (5)3.3 平台架强度校核 (5)3.3.1有限元简介……………………………………………………… . 63.3.2有限元求解思路 (6)3.3.3 单元类型选择………………………………………………………… .63.3.4 物理模型创建 (9)3.3.5 模型校核求解……………………………………………………… .133.4 平台稳定性校核 (14)3.41 水平运动平台校核 (14)3.4.2 垂直运动平台校核 (16)4 液压缸的设计计算 (18)4.1.1 水平油缸 (18)4.1.2 有刚工作压力 (19)4.1.3 缸筒强度 (19)4.1.4 活塞杆强度………………………………………………………… 19.4.1.5 活塞杆稳定性 (19)4.2 垂直油缸 (19)4.2.1 垂直油缸工作压力 (20)4.2.2缸筒强度 (20)4.2.3活塞杆强度 (20)4.1.5活塞杆稳定性 (21)5液压系统方案…………………………………………………………………… 21.5.1 执行元件形成的分析与选择…………………………………………………21.5.2 油路循环方式的分析和选择 (21)5.3 油源类型的分析和选择 (22)5.4 调速方案的分析和选择 (22)5.5 液压基本回路的分析与选择………………………………………………….22.5.6 液压系统原理图的拟定………………………………………………………22.5.7 液压系统参数设计…………………………………………………………… 23.5.8 选择液压元件 (23)5.8.1液压泵、液压马达………………………………………………………23.5.9 液压泵站的类型与选择 (24)5.10 油箱的设计 (24)5.11 油箱容积的确定 (24)5.12 油箱附件的选择 (24)5.13 空气滤清器的选择 (24)5.14 加热器的选择 (24)5.15 吸油管出滤油器的选择 (24)5.16 精滤油器的选择 (24)5.17 管路的设计 (24)5.18 管件尺寸的确定 (24)5.19 液压管路的连接方式 (24)6. 关键部件校核 (25)6.1 销轴的校核…………………………………………………………………….25.6.1.1 水平运动球铰销轴的校核 (26)6.1.2 垂直运动销轴的校核 (26)7 控制系统设计 (27)7.1 通信计算确定 (27)7.2 控制手柄选择 (27)7.3 控制器选择....................................................28.7.4 油缸位移传感器 (28)7.5 控制系统原理 (28)8 结论 (29)参考文献 (29)致谢 (30)1 绪论1.1 选题背景及其意义随着轨道交通发展的日益成熟,越来越多的机车将被投入使用,期间不仅对 机车的制造生产有较高的质量要求,还包括对生产完毕,投入使用之前的机车的运 行测试。
振动台设计及其应用研究振动台是一种常用的实验设备,广泛应用于工程、地震学、材料力学等领域。
本文将从振动台的基本原理、设计要点、应用研究等方面进行论述。
一、振动台的基本原理振动台的基本原理是利用电机产生的振动力将被试体或模型等放置在振动台上,通过改变振动台的运动特性来模拟实际工程或地震等振动环境。
振动台的振动特性可以用振幅、频率和相位等参数来描述。
振幅是指振动台的最大位移,可以通过改变电机转速和设定控制参数来调整。
频率是指振动台振动的周期性,可以通过改变电机转速和调整振动台的固有频率来控制。
相位是指振动台与外界振动源的时间关系,通常在实验中需要与外界振动源进行同步。
二、振动台的设计要点1. 动力系统设计: 振动台的动力系统一般由电机、传动装置和悬挂装置等组成。
合理选择和设计这些装置对于振动台的性能有着重要影响。
例如,电机的功率和转速需要满足振动台所需的振动力和频率要求,传动装置需要保证电机的振动动力传递到振动台上,悬挂装置需要提供足够的支撑和稳定性。
2. 控制系统设计: 振动台的控制系统一般由控制器和传感器等组成。
控制器负责调节振动台的振动特性,传感器负责感知振动台和被试体的振动状态。
合理选择和设计这些装置对于振动台的控制精度和稳定性至关重要。
3. 结构设计: 振动台的结构设计需要考虑振动台的载荷条件和材料选择等因素。
振动台的结构应具备足够的刚度和强度,以承受工作载荷和外界振动引起的应力。
材料的选择应考虑其阻尼性能和抗振性能等因素。
三、振动台的应用研究1. 工程领域中的应用: 振动台在工程领域中被广泛用于模拟结构的振动响应和工作环境下的振动载荷。
通过在振动台上进行振动试验,可以评估结构的稳定性和安全性,优化结构设计并验证结构的可靠性。
2. 地震学研究中的应用: 振动台在地震学研究中扮演着重要角色。
地震模拟试验是研究地震波作用下结构响应的重要手段之一。
通过模拟地震波的载荷和振动台的运动,可以研究结构的抗震性能,提出抗震设计的建议。
振动台试验方案设计实例清晨的阳光透过窗帘的缝隙,洒在了我的办公桌上,我的思绪随着键盘的敲击声渐渐飘散。
十年的方案写作经验,让我对每一个项目都有着独特的理解和处理方式。
今天,就让我们来聊聊振动台试验方案设计。
一、项目背景这个项目是为一家电子设备制造商设计的,他们的产品需要在各种环境下经受住振动测试,以保证其在运输、安装和使用过程中的可靠性。
因此,我们需要为他们设计一个全面的振动台试验方案。
二、试验目的1.验证产品在振动环境下的结构强度和可靠性。
2.检验产品在振动过程中是否会产生功能故障。
3.评估产品在振动环境下的耐久性。
三、试验设备1.振动台:选择一款能够满足试验要求的振动台,其振动频率、振幅和振动时间等参数需满足产品标准。
2.数据采集系统:用于实时记录振动过程中的数据,以便后续分析。
3.温湿度控制系统:保证试验过程中的环境条件符合产品要求。
四、试验方案1.试件准备:根据产品标准和试验要求,选择合适的试件进行试验。
试件数量、规格和状态需满足试验要求。
2.试验步骤:(1)将试件放置在振动台上,调整振动台的频率、振幅和振动时间等参数,使其符合产品标准。
(2)启动振动台,进行正弦波振动试验。
观察试件在振动过程中的响应,记录数据。
(3)在振动过程中,对试件进行功能测试,检验其在振动环境下是否会出现故障。
(4)根据试验结果,调整振动台的参数,进行随机振动试验。
观察试件的响应,记录数据。
(5)重复步骤(2)和(3),直至完成所有试验。
3.数据分析:将试验过程中采集的数据进行整理和分析,评估产品的结构强度、可靠性和耐久性。
4.结论与建议:根据试验结果,给出产品在振动环境下的性能评估,并提出改进建议。
五、试验安全1.试验过程中,操作人员需穿戴好个人防护装备,确保人身安全。
2.设备需定期检查,确保其正常运行。
3.试验过程中,如发现异常情况,立即停止试验,查明原因并处理。
六、试验时间与地点1.试验时间:根据项目进度安排,确保在规定时间内完成试验。
电磁振动试验台使用说明书第一部分:引言电磁振动试验台是一种广泛应用于工业领域的设备,用于模拟各种振动环境,帮助工程师测试和评估产品的振动性能。
本使用说明书将详细介绍电磁振动试验台的结构、操作和维护方法,以便用户能够正确使用该设备,并确保设备长期稳定运行。
第二部分:设备概述电磁振动试验台主要由振动台、电磁振动器和控制系统组成。
振动台由台面、支撑结构和振动器系统构成,能够产生各种频率和振幅的振动。
电磁振动器通过磁场与振动台相互作用产生振动力,控制系统则用于控制振动参数和监测试验过程。
第三部分:操作方法3.1 开机准备首先,请确保电磁振动试验台的电源已连通,并将主电源开关置于“ON”位置。
此外,检查控制系统的连接情况,包括电源线和信号线。
确认一切就绪后,可以按下电源按钮启动设备。
3.2 参数设置通过控制系统的触摸屏,可以设置振动的频率、振幅、时间等参数。
根据具体的试验要求,输入相应的数值,并确认无误后保存设置。
3.3 试验操作将待测试的样品放置在振动台上,并固定好,确保样品与振动台接触良好。
然后,可以通过控制系统启动试验。
试验进行中,可以实时监测振动参数的变化。
3.4 结束操作试验完成后,首先应通过控制系统将振动停止,并关闭设备的电源开关。
然后,将样品取下并进行相应的处理。
最后,可以对试验台进行清洁和维护,确保设备的正常使用。
第四部分:维护方法4.1 日常清洁定期清洁电磁振动试验台是确保设备正常运行的重要措施。
使用干净、软布擦拭设备表面,避免使用化学溶剂或腐蚀性液体。
4.2 定期检查定期检查电磁振动试验台的关键部件和连接线路,确保其无损坏或松动现象。
如发现异常情况,及时进行维修和更换。
4.3 润滑维护对于涉及到摩擦的部件,如振动台的导轨、传动装置等,应定期进行润滑维护,以减少摩擦和磨损,保证设备的正常运行。
第五部分:故障排除5.1 无法启动若电磁振动试验台无法启动,请检查主电源开关是否打开,电源线和信号线是否连接牢固,以及控制系统是否设置正确。