反函数题型分析.
- 格式:ppt
- 大小:442.50 KB
- 文档页数:29
精锐教育学科教师辅导讲义讲义编号_(2) 设函数)12lg()(2++=x ax x f ,若)(x f 的定义域域为R ,求实数a 的取值范围10、(1)求函数)32(log 221--=x x y 的单调区间,11、比较下列各数大小:(1)3.0log 7.0log 4.03.0与 (2) 120.6 3.41log 0.8log 0.73-⎛⎫⎪⎝⎭,和 (3) 1.0log 1.0log 2.03.0和12、函数2)1e ln()(xx f x-+=是( ) A.奇函数而非偶函数 B. 偶函数而非奇函数 C.既是奇函数又是偶函数 D.既非奇函数又非偶函数13、图中的曲线是对数函数x y a log =的图象.已知a 取101,53,34,3四个值,则相应于4321,,,c c c c 的a 值依次为( ) (A )10153343,,, (B )53101343,,,(C )10153334,,, (D )53101334,,,二、选择题(本大题共有4题,每题都给出四个结论,其中有且只有一个结论是正确的,选对得 3分,否则一律得零分,满分16分)13、如果b a <<0,那么下列不等式中错误的是( )(A )c b c a +<+ (B )b a <(C ) 22bc ac < (D )ba 11> 14、设函数268y kx x k =-++的定义域为R ,则k 的取值范围是( )A .1k ≥或9k ≤-B .1k ≥C .91k -≤≤D .01k <≤ 15、下列函数在定义域上,既是奇函数又是减函数的是( ) (A )x x x y --=1)1( (B )1y x=(C )3x y -= (D )233xx y --=16.右图中的图象所表示的函数的解析式为 ( )(A )|1|2323--=x y (0≤x ≤2) (B )|1|23-=x y (0≤x ≤2) (C )3|1|2y x =-- (0≤x ≤2) (D )|1|1--=x y (0≤x ≤2)三、解答题:(本题共有5题,共48分) 17、(本题满分8分)已知集合2{|0,},{|2|2,}3x A x x R B x x a x R x -=≥∈=-≤∈-, 若A B R =U ,求实数a 的取值范围。
反 函 数 概 念 释 疑由反函数的定义与性质可得出两个正确的命题:①函数()y f x =的定义域、值域分别是它的反函数1()y f x -=的值域、定义域;②函数()y f x =的图象和它的反函数1()y f x -=的图象关于直线y x =对称。
但在同学们学习反函数时,还会有很多疑问,现列举如下: ①若函数()y f x =有反函数,则它一定是单调函数吗? 答:不一定。
如1()f x x =不是单调函数,但它有反函数11()f x x-=,但单调函数必有反函数。
②奇函数若有反函数,则它的反函数仍然是奇函数吗?答:对。
不是所有的奇函数都有反函数,周期函数不存在反函数。
③偶函数一定没有反函数吗?答:不一定。
如函数()0(0)f x x =∈是偶函数,但它有反函数是本身,除此之外再也没有偶函数存在反函数的。
定义域为非单元素集的偶函数不存在反函数。
④互为反函数的两个函数的单调性相同吗? 答:对。
⑤函数与它的反函数的图象如果有交点,则交点一定在直线y x =上吗?答:不一定。
如函数3y x =-与它的反函数交于三点(0,0),(-1,1),(1,-1),0.01xy =与它的反函数有三个交点其中一个在y x =上另两个关于y x =对称。
函数与它的反函数的交点有这样的规律,要不在直线y x =上,要不关于直线y x =对称。
⑥函数与它的反函数的图象不可能重合吗? 答:不一定。
如函数1y x =与函数1y x=-的反函数是它本身,图象重合。
图象关于直线y x =对称的单调函数的反函是它本身。
⑦函数()y f x =的反函数1()y f x -=,则必有11[()][()]f f x f f x x --==吗?答:不一定。
只有当它们的定义域和值域相等时候才成立。
设函数(),,y f x x A y B =∈∈,它的反函数是1(),,y f x x B y A-=∈∈,则有:1[()],()f f x x x B -=∈,1[()],()f f x x x A -=∈。
抽象函数、反函数专题一、反函数【知识梳理】1. 反函数的概念:2. 反函数的存在性:○1定义域上的单调函数一定存在反函数,反之不然;○2()f x 的图像与x a =和y b =至多有一个交点; 3. 反函数的性质○1函数()y f x =的定义域D 、值域A 分别是其反函数()1y f x -=的值域和定义域; ○2函数()y f x =与其反函数()1y f x -=的图像关于对称;○3若点(),P a b 在()y f x =的图像上,则点必在()1y f x -=的图像上,即()()1b f a a f b -=⇔=; ○4函数()y f x =与其反函数()1y f x -=具有相同的单调性;○5()1f f x -⎡⎤=⎣⎦,x ∈;()1f f x -⎡⎤=⎣⎦,x ∈; 【例题选讲】1. 求下列函数的反函数:【解题小结】求反函数()1y f x -=的一般步骤是:○1判断()y f x =是否存在反函数;○2若存在反函数,由()y f x =解出()1x f y -=; ○3根据习惯,对换x y 、,改写为()1y f x -=;○4根据()y f x =的值域确定反函数的定义域;【解题小结】求()1f a -的值:解一是先求函数()f x 的反函数()1f x -,再求()1f a -的值;解二是根据原函数()f x 与它的反函数()1f x -之间的关系,转化为求方程()f x a =解的问题;【解题小结】要充分注意原函数的定义域与其反函数的值域相同;原函数的值域与反函数的定义域相同;一般说来,单调函数一定存在反函数,二具有反函数的函数不一定是单调函数;【解题小结】互为反函数的两个函数图像关于直线y x =对称。
因此若点(),x y 在原函数图像上,则点(),y x 一定在其反函数图像上,反之亦然。
二、抽象函数题型归纳1. 求解析式:配凑,换元,消元,特殊值法2. 单调性例:已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|) ∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13解得13<x <23 3. 周期性(1) 一组周期为2k 的函数若()f x 满足()()f x k f x +=-,则2k 为()f x 的周期;若()f x 满足1()()f x k f x +=,则2k 为()f x 的周期; 若()f x 满足1()()f x k f x +=-,则2k 为()f x 的周期为2k ; 例.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则5(())2f f 的值是 A.0 B.12C.1 D.52答案A 解析:令21-=x ,则0)21()21(21)21(21)21(21=⇒=-=-f f f f ;令0=x ,则0)0(=f 由(1)(1)()xf x x f x +=+得)(1)1(x f xx x f +=+,所以 0)0())25((0)21(212335)23(35)23(2325)25(==⇒=⋅===f f f f f f f ,故选择。
高中数学三角函数求反函数的步骤解析在高中数学中,三角函数是一个重要的概念,它们在几何和代数中都有广泛的应用。
而求三角函数的反函数,也是我们需要掌握的重要技巧之一。
本文将详细介绍高中数学中求三角函数反函数的步骤,并通过具体的题目进行解析,帮助高中学生和他们的父母更好地理解和掌握这一知识点。
一、什么是反函数在介绍求三角函数的反函数之前,我们先来了解一下什么是反函数。
反函数是指若函数f(x)的定义域和值域互换,则得到的新函数g(x)称为f(x)的反函数。
反函数的求解可以帮助我们从已知的函数值反推出对应的自变量值。
二、求三角函数的反函数的步骤求三角函数的反函数的步骤可以总结为以下几个关键步骤:1. 将给定的三角函数表达式中的自变量x和函数值y互换,得到一个新的方程;2. 解新方程,得到关于y的表达式,即反函数的表达式;3. 将反函数的表达式中的y换成x,即可得到反函数的最终表达式。
下面我们通过具体的题目来详细解析这一步骤。
例题1:已知函数y = sin(x),求其反函数。
解析:根据步骤1,我们将自变量x和函数值y互换,得到新方程x = sin(y)。
接下来,我们需要解新方程,得到关于y的表达式。
对于三角函数而言,我们可以通过观察函数图像来确定其反函数的定义域和值域。
对于正弦函数sin(x)而言,它的定义域是整个实数集,值域是[-1, 1]。
因此,反函数的定义域是[-1, 1],值域是整个实数集。
继续解新方程x = sin(y),我们可以得到y = arcsin(x)。
最后,根据步骤3,将反函数的表达式中的y换成x,我们可以得到反函数的最终表达式为y = arcsin(x)。
例题2:已知函数y = cos(x),求其反函数。
解析:同样地,根据步骤1,我们将自变量x和函数值y互换,得到新方程x = cos(y)。
对于余弦函数cos(x)而言,它的定义域是整个实数集,值域是[-1, 1]。
因此,反函数的定义域是[-1, 1],值域是整个实数集。
反函数题型及解析1.求下列函数的反函数,找出它们的定义域和值域(1)y=2+lg(x+1);(2)y=3+;(3)y=.2.求函数的反函数(1)y=(2)y=(3)y=lnx+1 (4)y=3x+23.求下列函数的反函数的定义域(1)y=(2)(3)4.求下列函数的反函数,并指出该函数和它的反函数的定义域(1)y=;(2)y=;(3)y=e x﹣15.求下列函数的反函数(1)y=;(2)y=(e x﹣e﹣x);(3)y=1+ln(x﹣1)6.求下列函数的反函数.(1)y=log(1﹣x)+2(x<0);(2)y=2﹣(﹣2≤x≤0);(3)y=(﹣1≤x≤0);(4)y=x|x|+2x.反函数题型解析1.分析:(1)由对数式的真数大于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,化对数式为指数式,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(2)由根式内部的代数式大于等于0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y互换求出原函数的反函数,得到反函数的定义域和值域;(3)由分式的分母不为0求出原函数的定义域,进一步求出原函数的值域,把原函数变形,求出x,再把x,y 互换求出原函数的反函数,得到反函数的定义域和值域.解:(1)y=2+lg(x+1),由x+1>0,可得x>﹣1,∴原函数的定义域为(﹣1,+∞),值域为R.由y=2+lg(x+1),得lg(x+1)=y﹣2,化为指数式得,x+1=10y﹣2,x,y互换得:y=10x﹣2﹣1,此反函数的定义域为R,值域为(﹣1,+∞);(2)y=3+,由x≥0,可得原函数的定义域为[0,+∞),值域为[3,+∞).由y=3+,得,x=(y ﹣3)2,x,y互换得:y=(x﹣3)2,此反函数的定义域为[3,+∞),再由为[0,+∞);(3)y=,由x+1≠0,得x≠﹣1,∴原函数的定义域为{x|x≠﹣1},由y==,∴原函数的值域为{y|y≠1}.由y=,得yx+y=x﹣1,即(1﹣y)x=1+y,∴x=,x与y互换得:,此反函数的定义域为{x|x≠1},值域为{y|y≠﹣1}.2. 分析:由已知的解析式求出x的表达式,再把x换成y、y换成x,并注明反函数的定义域.解:由y=的得,xy+4y=x﹣4,解得(y≠1),所以(x≠1),则函数y=的反函数是(x≠1).(2)函数y=可得:2x=2x y+y.可得2x(1﹣y)=y,2x=,可得x=,函数y=的反函数为y=.(3)由y=lnx+1解得x=e y﹣1,即:y=e x﹣1,∵x>0,∴y∈R所以函数f(x)=lnx+1(x>0)反函数为y=e x﹣1(x∈R);(4)∵y=3x+2,∴3x=y﹣2,又3x>0,故y>2,∴x=log3(y﹣2)(y>2),∴函数y=3x+2的反函数是y=log3(x﹣2)(x>2)3.分析:欲求反函数的定义域,可以通过求原函数的值域获得,所以只要求出函数的值域即可,反函数的定义域即为原函数的值域求解即可解:(1)∵y=,∴ye x+y=e x,∴(y﹣1)e x=﹣y,∴,∴x=ln,x,y互换,得函数y=的反函数为:,,解得反函数的定义域为:{x|0<x<1}(2)反函数的定义域即为原函数的值域,由,x>0,所以,所以,则y<0,反函数的定义域为(﹣∞,0)(3)由得,e x=.∵e x>0,∴>0,∴﹣1<y<1,∴反函数的定义域是(﹣1,1)4.解:(1)由y=,即2xy﹣y=x,x(2y﹣1)=y,解得x=,x,y互换得y=,其定义域为{x|x ≠}(2)由(2)y=可得y2=2x﹣3,即x=(y2+3),x,y互换得y=(x2+3),因为原函数的值域为[0,+∞),则反函数的定义域为[0,+∞)(3)由y=e x﹣1则x﹣1=lny,即x=1+lny,x,y互换得y=1+lnx,则其定义域为(0,+∞)5.分析:由已知解析式,用y表示出x,然后把x与y互换,即得反函数,应注意定义域与值域的互换.解:(1)由y=得到x=,把x与y互换可得:y=,(x∈R);(2)由y=(e x﹣e﹣x)得到:e x=y±,∵e x>0,∴e x=y+,由此得:x=ln(y+)∴函数y=(e x﹣e﹣x)的反函数是y=ln(x+)(x∈R);(3)∵y=1+ln(x﹣1)∴x=e y﹣1+1(y∈R),∴函数y=1+ln(x﹣1)的反函数为y=e x﹣1+1(x∈R);6.分析:首先确定函数的值域,即反函数的定义域,然后看作方程解出x,从而将x与y互换即可.解:(1)∵y=log(1﹣x)+2(x<0);∴y<2,∴y=﹣log2(1﹣x)+2,∴x=1﹣22﹣y,即y=1﹣22﹣x,(x<2);(2)∵y=2﹣(﹣2≤x≤0)的值域为[0,2],∴x=﹣,即y=﹣,(x∈[0,2]);(3)∵y=(﹣1≤x≤0)的值域为[,1],∴x2=1+log3y,∴x=﹣,故y=﹣,(≤x≤1);(4)y=x|x|+2x的值域为R,当x≥0时,y=x2+2x,故x=,当x<0时,y=﹣x2+2x,x=1﹣;故y=.。
高考反函数问题常见类型解析反函数是高中数学中的重要概念之一,也是学生学习的难点之一。
在历年高考中占有一定的比例。
为了更好地掌握反函数相关的内容,本文重点分析关于反函数的几种题型及其解法。
一. 条件存在型例1.函数f x x ax ()=--223在区间[]12,上存在反函数的充要条件是( )A. (]a ∈-∞,1B. [)a ∈+∞2,C. (][)a ∈-∞+∞,,12D. []a ∈12,解析:因为二次函数f x x ax ()=--223不是定义域内的单调函数,但在其定义域的子区间(]-∞,a 或[)a ,+∞上是单调函数。
而已知函数f x ()在区间[1,2]上存在反函数,所以[](]12,,⊆-∞a 或者[][)12,,⊆+∞a ,即a ≤1或a ≥2。
故选(C )点评:函数y f x =()在某一区间上存在反函数的充要条件是该函数在这一区间上是一一映射。
特别地:如果二次函数y f x =()在定义域内的单调函数,那么函数f (x )必存在反函数;如果函数f (x )不是定义域内的单调函数,但在其定义域的某个子区间上是单调函数,那么函数f (x )在这个子区间上必存在反函数。
二. 式子求解型 例2.函数y x x =-≤2310()的反函数是( )A. y x x =+≥-()()113B. y x x =-+≥-()()113C. y x x =+≥()()103 D. y x x =-+≥()()103解析:由x ≤0可得x 230≥,故y ≥-1,从y x =-231解得x y =±+()13因x ≤0,所以x y =-+()13即其反函数是y x x =-+≥-()()113故选(B )。
点评:反函数的定义域即为原函数的值域,所以求反函数时应先求出原函数的值域,不应该直接求反函数的定义域。
三.求定义域值域型 例3.若fx -1()为函数f x x ()lg()=+1的反函数,则f -1(x )的值域为_________。
初三函数题型及解题方法初三函数是一个重要的高中数学学科,学习这个学科的学生应该具备一定的函数基础知识,以及函数题型及解题方法。
函数题也是考察学生数学基础的核心考试内容之一,它的出题越多,越值得学生们重视。
因此,本文将要介绍如何正确解决初三函数题。
初三函数题一般分为三类:映射函数型、反函数型和综合函数型。
一、映射函数型映射函数型中,学生可能会遇到求函数值、求最值、求导数等问题。
解决方法是:1、求函数值:学生需要根据给定的函数公式,得出被测量点的函数值。
2、求最值:学生需要根据函数的特征,如单调性和平滑性,得出函数的最大值或最小值。
3、求导数:学生需要根据函数的定义,利用微分运算计算出函数的导数值。
二、反函数型反函数型中的题目是求函数的反函数,解决方法是:1、首先计算原函数的导数。
2、然后利用反函数的定义:若函数y=f(x)满足f(x)>0,则函数y=f^(-1)(x)满足f^(-1)(x)<0;若函数y=f(x)满足f(x)=0,则函数y=f^(-1)(x)满足f^(-1)(x)=0。
3、根据定义求出反函数的导数,即可得到反函数的表达式。
三、综合函数型综合函数型中的题目比较复杂,要求学生将映射函数与反函数结合起来,解答求反函数与求函数最值等问题。
解决方法是:1、根据所给函数公式计算出其原函数以及反函数的表达式。
2、根据定义求出原函数与反函数的导数表达式。
3、利用函数是单调函数或函数最值的定义,求出其最大值或最小值。
总之,解决初三函数题要根据题目的不同,掌握正确的解题方法,以便把握住函数的特点,有效解决函数题。
学生们在复习的过程中,要多练习,多加强初三函数的专项训练,以期达到高分的考试成绩。
本文就介绍了初三函数题的基本类型及解题方法,希望能为学生们提供一定的参考和帮助,从而能够在考试中取得理想的成绩。