2020年天津市名校八年级第二学期期末统考数学试题含解析
- 格式:doc
- 大小:772.50 KB
- 文档页数:20
天津市南开区2020-2020学年度下学期期末考试八年级数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,试卷满分100分.考试时间100分钟。
第Ⅰ卷(选择题共36分)注意事项:答第Ⅰ卷前,考生务必先将自己的姓名、准考证号,用蓝、黑色墨水的钢笔或圆珠笔填写在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码.一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)方程x x 22=的解是(A)2=x (B)2=x (C)0=x (D)2=x 或0=x【专题】计算题.【分析】方程移项后,分解因式利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程x 2=2x ,移项得:x 2-2x=0,分解因式得:x (x-2)=0,可得x=0或x-2=0,解得:x 1=0,x 2=2.故选:D .【点评】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.(2)下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数x 与方差2s :根据表中数据要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择(A)甲 (B)乙 (C)丙 (D)丁【分析】根据方差和平均数的意义找出平均数大且方差小的运动员即可.【解答】解:∵甲的方差是3.5,乙的方差是3.5,丙的方差是15.5,丁的方差是16.5,∴S 甲2=S 乙2<S 丙2<S 丁2,∴发挥稳定的运动员应从甲和乙中选拔,∵甲的平均数是561,乙的平均数是560,∴成绩好的应是甲,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A .【点评】本题考查了方差和平均数.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.(3)用配方法解关于x 的方程0242=+-x x ,此方程可变形为(A)()622=-x (B)()622=+x (C)()222=-x (D)()222=+x 【专题】压轴题.【分析】根据配方法的方法,先把常数项移到等号右边,再在两边同时加上一次项系数一半的平方,最后将等号左边配成完全平方式,利用直接开平方法就可以求解了.【解答】解:移项,得x 2-4x=-2在等号两边加上4,得x 2-4x+4=-2+4∴(x-2)2=2.故C 答案正确.故选:C .【点评】本题是一道一元二次方程解答题,考查了解一元二次方程的基本方法--配方法的运用,解答过程注意解答一元二次方程配方法的步骤.(4)点(1,m)为直线12-=x y 上一点,则OA 的长度为(A)1 (B)3 (C)2 (D)5【专题】探究型.【分析】根据题意可以求得点A 的坐标,从而可以求得OA 的长.【解答】解:∵点A (1,m )为直线y=2x-1上一点,∴m=2×1-1,解得,m=1,∴点A 的坐标为(1,1),故选:C .【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质和勾股定理解答.(5)已知一次函数3+=kx y ,且y 随x 的增大而减小,那么它的图象经过(A)第一、二、三象限 (B)第一、二、四象限(C)第一、三、四象限 (D)第二、三、四象限【专题】函数及其图象.【分析】先根据一次函数的性质判断出k 的取值范围,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+3,y 随x 的增大而减小,∴k <0,∵b=3>0,∴此函数的图象经过一、二、四象限.故选:B .【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b (k≠0)中,k <0,b >0时函数的图象在一、二、四象限是解答此题的关键.(6)已知四边形ABCD 是平行四边形,下列结论中不正确的是(A)当AB=BC 时,四边形ABCD 是菱形(B)当AC ⊥BD 时,四边形ABCD 是菱形(C)当∠ABC=90°时,四边形ABCD 是矩形(D)当AC=BD 时,四边形ABCD 是正方形.【专题】多边形与平行四边形.【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A 、根据邻边相等的平行四边形是菱形可知:四边形ABCD 是平行四边形,当AB=BC 时,它是菱形,故本选项错误;B 、根据对角线互相垂直的平行四边形是菱形知:当AC ⊥BD 时,四边形ABCD 是菱形,故本选项错误;C 、根据有一个角是直角的平行四边形是矩形知:当∠ABC=90°时,四边形ABCD 是矩形,故本选项错误;D 、根据对角线相等的平行四边形是矩形可知:当AC=BD 时,它是矩形,不是正方形,故本选项正确;综上所述,符合题意是D 选项;故选:D .【点评】本题考查正方形的判定、菱形的判定、矩形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.(7)如图,数轴上点A 表示的数是-1,原点O 是线段AB 的中点,∠BAC=30,∠ABC=90°,以点A 为圆心,AC 长为半径画弧,交数轴于点D,则点D 表示的数是(A)1332- (B)332 (C)334 (D)1334-【分析】首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.【解答】解:∵点A表示-1,O是AB的中点,∴OA=OB=1,∴AB=2,故选:D.【点评】本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.(8)已知,如图,菱形ABCD中,对角线AC、BD相交于点O,OE∥CD交BC于点E,AD=6cm,则OE的长为(A)6cm (B) 4cm (C)3cm (D)2cm【分析】由菱形ABCD中,OE∥DC,可得OE是△BCD的中位线,又由AD=6cm,根据菱形的性质,可得CD=6cm,再利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,故选:C.【点评】此题考查了菱形的性质以及三角形中位线的性质.注意证得OE是△BCD 的中位线是解此题的关键.(9)如图,在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF ∥BC 交AC 于点M ,若CM=5,则22CF CE +等于(A)75 (B)100 (C)120 (D)125【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【解答】解:∵CE 平分∠ACB ,CF 平分∠ACD ,∴△EFC 为直角三角形,又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=100.故选:B .【点评】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.(10)某农机厂四月份生产零件50万个,第二季度共生产182万个.设该厂五、六月份平均每月的增长率为x ,那么符合题意的方程是(A)()1821502=+x (B)()()182150150502=++++x x (C)()()182215015050=++++x x (D)()1822150=+x【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x ,那么可以用x 分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x )、50(1+x )2, ∴50+50(1+x )+50(1+x )2=182.故选:B .【点评】增长率问题,一般形式为a (1+x )2=b ,a 为起始时间的有关数量,b 为终止时间的有关数量.(11)如图,在R △ABC 中,∠ACB=90°,D 为斜边AB 的中点,动点P 从点B 出发,沿B→C→A 运动,如图(1)所示,设y S DPB △,点P 运动的路程为x ,若y 与x 之间的函数图象如图(2)所示,则a 的值为(A)3 (B)4 (C)5 (D)6【分析】根据已知条件和图象可以得到BC 、AC 的长度,当x=4时,点P 与点C 重合,此时△DPC 的面积等于△ABC 面积的一半,从而可以求出y 的最大值,即为a 的值.【解答】解:根据题意可得,BC=4,AC=7-4=3,当x=4时,点P 与点C 重合, ∵∠ACB=90°,点D 为AB 的中点,即a 的值为3,故选:A .(12)在平面直角坐标系中,已知点A(O,1),B(1,2),点P 在x 轴上运动,当点P 到A 、B 两点的距离之差的绝对值最大时,该点记为点P 1,当点P 到A 、B 两点的距离之和最小时,该点记为点P 2,以P 1P 2为边长的正方形的面积为(A)1 (B)34 (C)916 (D)5 【专题】一次函数及其应用.【分析】由三角形两边之差小于第三边可知,当A 、B 、P 三点不共线时,|PA-PB|<AB ,又因为A (0,1),B (1,2)两点都在x 轴同侧,则当A 、B 、P 三点共线时,|PA-PB|=AB ,即|PA-PB|≤AB ,所以当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.先运用待定系数法求出直线AB 的解析式,再令y=0,求出x 的值即可得到点P 1的坐标;点A 关于x 轴的对称点为A',求得直线A'B 的解析式,令y=0,即可得到点P 2的坐标,进而得到以P 1P 2为边长的正方形的面积.【解答】解:由题意可知,当点P 到A 、B 两点距离之差的绝对值最大时,点P 在直线AB 上.设直线AB的解析式为y=kx+b,∴y=x+1,令y=0,则0=x+1,解得x=-1.∴点P1的坐标是(-1,0).∵点A关于x轴的对称点A'的坐标为(0,-1),设直线A'B的解析式为y=k'x+b',∵A'(0,-1),B(1,2),∴故选:C.【点评】本题考查了最短距离问题,待定系数法求一次函数的解析式及x轴上点的坐标特征.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.第Ⅱ卷(非选择题共64分)(二)填空题(本大题共6小题,每小题3分,共18分.请将答案直接填在答题纸中对应的横线上)(13)已知,正比例函数经过点(-1,2),该函数解析式为________________.【专题】函数及其图象.【分析】把点(-1,2)代入正比例函数的解析式y=kx,即可求出未知数的值从而求得其解析式;【解答】解:设正比例函数的解析式为y=kx(k≠0),∵图象经过点(-1,2),∴2=-k,此函数的解析式是:y=-2x;故答案为:y=-2x【点评】此题考查待定系数法确定函数关系式,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.(14)直角三角形的一条直角边长是另一条直角边长的2倍,斜边长是105,则较短的直角边的长为___________.【专题】几何图形.【分析】根据边之间的关系,运用勾股定理,列方程解答即可.【解答】解:由题意可设两条直角边长分别为x,2x,解得x1=10,x2=-10舍去),所以较短的直角边长为10.故答案为:10【点评】本题考查了一元二次方程和勾股定理的应用,解题的关键是根据勾股定理得到方程,转化为方程问题.(15)一组数据1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为__________.【分析】根据众数为1,求出a的值,然后根据平均数的概念求解.【解答】解:∵众数为1,∴a=1,【点评】本题考查了众数和平均数的知识:一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数.(16)关于x 的方程()01232=++-x x k 有实数根,则k 的取值范围是_________.【专题】常规题型.【分析】当k-3=0时,解一元一次方程可得出方程有解;当k-3≠0时,利用根的判别式△=16-4k≥0,即可求出k 的取值范围.综上即可得出结论.【解答】解:①当k-3=0,即k=3时,方程为2x+1=0,②当k-3≠0,即k≠3时,△=22-4(k-3)=16-4k≥0,解得:k≤4且k≠3.综上即可得出k 的取值范围为k≤4.故答案为k≤4.【点评】本题考查了根的判别式,分二次项系数为零和非零两种情况考虑是解题的关键.(17)已知,R △ABC 中,∠C=90°,AC=3,BC=4,P 为AB 上任意一点,PF ⊥AC 于F,PE ⊥BC 于E,则EF 的最小值是___________.【分析】根据已知得出四边形CEPF 是矩形,得出EF=CP ,要使EF 最小,只要CP 最小即可,根据垂线段最短得出即可.【解答】解:连接CP ,如图所示:∵∠C=90°,PF ⊥AC 于F ,PE ⊥BC 于E ,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF 是矩形,∴EF=CP ,要使EF 最小,只要CP 最小即可,当CP ⊥AB 时,CP 最小,在Rt △ABC 中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,∴CP=2.4,即EF=2.4,故答案为:2.4.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.(18)如图,在平面直角坐标系xOy中,E(8,0),F(0,6)(Ⅰ)当G(4,8)时,∠FGE=_______度;(Ⅱ)在图中网格区域内找一点P,使∠FPE=90°,且四边形OEPF被过P点的一条直线PM分割成两部分后,可以拼成一个正方形,则P点坐标为________.(要求写出点P坐标,画出过点P的分割线PM,不必说明理由,不写画法)【分析】(1)先利用勾股定理分别计算三边长,再利用勾股定理的逆定理可得:∠FGE=90°;(2)构建全等三角形:△APF≌△MEP,构建P的位置,根据三角形全等得到正方形.【解答】解:(1)如图1,连接EF,由勾股定理得:FG2=22+42=20,GE2=42+82=80,EF2=62+82=100,∴FG2+GE2=EF2,∴∠FGE=90°,故答案为:90°;(2)如图2,过P作PM⊥x轴于M,当P(7,7),PM为分割线;根据格点的长度易得:△APF≌△MEP≌△BFP,∴∠APF=∠MEP,∵∠MEP+∠MPE=90°,∴∠APF+∠MPE=90°,即∠FPE=90°,四边形OEPF将△EPM剪下放在△BFP上,构建正方形BOMP;故答案为:(7,7).【点评】本题考查了三角形全等的性质和判定、勾股定理及其逆定理、正方形的判定,熟练掌握勾股定理及其逆定理是关键.三、解答题(本大题共6小题,共46分.解答应写出文字说明、演算步骤或推理过程(19)解方程(每小题4分,本题共8分)(Ⅰ)0122=--x x (Ⅱ)()041292=--x 【专题】方程与不等式.【分析】(Ⅰ)利用配方法即可解决问题;(Ⅱ)利用直接开方法即可解决问题;【点评】本题考查解一元二次方程,解题的关键是熟练掌握解二元一次方程的方法,属于中考常考题型.(20)(本题共7分)某中学在一次爱心捐款活动中,全体同学积极踊跃捐款.现抽查了九年级(1)班全班学生捐款情况,并绘制了如下的统计表和统计图:求:(Ⅰ)m=______;n=______;(Ⅱ)求学生捐款数目的众数、中位数和平均数;(Ⅲ)若该校有学生2500人,估计该校学生共捐款多少元?【专题】常规题型.【分析】(Ⅰ)把表格中的数据相加得出本次接受随机抽样调查的学生人数;利用50元,100元的捐款人数求得占总数的百分比得出m 、n 的数值即可; (Ⅱ)利用众数、中位数和平均数的意义和求法分别得出答案即可;(Ⅲ)利用求得的平均数乘总人数得出答案即可.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为4+12+9+3+2=30人. 12÷30=40%,9÷30=30%,所以扇形统计图中的m=40,n=30;故答案为:40,30;(Ⅱ)∵在这组数据中,50出现了12次,出现的次数最多,∴学生捐款数目的众数是50元;∵按照从小到大排列,处于中间位置的两个数据都是50,∴中位数为50元;这组数据的平均数=(20×4+50×12+100×9+150×3+200×2)÷30=2430÷30=81(元). (Ⅲ)根据题意得:2500×81=202500元答:估计该校学生共捐款202500元.【点评】此题考查扇形统计图,用样本估计总体,众数、中位数、平均数的意义与求法,理解题意,从图表中得出数据以及利用数据运算的方法是解决问题的关键.(21)(本题共7分)已知关于x 的一元二次方程()()01222=-++-m x m x(Ⅰ)求证:方程有两个不相等的实数根;(Ⅱ)若此方程的一个根是1,请求出方程的另一个根;(Ⅲ)求以(Ⅱ)中所得两根为边长的直角三角形的周长。
天津市红桥区2020年八年级第二学期期末联考数学试题一、选择题(每题只有一个答案正确)1.某次自然灾害导致某铁路遂道被严重破坏,为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( ) A .12012045x x -=+ B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=- 2.如图,AC 、BD 是四边形ABCD 的对角线,若E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,顺次连接E 、F 、G 、H 四点,得到四边形EFGH ,则下列结论不正确的是( )A .四边形EFGH 一定是平行四边形B .当AB =CD 时,四边形EFGH 是菱形C .当AC ⊥BD 时,四边形EFGH 是矩形 D .四边形EFGH 可能是正方形3.如图,A 、B 、C 、D 四点都在⊙O 上,若OC ⊥AB ,∠AOC =70︒,则圆周角∠D 的度数等于( )A .70︒B .50︒C .35︒D .20︒4.如图,菱形ABCD 的周长为16,若∠BAD=60°,E 是AB 的中点,则点E 的坐标为( )A .(1,1)B .(31),C .(13),D .(232)5.函数y 1=x+1与y 2=ax+b (a≠0)的图象如图所示,这两个函数图象的交点在y 轴上,那么使y 1>y 2的x 的取值范围是( )A .x >0B .x >1C .x >-1D .-1<x <26.下列运算正确的是( )A .236m m m ⋅=B .352()a a =C .44(2)16x x =D .2m 3÷m 3= 2m7.在平面直角坐标系内,点O 是原点,点A 的坐标是()3,4,点B 的坐标是()3,4-,要使四边形AOBC 是菱形,则满足条件的点C 的坐标是( )A .()3,0-B .()3,0C .()6,0D .()5,08.某商场要招聘电脑收银员,应聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算算机成绩占50%,语言成绩占30%,商品知识成绩占20%.则小明的最终成绩是( )A .66分B .68分C .70分D .80分9.已知点()3,P a 在函数31y x =+的图象上,则(a = )A .5B .10C .8-D .7-10.在下列四组数中,不是勾股数的一组数是( )A .a=15,b=8,c=17B .a=9,b=12,c=15C .a=7,b=24,c=25D .a=3,b=5,c=7二、填空题11.已知y 与2x 成正比例,且当x =1时y =4,则y 关于x 的函数解析式是__________.12.将一元二次方程28130x x ++=通过配方转化成2()x n p +=的形式(n ,p 为常数),则n =_________,p =_________.13.若点A (﹣2,4)在反比例函数k y x=的图像上,则k 的值是____. 14.如图,直线5y x =+分别与x 轴、y 轴交于点, A B ,点P 是反比例函数k y x =的图象上位于直线5y x =+下方的点,过点P 分别作x 轴、y 轴的垂线,垂足分别为点,M N ,交直线AB 于点, E F ,若6BE AF =,则k 的值为__________.15.己知某汽车油箱中的剩余油量y (升)与该汽车行驶里程数x (千米)是一次函数关系,当汽车加满油后,行驶200千米,油箱中还剩油126升,行驶250千米,油箱中还剩油120升,那么当油箱中还剩油90升时,该汽车已行驶了____千米16.一次函数25y x =+的图像是由直线2y x =__________________而得.17.直线y=3x+2沿y 轴向下平移5个单位,则平移后的直线与y 轴的交点坐标是_______.三、解答题18.解方程:31144x x x--=-- 19.(6分)如图,在平面直角坐标系中,一次函数y =kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)请直接写出不等式kx+b ﹣3x >0的解集.(3)若点D 在y 轴上,且满足S △BCD =2S △BOC ,求点D 的坐标.20.(6分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?21.(6分)如图,在正方形ABCD 中,E 是CD 边的中点,AC 与BE 相交于点F ,连接DF .(1)在不增加点和线的前提下,直接写出图中所有的全等三角形;(3)延长DF 交BC 于点M ,试判断BM 与MC 的数量关系.(直接写出结论)22.(8分)为预防传染病,某校定期对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量 ()mg y 与药物在空气中的持续时间() min x 成正比例;燃烧后,y 与x 成反比例(如图所示).现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg .根据以上信息解答下列问题:(1)分别求出药物燃烧时及燃烧后 y 关于x 的函数表达式. (2)当每立方米空气中的含药量低于1.6mg 时,对人体方能无毒害作用,那么从消毒开始,在哪个时段消毒人员不能停留在教室里?(3)当室内空气中的含药量每立方米不低于3.2mg 的持续时间超过20分钟,才能有效杀灭某种传染病毒.试判断此次消毒是否有效,并说明理由.23.(8分)在某旅游景区上山的一条小路上,有一些断断续续的台阶,下图是其中的甲、乙两段台阶的示意图(图中的数字表示每一级台阶的高度,单位cm ).已知数据15、16、16、14、14、15的方差S 甲2=23,数据11、15、18、17、10、19的方差S 乙2=353. 请你用学过的统计知识(平均数、中位数、方差和极差)通过计算,回答下列问题:(1)两段台阶路有哪些相同点和不同点?(2)哪段台阶路走起来更舒服?为什么?(3)为方便游客行走,需要重新整修上山的小路.对于这两段台阶路,在台阶数不变的情况下,请你提出合理的整修建议.24.(10分)某商场计划销售A ,B 两种型号的商品,经调查,用1500元采购A 型商品的件数是用600元采购B 型商品的件数的2倍,一件A 型商品的进价比一件B 型商品的进价多30元.(1)求一件A ,B 型商品的进价分别为多少元?(2)若该商场购进A ,B 型商品共100件进行试销,其中A 型商品的件数不大于B 型的件数,已知A 型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?25.(10分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)补全条形图;(2)直接写出在这次抽测中,测试成绩的众数和中位数;(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】等量关系为:原计划用的时间-实际用的时间=4,据此列方程即可.【详解】解:原计划修120x天,实际修了1205x+天,可列得方程12012045x x-=+,故选:B.【点睛】本题考查了分式方程的应用,从关键字找到等量关系是解决问题的关键.2.C【分析】根据三角形中位线定理、平行四边形、矩形、菱形、正方形的判定定理判断即可.【详解】解:∵E、F分别是BD、BC的中点,∴EF∥CD,EF=12 CD,∵H、G分别是AD、AC的中点,∴HG∥CD,HG=12 CD,∴HG∥EF,HG=EF,∴四边形EFGH是平行四边形,A说法正确,不符合题意;∵F、G分别是BC、AC的中点,∴FG=12 AB,∵AB=CD,∴FG=EF,∴当AB=CD时,四边形EFGH是菱形,B说法正确,不符合题意;当AB⊥BC时,EH⊥EF,∴四边形EFGH是矩形,C说法错误,符合题意;当AB=CD,AB⊥BC时,四边形EFGH是正方形,说法正确,不符合题意;故选:C.【点睛】此题考查中点四边形、三角形中位线定理,掌握平行四边形、矩形、菱形、正方形的判定定理是解题的关键.3.C【解析】【分析】由垂径定理将已知角转化,再用圆周角定理求解.【详解】解:因为OC⊥AB,由垂径定理可知AC BC=,所以,∠COB=∠COA=70°,根据圆周角定理,得1352D BOC︒∠=∠=故选:C.本题综合考查了垂径定理和圆周角的求法及性质.解答这类题要灵活运用所学知识解答问题,熟练掌握圆的性质是关键.4.B【解析】【分析】首先求出AB的长,进而得出EO的长,再利用含30度角的直角三角形的性质以及勾股定理进行求解即可. 【详解】过E作EM⊥AC,则∠EMO=90°,∵四边形ABCD是菱形,∴AB=CD=BC=AD,AC⊥DB,∠BAO=12∠BAD,∵∠BAD=60°,∴∠BAO=30°,∵AC⊥DB,∴∠BOA=90°,∵E是AB的中点,∴EO=EA=EB=12 AB,∵菱形ABCD的周长为16,∴AB=4,∴EO=2,∵EO=AE,∴∠EOA=∠EAO=30°,又∵∠EMO=90°,∴EM=12EO=1,∴OM=2222213 OE EM-=-=∴则点E的坐标为:(3,1),故选B.本题考查了菱形的性质,坐标与图形,勾股定理,含30度角的直角三角形的性质,直角三角形斜边中线的性质,熟练掌握相关知识是解题的关键.5.A【解析】【分析】当x >0时,函数y 1=x+1的图象在函数y 2=ax+b (a≠0)的图象上方,据此可得使y 1>y 2的x 的取值范围是x >0【详解】由图可得,当x >0时,函数y 1=x+1的图象在函数y 2=ax+b (a≠0)的图象的上方,∴使y 1>y 2的x 的取值范围是x >0,故选:A .【点睛】本题主要考查了一次函数与一元一次不等式的关系,解答此题的关键是利用数形结合的思想方法求解。
天津市2020年〖人教版〗八年级数学下册期末复习试卷解析版创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题:每小题3分,共24分.1.二次根式3x 中字母x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥32.直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.53.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁4.下列计算正确的是()A.÷2=B.(2)2=16 C.2×=D.﹣=5.如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BCD.OA=OC,OB=OD6.若点A(2,﹣4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(0,2)B.(﹣2,0)C.(1,﹣1)D.(﹣1,﹣3)7.对于一次函数y=2x+4,下列结论中正确的是()①若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2.②函数的图象不经过第四象限.③函数的图象与x轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y=2x的图象.A.1个B.2个C.3个D.4个8.如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P 运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长是()A.18 B.20 C.22 D.26二、填空题:每小题3分,共24分.9.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.10.计算:()2=.11.若正比例函数y=(m﹣1)x,y随x的增大而减小,则m的值是.12.如图,在直角三角形ABC中,∠BCA=90°,D、E、F分别是AB、AC、BC的中点,若CD=6cm,则EF的长为.13.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为.14.已知a、b、c是△ABC三边的长,且满足关系式+|c﹣a|=0,则△ABC的形状.15.如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为.16.如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值是.三、解答题:每小题5分,共10分.17.(5分)÷﹣×2.18.(5分)如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF 是平行四边形.四、解答题:每小题6分,共18分.19.(6分)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.20.(6分)如图,已知一次函数y=kx+b经过点A(0,1)且和直线y=x﹣3交于点P(a,﹣5).(1)求一次函数的解析式;(2)求两直线与y轴围成的△ABP的面积.21.(6分)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生人,并将条形图补充完整;(2)捐款金额的众数是,中位数是;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?五、解答题:每小题8分,共24分.22.(8分)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE 的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.23.(8分)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.24.(8分)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求AF的值.六、附加题:10分.25.如图,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O 是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣,求KD的长度.参考答案与试题解析一、选择题:每小题3分,共24分.1.(春•韶关期末)二次根式中字母x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥3【考点】72:二次根式有意义的条件.【分析】根据二次根式中的被开方数是非负数列不等式求解即可.【解答】解∵二次根式有意义,∴x﹣3≥0,解得:x≥3.故选:D.【点评】本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.2.(春•韶关期末)直角三角形中,两直角边分别是12和5,则斜边上的中线长是()A.34 B.26 C.8.5 D.6.5【考点】KP:直角三角形斜边上的中线;KQ:勾股定理.【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:由勾股定理得,斜边==13,所以,斜边上的中线长=×13=6.5.故选D.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.3.(春•韶关期末)下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x与方差S2:甲乙丙丁平均数(cm)175173175174方差S2(cm2) 3.5 3.512.515根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W1:算术平均数.【分析】根据方差的意义先比较出甲、乙、丙、丁的大小,再根据平均数的意义即可求出答案.2=3.5,S乙2=3.5,S丙2=12.5,S丁2=15,【解答】解:∵S甲2=S乙2<S丙2<S丁2,∴S甲∵=175,=173,∴>,∴从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择甲;故选:A.【点评】此题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4.(春•韶关期末)下列计算正确的是()A.÷2=B.(2)2=16 C.2×=D.﹣=【考点】79:二次根式的混合运算.【分析】根据二次根式的除法法则对A进行判断;根据二次根式的性质对B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的加减法对D进行判断.【解答】解:A、原式=2÷2=,所以A选项正确;B、原式=4×2=8,所以B选项错误;C、原式=2×=,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选A.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(春•韶关期末)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BCD.OA=OC,OB=OD【考点】L6:平行四边形的判定.【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6.(春•韶关期末)若点A(2,﹣4)在函数y=kx﹣2的图象上,则下列各点在此函数图象上的是()A.(0,2)B.(﹣2,0)C.(1,﹣1)D.(﹣1,﹣3)【考点】F8:一次函数图象上点的坐标特征.【分析】把A点坐标代入函数解析式可求得函数解析式,再把选项中的点的坐标代入进行判断即可.【解答】解:∵点A(2,﹣4)在函数y=kx﹣2的图象上,∴﹣4=2k﹣2,解得k=﹣1,∴函数解析式为y=﹣x﹣2当x=0时,y=﹣2,故(0,2)不在函数图象上,当x=﹣2时,y=0,故(﹣2,0)在函数图象上,当x=1时,y=﹣3,故(1,﹣1)不在函数图象上,当x=﹣1时,y=﹣1,故(﹣1,﹣3)不在函数图象上,故选B.【点评】本题主要考查一次函数图象上点的坐标特征,掌握函数图象上点的坐标满足函数解析式是解题的关键.7.(春•韶关期末)对于一次函数y=2x+4,下列结论中正确的是()①若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2.②函数的图象不经过第四象限.③函数的图象与x轴的交点坐标是(0,4).④函数的图象向下平移4个单位长度得y=2x的图象.A.1个B.2个C.3个D.4个【考点】F9:一次函数图象与几何变换;F5:一次函数的性质;F8:一次函数图象上点的坐标特征.【分析】根据一次函数的增减性判断①;根据一次函数图象与系数的关系判断②;根据一次函数图象上点的坐标特征判断③;根据函数图象的平移规律判断④.【解答】解:①∵y=2x+4中,k=2>0,∴y随x的增大而增大,∴若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1<y2.故①正确,符合题意;②∵k=2>0,b=4>0,∴函数y=2x+4的图象经过第一、二、三象限,不经过第四象限.故②正确,符合题意;③∵y=2x+4,∴y=0时,2x+4=0,解得x=﹣2,x=0时,y=4,∴函数的图象与x轴的交点坐标是(﹣2,0),与y轴的交点坐标是(0,4).故③错误,不符合题意;④函数的图象向下平移4个单位长度得y=2x的图象.故④正确,符合题意;故选C.【点评】本题考查了一次函数的性质,一次函数图象与系数的关系,一次函数图象上点的坐标特征,函数图象的平移规律,都是基础知识,需熟练掌握.8.(春•韶关期末)如图1,在矩形ABCD中,动点P从点B出发,沿BC、CD、DA运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则矩形ABCD的周长是()A.18 B.20 C.22 D.26【考点】E7:动点问题的函数图象.【分析】根据函数的图象、结合图形求出AB、BC的值,即可得出矩形ABCD的周长.【解答】解:∵动点P从点B出发,沿BC、CD、DA运动至点A停止,而当点P运动到点C,D之间时,△ABP的面积不变,函数图象上横轴表示点P运动的路程,x=4时,y开始不变,说明BC=4,x=9时,接着变化,说明CD=9﹣4=5,∴AB=5,BC=4,∴矩形ABCD的周长=2(AB+BC)=18.故选A.【点评】本题主要考查了动点问题的函数图象,在解题时要能根据函数的图象求出AB、BC 的长度是解决问题的关键.二、填空题:每小题3分,共24分.9.(•仁寿县二模)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为1.【考点】W4:中位数;W1:算术平均数.【分析】根据平均数的定义先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.10.(春•韶关期末)计算:()2==3﹣2.【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】利用完全平方公式计算.【解答】解:原式=2﹣2+1=3﹣2.故答案为=3﹣2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(春•韶关期末)若正比例函数y=(m﹣1)x,y随x的增大而减小,则m的值是﹣2.【考点】F6:正比例函数的性质.【分析】根据正比例函数定义可得m2﹣3=1,再根据正比例函数的性质可得m﹣1<0,再解即可.【解答】解:由题意得:m2﹣3=1,且m﹣1<0,解得:m=﹣2,故答案为:﹣2.【点评】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx(k≠0)的自变量指数为1,当k<0时,y随x的增大而减小.12.(春•韶关期末)如图,在直角三角形ABC中,∠BCA=90°,D、E、F分别是AB、AC、BC 的中点,若CD=6cm,则EF的长为6cm.【考点】KX:三角形中位线定理;KP:直角三角形斜边上的中线.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【解答】解:∵∠BCA=90°,D是AB的中点,∴AB=2CD=12cm,∵E、F分别是AC、BC的中点,∴EF=AB=6cm,故答案为:6cm.【点评】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.13.(春•韶关期末)评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为84分.【考点】W2:加权平均数.【分析】因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【解答】解:小明的数学期末成绩为=84(分),故答案为:84分.【点评】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.14.(春•韶关期末)已知a、b、c是△ABC三边的长,且满足关系式+|c﹣a|=0,则△ABC的形状等腰直角三角形.【考点】KS:勾股定理的逆定理;16:非负数的性质:绝对值;23:非负数的性质:算术平方根;KW:等腰直角三角形.【分析】根据非负数的性质可得c﹣a=0,c2+a2﹣b2=0,再解可得a=c,c2+a2=b2,根据勾股定理逆定理可得△ABC的形状是等腰直角三角形.【解答】解:∵+|c﹣a|=0,∴c﹣a=0,c2+a2﹣b2=0,解得:a=c,c2+a2=b2,∴△ABC的形状是等腰直角三角形,故答案为:等腰直角三角形.【点评】此题主要考查了勾股定理逆定理,以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.(春•韶关期末)如图,一次函数y=kx+b与y=﹣x+5的图象的交点坐标为(2,3),则关于x的不等式﹣x+5>kx+b的解集为x<2.【考点】FD:一次函数与一元一次不等式.【分析】观察图象,找出直线y=﹣x+5在直线y=kx+b上方所对应的自变量的范围即可.【解答】解:当x<2时,直线y=﹣x+5在直线y=kx+b的上方,所以不等式﹣x+5>kx+b的解集为x<2.故答案为:x<2.【点评】本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.(春•韶关期末)如图,在Rt△ABC中,∠BAC=90°,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值是.【考点】LD:矩形的判定与性质;J4:垂线段最短.【分析】根据矩形的性质就可以得出EF,AP互相平分,且EF=AP,根据垂线段最短的性质就可以得出AP⊥BC时,AP的值最小,即AM的值最小,由勾股定理求出BC,根据面积关系建立等式求出其解即可.【解答】解:∵PE⊥AB,PF⊥AC,∠BAC=90°,∴∠EAF=∠AEP=∠AFP=90°,∴四边形AEPF是矩形,∴EF,AP互相平分.且EF=AP,∴EF,AP的交点就是M点,∵当AP的值最小时,AM的值就最小,∴当AP⊥BC时,AP的值最小,即AM的值最小.∵AP×BC=AB×AC,∴AP×BC=AB×AC,在Rt△ABC中,由勾股定理,得BC==10,∵AB=6,AC=8,∴10AP=6×8,∴AP=∴AM=,故答案为:.【点评】本题考查了矩形的性质的运用,勾股定理的运用,三角形的面积公式的运用,垂线段最短的性质的运用,解答时求出AP的最小值是关键.三、解答题:每小题5分,共10分.17.(5分)(春•韶关期末)÷﹣×2.【考点】79:二次根式的混合运算.【分析】先算除法和乘法,进一步化简合并即可.【解答】解:原式=2﹣6=﹣4.【点评】此题二次根式的混合运算,注意先化简再求值.18.(5分)(春•韶关期末)如图,E、F分别为▱ABCD的边BC、AD上的点,且∠1=∠2.求证:四边形AECF是平行四边形.【考点】L7:平行四边形的判定与性质.【分析】由条件可证明AE∥FC,结合平行四边形的性质可证明四边形AECF是平行四边形.【解答】证明:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠1=∠EAF,∵∠1=∠2,∴∠EAF=∠2,∴AE∥CF,∴四边形AECF是平行四边形.【点评】本题主要考查平行四边形的性质和判定,利用平行四边形的性质证得AE∥CF是解题的关键.四、解答题:每小题6分,共18分.19.(6分)(春•韶关期末)在甲村至乙村的公路有一块山地正在开发,现有一C处需要爆破.已知点C与公路上的停靠站A的距离为300米,与公路上的另一停靠站B的距离为400米,且CA⊥CB,如图所示.为了安全起见,爆破点C周围半径250米范围内不得进入,问在进行爆破时,公路AB段是否有危险而需要暂时封锁?请通过计算进行说明.【考点】KU:勾股定理的应用.【分析】过C作CD⊥AB于D.根据BC=400米,AC=300米,∠ACB=90°,利用根据勾股定=AB•CD=BC•AC得到CD=240米.再根据240米<250米可以理有AB=500米.利用S△ABC判断有危险.【解答】解:公路AB需要暂时封锁.理由如下:如图,过C作CD⊥AB于D.因为BC=400米,AC=300米,∠ACB=90°,所以根据勾股定理有AB=500米.=AB•CD=BC•AC因为S△ABC所以CD===240米.由于240米<250米,故有危险,因此AB段公路需要暂时封锁.【点评】本题考查了勾股定理的应用,解题的关键是构造直角三角形,以便利用勾股定理.20.(6分)(春•韶关期末)如图,已知一次函数y=kx+b经过点A(0,1)且和直线y=x﹣3交于点P(a,﹣5).(1)求一次函数的解析式;(2)求两直线与y轴围成的△ABP的面积.【考点】FF:两条直线相交或平行问题.【分析】(1)先把P(a,﹣5)代入y=x﹣3,求出P点坐标,再将A、P两点的坐标代入y=kx+b,求得k,b,即求出了一次函数解析式;(2)求出两直线的交点坐标及两直线分别与y轴相交得到的交点坐标,再根据三角形面积公式求得结果.【解答】解:(1)∵直线y=x﹣3过点P(a,﹣5),∴a﹣3=﹣5,∴a=﹣2,P(﹣2,﹣5),将A(0,1),P(﹣2,﹣5)代入y=kx+b,得,解得:,∴一次函数解析式y=3x+1;(2)一次函数y=3x+1与y轴的交点坐标为(0,1),直线y=x﹣3与y轴的交点坐标为(0,﹣3),两直线的交点坐标为P(﹣2,﹣5),4×2=4.∴S△=×【点评】此题考查了两条直线的交点问题,一次函数图象上点的坐标特征,待定系数法求一次函数关系式,三角形的面积,关键是掌握凡是函数图象经过的点必能满足解析式.21.(6分)(春•韶关期末)某校八年级全体同学参加了某项捐款活动,随机抽查了部分同学捐款的情况,并统计绘制成了如图两幅不完整的条形统计图和扇形统计图,请根据所提供的信息,解答下列问题:(1)本次共抽查学生50人,并将条形图补充完整;(2)捐款金额的众数是10,中位数是12.5;(3)在八年级850名学生中,捐款20元及以上(含20元)的学生估计有多少人?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)有题意可知,捐款15元的有14人,占捐款总人数的28%,由此可得总人数,将捐款总人数减去捐款5、15、20、25元的人数可得捐10元的人数;(2)从条形统计图中可知,捐款10元的人数最多,可知众数,将这组数据按照从小到大的顺序排列,处于中间位置的数就是这组数据的中位数;(3)由抽取的样本可知,用捐款20及以上的人数所占比例估计总体中的人数.【解答】解:(1)本次抽查的学生有:14÷28%=50(人),则捐款10元的有50﹣9﹣14﹣7﹣4=16(人),补全条形统计图图形如下:故答案为:50;(2)由条形图可知,捐款10元人数最多,故众数是10;将这组数据按照从小到大的顺序排列,中间两个数据分别是10,15,所以中位数是(10+15)÷2=12.5.故答案为:10,12.5;(3)捐款20元及以上(含20元)的学生有:850×=187(人).【点评】本题主要考查了条形统计图,扇形统计图,众数和中位数,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.五、解答题:每小题8分,共24分.22.(8分)(春•韶关期末)如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A 作AF∥BC交DE的延长线于F点,连接AD、CF.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.【考点】LF:正方形的判定;KX:三角形中位线定理;L7:平行四边形的判定与性质.【分析】(1)首先利用平行四边形的判定方法得出四边形ABDF是平行四边形,进而得出AF=DC,利用一组对边相等且平行的四边形是平行四边形,进而得出答案;(2)利用等腰直角三角形的性质结合正方形的判定方法得出即可.【解答】(1)证明:∵点D、E分别是边BC、AC的中点,∴DE∥AB,∵AF∥BC,∴四边形ABDF是平行四边形,∴AF=BD,则AF=DC,∵AF∥BC,∴四边形ADCF是平行四边形;(2)当△ABC是等腰直角三角形时,四边形ADCF是正方形,理由:∵点D是边BC的中点,△ABC是等腰直角三角形,∴AD=DC,且AD⊥DC,∴平行四边形ADCF是菱形.【点评】此题主要考查了平行四边形的判定与性质以及正方形的判定,熟练应用平行四边形的判定与性质是解题关键.23.(8分)(•辽宁模拟)某商场推出两种优惠方法,甲种方法:购买一个书包赠送一支笔;乙种方法:购买书包和笔一律按九折优惠,书包20元/个,笔5元/支,小明和同学需购买4个书包,笔若干(不少于4支).(1)分别写出两种方式购买的费用y(元)与所买笔支数x(支)之间的函数关系式;(2)比较购买同样多的笔时,哪种方式更便宜;(3)如果商场允许可以任意选择一种优惠方式,也可以同时用两种方式购买,请你就购买4个书包12支笔,设计一种最省钱的购买方式.【考点】FH:一次函数的应用.【专题】16 :压轴题.【分析】(1)根据购买的费用等于书包的费用+笔的费用就可以得出结论;(2)由(1)的解析式,分情y甲>y乙时,况y甲=y乙时和y甲<y乙时分别建立不等式和方程讨论就可以求出结论;(3)由条件分析可以得出用一种方式购买选择甲商场求出费用,若两种方法都用设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用为y,再根据一次函数的性质就可以求出结论.【解答】解:(1)由题意,得y甲=20×4+5(x﹣4)=5x+60,y乙=90%(20×4+5x)=4.5x+72;(2)由(1)可知当 y甲>y乙时5x+60>4.5x+72,解得:x>24,即当购买笔数大于24支时,乙种方式便宜.当 y甲=y乙时,5x+60=4.5x+72解得:x=24,即当购买笔数为24支时,甲乙两种方式所用钱数相同即甲乙两种方式都可以.当 y甲<y乙时,5x+60<4.5x+72,解得:x<24,即当购买笔数大于4支而小于24支时,甲种方式便宜;(3)用一种方法购买4个书包,12支笔时,由12<24,则选甲种方式需支出y=20×4+8×5=120(元)若两种方法都用设用甲种方法购书包x个,则用乙种方法购书包(4﹣x)个总费用y=20 x+90%〔20(4﹣x)+5(12﹣x)〕(0<x≤4)y=﹣2.5 x+126由k=﹣2.5<0则y随x增大而减小,即当x=4时 y最小=116(元)综上所述,用甲种方法购买4个书包,用乙种方法购买8支笔最省钱.【点评】本题考查了一次函数的解析式的运用,分类讨论的运用及不等式和方程的解法的运用,一次函数的性质的运用,解答时先表示出两种购买方式的解析式是解答第二问的关键,解答第三问灵活运用一次函数的性质是难点.24.(8分)(春•韶关期末)如图,在正方形ABCD中,点E是对角线AC上一点,且CE=CD,过点E作EF⊥AC交AD于点F,连接BE.(1)求证:DF=AE;(2)当AB=2时,求AF的值.【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】(1)连接CF,根据“HL”证明Rt△CDF和Rt△CEF全等,根据全等三角形对应边相等可得DF=EF,根据正方形的对角线平分一组对角可得∠EAF=45°,求出△AEF是等腰直角三角形,再根据等腰直角三角形的性质可得AE=EF,然后等量代换即可得证;(2)根据正方形的对角线等于边长的倍求出AC,然后求出AE,过点E作EH⊥AB于H,判断出△AEH是等腰直角三角形,然后求出EH=AH=AE,再求出BH,然后利用勾股定理列式计算即可得解.【解答】(1)证明:如图,连接CF,在Rt△CDF和Rt△CEF中,,∴Rt△CDF≌Rt△CEF(HL),∴DF=EF,∵AC是正方形ABCD的对角线,∴∠EAF=45°,∴△AEF是等腰直角三角形,∴AE=EF,∴DF=AE;(2)解:∵AB=2,∴AC=AB=2,∵CE=CD,∴AE=2﹣2,过点E作EH⊥AB于H,则△AEH是等腰直角三角形,∴EH=AH=AE=×(2﹣2)=2﹣,∴AE=EH=2﹣2,∴AF=AE=4﹣2.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理的应用,作辅助线构造出全等三角形和直角三角形是解题的关键.六、附加题:10分.25.(春•韶关期末)如图,在矩形ABCD中,BC>AB,∠BAD的平分线AF与BD、BC分别交于点E、F,点O是BD的中点,直线OK∥AF,交AD于点K,交BC于点G.(1)求证:①△DOK≌△BOG;②AB+AK=BG;(2)若KD=KG,BC=4﹣,求KD的长度.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】(1)①先根据AAS判定△DOK≌△BOG,②再根据等腰三角形ABF和平行四边形。
天津市名校2019-2020学年八年级第二学期期末复习检测数学试题 一、选择题(每题只有一个答案正确)1.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x =3时,y =18,那么当成本为72元时,边长为( )A .6cmB .12cmC .24cmD .36cm2.已知点(-2,y 1),(-1,y 2),(4,y 3)在函数y =的图象上,则( )A .y 2<y 1<y 3B .y 1<y 2<y 3C .y 3<y 1<y 2D .y 3<y 2<y 13.如图,OA =3,以OA 为直角边作Rt △OAA 1,使∠AOA 1=30°,再以OA 1为直角边作Rt △OA 1A 2,使∠A 1OA 2=30°,……,依此法继续作下去,则A 1A 2的长为( )A .64327B .233C .169D .3294.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°5.若菱形的周长为8,高为1,则菱形两邻角的度数比为( )A .3∶1B .4∶1C .5∶1D .6∶16.如图,有一块菱形纸片ABCD ,沿高DE 剪下后拼成一个矩形,矩形的相邻两边DC 和DE 的长分别是5,1.则EB 的长是( )A .0.5B .1C .1.5D .27.如图,一次函数(1)1y k x =-+的图象与x 轴,y 轴分别交于点A ,B ,则k 的取值范围是( )A .1kB .1k >C .1k ≤D .1k <8.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A .调查九年级全体学生B .调查七、八、九年级各30名学生C .调查全体女生D .调查全体男生 9.已知关于x 的不等式组200x x a +>⎧⎨-≤⎩的整数解共有4个,则a 的最小值为( ) A .1 B .2 C .2.1 D .310.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点 为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限二、填空题11.已知菱形ABCD 的边长为4,120B ︒∠=,如果点P 是菱形内一点,且13PA PC ==,那么BP 的长为___________.12.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于点H ,则DH =_____.13.如图,在平面直角坐标系中,有A (﹣3,4)、B (﹣1,0)、C (5,10)三点,连接CB ,将线段CB 沿y 轴正方向平移t 个单位长度,得到线段C 1B 1,当C 1A+AB 1取最小值时,实数t =_____.14.如图,一圆柱形容器(厚度忽略不计),已知底面半径为6m ,高为16cm ,现将一根长度为28cm 的玻璃棒一端插入容器中,则玻璃棒露在容器外的长度的最小值是_____cm .15.关于x的一元二次方程2120x xa+-=有实数根,则a的取值范围是_____.16.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是______(只填写序号).17.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.三、解答题18.(1)解方程:2610x x+-=(2)解方程:()16x x+=19.(6分)如图,在正方形ABCD中,点M在CD边上,点N在正方形ABCD外部,且满足∠CMN=90°,CM=MN.连接AN,CN,取AN的中点E,连接BE,AC,交于F点.(1)①依题意补全图形;②求证:BE⊥AC.(2)设AB=1,若点M沿着线段CD从点C运动到点D,则在该运动过程中,线段EN所扫过的面积为(直接写出答案).20.(6分)某商店购进一批小家电,单价40元,第一周以每个52元的价格售出180个,商店为了适当增加销量,第二周决定降价销售。
天津市2020年〖人教版〗八年级数学下册期末复习试卷解析版创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题1.的相反数是()A. B.﹣C.2 D.﹣22.如图,▱ABCD中,∠B=70°,DE是角平分线,则∠CDE=()A.110°B.70°C.35°D.55°3.下列电视台的台标,是中心对称图形的是()A.B.C.D.4.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22 24 23 25 24 22 21A.22℃B.23℃C.24℃D.25℃5.下列运算正确的是()A.(3)2=6 B.3=6 C.(﹣2)2=6 D.(﹣3)2=6 6.[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣]的一次函数是正比例函数,则关于x的方程x+=的解为()A. B.﹣C. D.﹣7.以一元二次方程x2﹣x﹣2=0的解为横坐标的点是()A.(﹣1,2) B.(﹣1,y) C.(2,y)D.(﹣1,y)或(2,y)8.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD 交BD、AD于E、F,则△EDC的面积为()A.2﹣2 B.3﹣2 C.2﹣D.﹣19.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x 轴上,依次进行下去…,若点A(,0),B(0,4),则点B的横坐标为()A.5 B.12 C.10070 D.1008010.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若直线y=kx+b平行BD且与正方形ABCD 有公共点,则b的取值范围为()A.1<b<8 B.1≤b≤8 C.2≤b≤8 D.2≤b<8二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分)11.直线y=4x+3与y轴的交点是______.12.计算:×(﹣π)0﹣()﹣1=______.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请______队参赛.14.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长为______.15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=______.16.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,现有以下结论:①当x=﹣2时,两函数值相等;②直线y=﹣x+m与坐标轴的围成等腰直角三角形;③直线y=nx+4n(n≠0)与x轴的交点为定点;④x>﹣2是关于x的不等式﹣x+m>nx+4n的解集.其中错误的是______(填写序号).三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分)17.已知:a为正整数,且a+=,求a﹣的值.18.已知:一次函数待定系数k、b满足k=﹣2,求解析式.19.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.20.某组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.21.关于x的方程x2﹣x+a=0有实根.(1)求a的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=﹣1,求实数a的值.22.已知某市企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)为鼓励企业节约用水,该市自1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按收费标准收取水费外,超过80吨部分每吨另加收元,求这个企业该月的用水量x与所交费用w的函数关系式.23.正方形ABCD中,点G为BC上任意一点,DE⊥AG于E,BF∥DE交AG于F.(1)若点G为BC的中点,AB=4,FG=,求EF的长;(2)求证:AF﹣BF=EF.24.(10分)(春•房县期末)如图,Rt△ABO中,∠AOB=90°,对图形进行下列变换:①将△ABO沿AO对折,得到△ABD;②将△ABD绕点O旋转180°,得到△BCD.(1)画出图形并判断四边形ABCD是什么四边形;(2)若AO=2,BO=2,过O作任意一直线交AB于E、交CD于F,则S BOE+S△COF=______(填写最后结果即可,不必写出解答过程).25.(12分)(春•房县期末)已知:如图,在平面直角坐标系xOy中,直线y=x+4与x轴交于A、与y轴交于 B,点C(a,b),其中a<b,且a、b是方程x2﹣7x+12=0的两根.(1)求直线AC的解析式;(2)点D为直线AC与y轴的交点,请求出△ABD和△BCD的周长差;(3)点E是线段AC上一动点,是否存在点E,使△COE为直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题1.的相反数是()A. B.﹣C.2 D.﹣2【考点】实数的性质.【分析】根据相反数定义:只有符号不同的两个数叫互为相反数可得答案.【解答】解:的相反数是﹣,故选:B.【点评】此题主要考查了实数,关键是掌握相反数的定义.2.如图,▱ABCD中,∠B=70°,DE是角平分线,则∠CDE=()A.110°B.70°C.35°D.55°【考点】平行四边形的性质.【分析】根据平行四边形的性质对角相等,求出∠ADC,再根据角平分线定义求出∠EDC 即可.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠ADC,∵∠B=70°,∴∠ADC=70°,∵DE平分∠ADC,∴∠EDC=∠ADC=35°.故选C.【点评】本题考查平行四边形的性质、角平分线的性质等知识,解题的关键是熟练掌握平行四边形的性质,记住角平分线定义,属于中考基础题,常考题型.3.下列电视台的台标,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念进行判断即可.【解答】解:A、是中心对称图形;B、不是中心对称图形;C、不是中心对称图形;D、不是中心对称图形.故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.小明记录了一星期天的最高气温如下表,则这个星期每天的最高气温的中位数是()星期一二三四五六日最高气温(℃)22 24 23 25 24 22 21 A.22℃B.23℃C.24℃D.25℃【考点】中位数.【分析】将数据从小到大排列,根据中位数的定义求解即可.【解答】解:将数据从小到大排列为:21,22,22,23,24,24,25,中位数是23.故选:B.【点评】本题考查了中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.下列运算正确的是()A.(3)2=6 B.3=6 C.(﹣2)2=6 D.(﹣3)2=6【考点】二次根式的乘除法;二次根式的性质与化简.【分析】先根据二次根式的性质和二次根式的乘法法则求出每个式子的值,再进行判断即可.【解答】解:A、结果是18,故本选项错误;B、结果是6,故本选项正确;C、结果是12,故本选项错误;D、结果是18,故本选项错误;故选B.【点评】本题考查了二次根式的性质和二次根式的乘法法则的应用,能熟记二次根式的性质和二次根式的乘法法则的内容是解此题的关键.6.[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”.若“关联数”[1,m﹣]的一次函数是正比例函数,则关于x的方程x+=的解为()A. B.﹣C. D.﹣【考点】正比例函数的定义.【分析】首先根据题意可得y=x+m﹣,再根据正比例函数的解析式为:y=kx(k≠0)可得m的值,把m的值代入关于x的方程,再解方程即可.【解答】解:根据题意可得:y=x+m﹣,∵“关联数”[1,m﹣2]的一次函数是正比例函数,∴m﹣=0,解得:m=,则关于x的方程x+=变为x+=,解得:x=,∴关于x的方程x+=的解为.故选C.【点评】此题主要考查了解一元一次方程,以及正比例函数,关键是求出m的值.7.以一元二次方程x2﹣x﹣2=0的解为横坐标的点是()A.(﹣1,2) B.(﹣1,y) C.(2,y)D.(﹣1,y)或(2,y)【考点】解一元二次方程-因式分解法.【分析】先解方程求出方程的解,即可得出选项.【解答】解:解方程x2﹣x﹣2=0得:x=2或﹣1,即点的横坐标为2或﹣1,故选D.【点评】本题考查了解一元二次方程的应用,能求出一元二次方程的解是解此题的关键.8.在四边形ABCD中,AB∥CD,∠A=90°,AB=1,BD⊥BC,BD=BC,CF平分∠BCD 交BD、AD于E、F,则△EDC的面积为()A.2﹣2 B.3﹣2 C.2﹣D.﹣1【考点】角平分线的性质;勾股定理;等腰直角三角形.【分析】先过点E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其边长,最后利用角平分线的性质以及勾股定理,求得EG的长,进而计算△EDC的面积.【解答】解:过点E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45°,∵AB∥CD,∴∠ABD=45°,又∵∠A=90°,AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,设BE=GE=x,则DE=﹣x,∵Rt△DEG中,DG2+EG2=DE2,∴(2﹣)2+x2=(﹣x)2,解得x=2﹣,∴△EDC的面积=×DC×EG=×2×(2﹣)=2﹣.故选(C)【点评】本题主要考查了角平分线的性质的运用,解决问题的关键是作辅助线,构造直角三角形EDG,并利用勾股定理列出方程求解.9.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x 轴上,依次进行下去…,若点A(,0),B(0,4),则点B的横坐标为()A.5 B.12 C.10070 D.10080【考点】坐标与图形变化-旋转.【分析】由图象可知点B在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B在第一象限,∵OA=,OB=4,∠AOB=90°,∴AB===,∴B2(10,4),B4(20,4),B6(30,4),…∴B(10080,4).∴点B纵坐标为10080.故选D.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.10.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若直线y=kx+b平行BD且与正方形ABCD 有公共点,则b的取值范围为()A.1<b<8 B.1≤b≤8 C.2≤b≤8 D.2≤b<8【考点】两条直线相交或平行问题;正方形的性质.【分析】根据正方形的性质可得A、B、C、D的坐标,易得k,再将A,C点的坐标代入直线y=kx+b可得b的取值范围.【解答】解:∵正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,∴A(1,1);B(4,1);C(4,4);D(1,4),∵直线y=kx+b平行BD,∴k==﹣1,∴直线y=kx+b为y=﹣x+b,将A点的坐标代入直线y=﹣x+b可得,1=﹣1+b,解得b=2,将C点的坐标代入直线y=﹣x+b可得,4=﹣4+b,解得b=8,∴b的取值范围为2≤b≤8,故选C.【点评】本题主要考查了两直线相交和平行的问题以及正方形的性质,找到临界点是解答此题的关键.二、填空题(将每小题的最后正确答案填在答题卡中对应题号的横线上.每小题3分,本大题满分18分)11.直线y=4x+3与y轴的交点是(0,3).【考点】一次函数图象上点的坐标特征.【分析】一次函数与y轴的交点坐标横坐标为0,把x=0代入函数解析式,算出y的值即可.【解答】解:∵当x=0时,y=0+3=3,∴与y轴的交点坐标是(0,3),故答案为:(0,3).【点评】此题主要考查了一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能使解析式左右相等.12.计算:×(﹣π)0﹣()﹣1=0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、负整数指数幂、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:×(﹣π)0﹣()﹣1=2×1﹣2=2﹣2=0.故答案为:0.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、三次根式等考点的运算.13.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请8队参赛.【考点】一元二次方程的应用.【分析】本题可设比赛组织者应邀请x队参赛,则每个队参加(x﹣1)场比赛,则共有场比赛,可以列出一个一元二次方程,求解,舍去小于0的值,即可得所求的结果.【解答】解:∵赛程计划安排7天,每天安排4场比赛,∴共7×4=28场比赛.设比赛组织者应邀请x队参赛,则由题意可列方程为: =28.解得:x1=8,x2=﹣7(舍去),所以比赛组织者应邀请8队参赛.故答案为:8.【点评】本题是一元二次方程的求法,虽然不难求出x的值,但要注意舍去不合题意的解.14.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长为20或12.【考点】平行四边形的性质.【分析】根据题意分两种情况画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【解答】解:分两种情况:①如图1所示:∵在▱ABCD中,BC边上的高AE为4,AB=5,AC=2,∴CD=AB=5,AD=BC,EC==2,BE==3,∴AD=BC=2+3=5,∴▱ABCD的周长=2(AB+BC)=20,②如图2所示:同①得:EC═=2,BE═=3,∴AD=BC=3﹣2=1,∴▱ABCD的周长=2(AB+BC)=12,综上所述:▱ABCD的周长为20或12.故答案为:20或12.【点评】此题主要考查了平行四边形的性质以及勾股定理等知识,利用分类讨论得出是解题关键.15.如图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=5.【考点】勾股定理;等腰三角形的性质;含30度角的直角三角形.【分析】过P作PD⊥OB,交OB于点D,在直角三角形POD中,利用锐角三角函数定义求出OD的长,再由PM=PN,利用三线合一得到D为MN中点,根据MN求出MD的长,由OD﹣MD即可求出OM的长.【解答】解:过P作PD⊥OB,交OB于点D,在Rt△OPD中,cos60°==,OP=12,∴OD=6,∵PM=PN,PD⊥MN,MN=2,∴MD=ND=MN=1,∴OM=OD﹣MD=6﹣1=5.故答案为:5.【点评】此题考查的是勾股定理,含30度直角三角形的性质,等腰三角形的性质等知识,熟练掌握直角三角形的性质是解本题的关键.16.如图,直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,现有以下结论:①当x=﹣2时,两函数值相等;②直线y=﹣x+m与坐标轴的围成等腰直角三角形;③直线y=nx+4n(n≠0)与x轴的交点为定点;④x>﹣2是关于x的不等式﹣x+m>nx+4n的解集.其中错误的是④(填写序号).【考点】一次函数与一元一次不等式;一次函数图象上点的坐标特征;一次函数与一元一次方程.【分析】根据两直线的交点坐标判断两函数值是否相等;根据直线与坐标轴的交点坐标,判断三角形的形状;根据直线与x轴的交点坐标,判断交点是否为定点;根据直线的上、下位置关系,判断不等式的解集是否正确.【解答】解:∵直线y=﹣x+m与y=nx+4n(n≠0)的交点的横坐标为﹣2,∴当x=﹣2时,两函数值相等,故①正确;∵在直线y=﹣x+m中,当x=0时,y=m,当y=0时,x=m,∴直线与坐标轴的交点离原点的距离都等于m,即直线y=﹣x+m与坐标轴的围成等腰直角三角形,故②正确;∵直线y=nx+4n(n≠0)中,当y=0时,x=﹣4,∴直线与x轴交于定点(﹣4,0),故③正确;∵由图象可得,当x>﹣2时,直线y=nx+4n在直线y=﹣x+m的上方,∴x>﹣2是关于x的不等式﹣x+m<nx+4n的解集,故④错误.故答案为:④【点评】本题主要考查了一次函数的图象,解题时注意:利用一次函数求一元一次不等式的解集,从函数图象的角度看,就是确定直线y=kx+b在直线y=mx+n的上(或下)方部分所有的点的横坐标所构成的集合.三、解答题(应写出文字说明、证明过程或推演步骤.如果你觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.本大题共9小题,满分72分)17.已知:a为正整数,且a+=,求a﹣的值.【考点】二次根式的化简求值.【分析】首先利用完全平方公式将原式变形,再把已知数据代入即可.【解答】解:∵a为正整数,∴a>,又(a+)2﹣4=(a﹣)2,(a﹣)2=()2﹣4=9,则a﹣=3(负值舍去).【点评】此题主要考查了分式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.18.已知:一次函数待定系数k、b满足k=﹣2,求解析式.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件列出算式,分别求出k、b的值,得到答案.【解答】解:由已知可得,b﹣4≥0且4﹣b≥0,解得,b≥4且 b≤4,∴b=4∴k=﹣2∴y=﹣2x+4.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.19.如图,▱ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F,求证:OE=OF.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出OD=OB,DC∥AB,推出∠FDO=∠EBO,证出△DFO≌△BEO即可.【解答】证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,,∴△DFO≌△BEO(ASA),∴OE=OF.【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定的应用,关键是推出△DFO≌△BEO.20.某组织学生开展社会实践活动,调查某社区居民对消防知识的了解程度(A:特别熟悉,B:有所了解,C:不知道),在该社区随机抽取了100名居民进行问卷调查,将调查结果制成如图所示的统计图,根据统计图解答下列问题:(1)若该社区有居民900人,试估计对消防知识“特别熟悉”的居民人数;(2)该社区的管理人员有男、女各2名,若从中选2名参加消防知识培训,试用列表或画树状图的方法,求恰好选中一男一女的概率.【考点】列表法与树状图法;用样本估计总体;条形统计图.【分析】(1)根据条形统计图可以估算出该社区对消防知识“特别熟悉”的居民的人数;(2)根据题意可以写出相应的列表或树状图,从而可以求得恰好选中一男一女的概率.【解答】解:(1)在调查的居民中,对消防知识“特别熟悉”的居民所占的百分比为:×100%=25%,该社区对消防知识“特别熟悉”的居民估计有:900×25%=225(人),即该社区对消防知识“特别熟悉”的居民人数估计为225;(2)记A1、A2表示两个男性管理人员,B1,B2表示两个女性管理人员,列表或树状图如下:故恰好选中一男一女的概率为: =,即恰好选中一男一女的概率是.【点评】本题考查列表法与树状图法、条形统计图、用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,可以列出表格或写出树状图,求出所求问题的概率.21.关于x的方程x2﹣x+a=0有实根.(1)求a的取值范围;(2)设x1、x2是方程的两个实数根,且满足(x1+1)(x2+1)=﹣1,求实数a的值.【考点】根与系数的关系;根的判别式.【分析】(1)利用根的判别式得到△=1﹣4a=﹣4a+1≥0,然后解不等式即可.(2)利用根与系数的关系得到x1+x2=1,x1x2=a,再由(x1+1)(x2+1)=﹣1得到a+1+1=﹣1,然后解关于a的一次方程即可.【解答】解:(1)根据题意得△=1﹣4a=﹣4a+1≥0,解得a≤;(2)根据题意得x1+x2=1,x1x2=a,而(x1+1)(x2+1)=﹣1,即x1x2+x1+x2+1=﹣1,所以a+1+1=﹣1,解得a=﹣3.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了判别式的意义.22.已知某市企业用水量x(吨)与该月应交的水费y(元)之间的函数关系如图.(1)当x≥50时,求y关于x的函数关系式;(2)为鼓励企业节约用水,该市自1月开始对月用水量超过80吨的企业加收污水处理费,规定:若企业月用水量x超过80吨,则除按收费标准收取水费外,超过80吨部分每吨另加收元,求这个企业该月的用水量x与所交费用w的函数关系式.【考点】一次函数的应用.【分析】(1)设y关于x的函数关系式y=kx+b(k、b为常数,且k≠0),在函数图象上找出点的坐标利用待定系数法求出函数关系式,由此即可得出结论;(2)当0≤x<50时,在函数图象上找出点的坐标利用待定系数法求出函数关系式,再根据w与x的关系找出x>80时,w关于x的函数关系式,由此即可得出结论.【解答】解:(1)设y关于x的函数关系式y=kx+b(k、b为常数,且k≠0),∵直线y=kx+b经过点(50,200),(60,260),∴,解得:,∴当x≥50时,y关于x的函数关系式为y=6x﹣100.(2)当0≤x<50时,有,解得:,∴当0≤x<50时,y关于x的函数关系式为y=4x.当0≤x≤80时,w=y,当x>80时,w=6x﹣100+(x﹣80)=+2x﹣100.故这个企业该月的用水量x与所交费用w的函数关系式为w=.【点评】本题考查了一次函数的应用以及待定系数法求函数解析式,解题的关键是:(1)利用待定系数法求函数关系式;(2)分段找出w关于x的函数关系式.本题属于中档题,难度不大,在第2问中很多同学往往会忘记分段求w关于x的函数关系式,在今后的练习中应加以注意.23.正方形ABCD中,点G为BC上任意一点,DE⊥AG于E,BF∥DE交AG于F.(1)若点G为BC的中点,AB=4,FG=,求EF的长;(2)求证:AF﹣BF=EF.【考点】正方形的性质;全等三角形的判定与性质.【分析】(1)由正方形的在和已知条件易证△ABF≌△DAE,所以可得AE=BF,再利用勾股定理可求出AG的长,进而可求出EF的长;(2)由已知和(1)可知,当G为BC上任意一点时,始终存在△ABF≌△DAE,利用全等三角形的性质即可证明AF﹣BF=EF.【解答】解:(1)∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠ABF+∠BAF=90°,∵正方形ABCD,∴AB=AD,∠DAB=90°,∴∠DAE+∠BAF=90°,∴∠DAE=∠ABF,在△ABF和△DAE中.∴△ABF≌△DAE(AAS),∴AE=BF,又∵G为BC的中点,AB=4,FG=∴BG=2,AG=2,BF=,∴EF=(2)由已知和(1)可知,当G为BC上任意一点时,始终存在△ABF≌△DAE,∴AE=BF,∴AF﹣AE=EF=AF﹣BF.【点评】本题考查了全等三角形的判定与性质、正方形的性质以及勾股定理的运用,注意题目中相等线段的代替是解题关键.24.(10分)(春•房县期末)如图,Rt△ABO中,∠AOB=90°,对图形进行下列变换:①将△ABO沿AO对折,得到△ABD;②将△ABD绕点O旋转180°,得到△BCD.(1)画出图形并判断四边形ABCD是什么四边形;(2)若AO=2,BO=2,过O作任意一直线交AB于E、交CD于F,则S BOE+S△COF= 2(填写最后结果即可,不必写出解答过程).【考点】作图-旋转变换;翻折变换(折叠问题).【分析】(1)先以AO为轴作轴对称变换,再以点O为旋转中心,作出旋转后的图形,由轴对称变换及旋转变换的性质可知该四边形对角线互相平分且垂直,即可知该四边形为菱形;(2)根据对称性可知△AOE≌△COF,从而可得S BOE+S△COF=S△AOB,即可得答案.【解答】解:(1)如图所示:∵△AOD是由△AOB沿AO翻折得到,∴BO=DO,∵△BCD是由△ABD绕点O旋转得到,∴AO=CO,又∵∠AOB=90°,∴四边形ABCD是菱形;(2)∵Rt△ABO中,∠AOB=90°,AO=2,BO=2∴S△AOB=•AO•BO=×2×2=2,由已知和菱形的对称性可知,△AOE≌△COF∴S△BOE+S△COF=S△AOB=2,故答案为:2.【点评】本题主要考查轴对称变换、旋转变换及菱形的判定与性质,熟练掌握轴对称变换和旋转变换的性质是解题的关键.25.(12分)(春•房县期末)已知:如图,在平面直角坐标系xOy中,直线y=x+4与x轴交于A、与y轴交于 B,点C(a,b),其中a<b,且a、b是方程x2﹣7x+12=0的两根.(1)求直线AC的解析式;(2)点D为直线AC与y轴的交点,请求出△ABD和△BCD的周长差;(3)点E是线段AC上一动点,是否存在点E,使△COE为直角三角形?若存在,请求出点E的坐标;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)由a、b是方程x2﹣7x+12=0的两根,可求出a、b的值,从而得出点C的坐标,再由直线AB的解析式可求出点A的坐标,根据点A、C的坐标利用待定系数法即可求出直线AC的解析式;(2)由直线AB的解析式可求出点B的坐标,利用两点间的距离公式即可求出线段AB、BC的长度,根据A、B、O、C的坐标即可得出四边形ABCO为平行四边形,再结合平行四边形的性质以及三角形的周长公式即可得出结论;(3)假设存在,设点E的坐标为(m, m+2).根据两点间的距离公式求出线段OC、OE、CE的长度,结合直角三角形的性质分∠OEC=90°和∠COE=90°两种情况来考虑,再根据勾股定理即可得出关于m的方程,解方程即可求出m的值,将其代入点E的坐标中即可得出结论.【解答】解:(1)∵a、b是方程x2﹣7x+12=0的两根,且a<b,∴a=3,b=4,∴点C(3,4).令y=x+4中y=0,则x+4=0,解得:x=﹣3,点A(﹣3,0).设直线AC的解析式为y=kx+c(k±0),∴有,解得:,∴直线AC的解析式为y=x+2.(2)令y=x+4中x=0,则y=4,∴点B(0,4).∵A(﹣3,0),C(3,4),∴OA=3,OB=4,AB==5,BC=3.∵B(0,4),C(3,4),∴线段BC所在的直线解析式为y=4,∴BC∥x轴∥OA,∵BC=3=OA,∴四边形ABCO为平行四边形,∴AD=CD.C△ABD﹣C△BCD=(AB+BD+DA)﹣(BC+CD+DB)=AB﹣BC=5﹣3=2.(3)假设存在,设点E的坐标为(m, m+2).∵∠ACO<90°,∴△COE为直角三角形有两种情况,如图所示.∵O(0,0),C(3,4),E(m, m+2),∴OC=5,OE=,CE=.①当∠OEC=90°时,有OE2+CE2=OC2,即+=25,解得:m=﹣,或m=3(舍去),此时点E的坐标为(﹣,);②当∠COE=90°时,有OE2+OC2=CE2,即+25=,解得:m=﹣,此时点E的坐标为(﹣,).故存在点E,使△COE为直角三角形,点E的坐标为(﹣,)和(﹣,).【点评】本题考查了解一元二次方程、一次函数图象上点的坐标特征、待定系数法求函数解析式、平行四边形的判定及性质以及勾股定理,解题的关键是:(1利用待定系数法求函数解析式;(2)找出四边形ABCO为平行四边形;(3)分两种情况讨论,根据勾股定理列出关于m的方程.本题属于中档题,难度不大,解决该题型题目时,找出点的坐标,根据待定系数法求出函数解析式是关键.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。
天津市2020年〖人教版〗八年级数学下册期末复习试卷参考答案与试题解析创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、填空题(每小题3分,共24分)1.(3分)分式有意义的x的取值范围为x≠1 .考点:分式有意义的条件.3259693分析:分式有意义时,分母不等于零.解答:解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.点评:本题考查了分式有意义的条件.从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.2.(3分)已知实数x、y满足3x﹣5y﹦0,则﹦.考点:比例的性质.3259693分析:先由3x﹣5y﹦0,变形为3x=5y,再将乘积式化为比例式即可求出的值.解答:解:∵3x﹣5y﹦0,∴3x=5y,∴=.故答案为.点评:本题考查了比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.乘积式化为比例式是否正确,可以用比例的基本性质进行检验.3.(3分)一组数据2、3、2、4、6的极差是 4 .考点:极差.3259693分析:极差是指一组数据中最大数据与最小数据的差,由此计算即可.解答:解:这组数据的最大数为6,最小数为2,则极差=6﹣2=4;故答案为:4.点评:本题考查了极差的知识,属于基础题,关键是掌握极差是指一组数据中最大数据与最小数据的差.4.(3分)(•郴州)如图,在四边形ABCD中,已知AB=CD,再添加一个条件AD=BC (写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)考点:平行四边形的判定.3259693专题:开放型.分析:可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.解答:解:根据平行四边形的判定,可再添加一个条件:AD=BC故答案为AD=BC(答案不唯一).点评:此题主要考查平行四边形的判定.是一个开放条件的题目,熟练掌握判定定理是解题的关键.5.(3分)如图,已知矩形ABOC的一个顶点A在反比例函数y﹦的图象上,OB在x轴上,OC在y轴上,且S矩形ABOC﹦4,则该反比例函数的解析式为y=﹣.考点:反比例函数系数k的几何意义.3259693专题:计算题.分析:直接根据反比例函数y=(k≠0)系数k的几何意义求解.解答:解:∵OB在x轴上,OC在y轴上,S矩形ABOC﹦4,∴|k|=4,∵k<0,∴k=﹣4,∴反比例函数解析式为y=﹣.故答案为y=﹣.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.6.(3分)如图,等腰直角三角形OBA的直角顶点B在双曲线y﹦上,斜边OA在x轴上,则点A的坐标为(,0).考点:反比例函数图象上点的坐标特征;等腰直角三角形.3259693分析:首先过B作BE⊥AO,根据等腰直角三角形的性质可得∠BOA﹣45°,AO=2OE,再设B(m,m)进而得到m2=6,解可得m的值,进而得到A点坐标.解答:解:过B作BE⊥AO,∵△AOB是等腰直角三角形,∴∠BOA﹣45°,AO=2OE,∵BE⊥AO,∴∠OBE=45°,∴OE=OB,∴设B(m,m)∵B点在双曲线y﹦上,∴m2=6,m=±,∵B点在第一象限,∴B(,),∴AO=2OE=2,故答案为:(,0)点评:此题主要考查了反比例函数图象上点的坐标特点,以及等腰三角形的性质,关键是掌握反比例函数解析式图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;7.(3分)已知等腰梯形的上底为2,下底为4,腰长为2,则该等腰梯形的面积为3.考点:等腰梯形的性质.3259693分析:分别过A,D作AE⊥BC,DF⊥BC,则四边形ADFE是矩形,根据已知可求得CF的长,再根据勾股定理求得DF的长,从而利用梯形的面积公式求解即可.解答:解:如图,AD=2,BC=4,CD=2,分别过A,D作AE⊥BC,DF⊥BC,则四边形ADFE是矩形,∴AD=EF,BE=CF=(BC﹣AD)=1.在直角△CDF中,DF==∴S梯形ABCD=(2+4)=3,故答案为:.点评:本题考查梯形面积的求法,难度不大,关键是利用勾股定理求出梯形的高.8.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC 的面积为10 .考点:勾股定理;全等三角形的判定与性质.3259693专题:计算题.分析:因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.解答:解:易证△AFD′≌△CFB ,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为 10.点评:本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x 是解题的关键.二、选择题(每小题3分,共24分)9.(3分)下列运算正确的是()A.﹣22﹦4 B.(﹣)﹣2﹦C.()2=D.﹣(π﹣3)0=1考点:分式的乘除法;有理数的乘方;零指数幂;负整数指数幂.3259693专题:计算题.分析:A、原式表示两个2乘积的相反数,计算得到结果,即可做出判断;B、原式利用负指数幂法则计算得到结果,即可做出判断;C、原式利用分式的乘方法则计算得到结果,即可做出判断;D、原式利用零指数幂法则计算得到结果,即可做出判断.解答:解:A、﹣22=﹣4,本选项错误;B、(﹣)﹣2=4,本选项错误;C、()2=,本选项正确;D、﹣(π﹣3)0=﹣1,本选项错误,故选C点评:此题考查了分式的乘除法,有理数的乘方,零指数、负指数幂法则,熟练掌握运算法则是解本题的关键.10.(3分)若分式的值为0,则x的值为()A.2B.﹣2 C.2或﹣2 D.2或3 考点:分式的值为零的条件.3259693分析:分式的值为零时:分子等于零,且分母不等于零.解答:解:根据题意,得|x|﹣2=0,且x+2≠0,解得,x=2.故选A.点评:本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.(3分)在△ABC中,三边长满足BC2+AC2=AB2,且∠A=30°,AB=8,则BC=()A.4B.C.8D.不确定考点:勾股定理的逆定理;含30度角的直角三角形.3259693分析:先由勾股定理的逆定理判断△ABC是直角三角形,∠C=90°,再根据30°角所对的直角边等于斜边的一半即可求出BC的长度.解答:解:∵BC2+AC2=AB2,∴∠C=90°,又∵∠A=30°,AB=8,∴BC=AB=4.故选A.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.同时考查了含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.12.(3分)函数y=mx﹣m 与在同一直角坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.3259693分析:此题分两种情况进行讨论:m>0时,m<0时,先根据反比例函数的性质判断出双曲线所在象限,再根据一次函数的性质一次函数图象所在象限,即可选出答案.解答:解:当m>0时,双曲线在第一、三象限,一次函数y=mx﹣m图象经过第一、三、四象限;当m<0时,双曲线在第二、四象限,一次函数y=mx﹣m图象经过第一、二、四象限故选C.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,重点是注意系数m的取值.13.(3分)下列四种叙述正确的个数有()①对角线互相平分、相等且垂直的四边形是正方形;②一组邻边相等的矩形是正方形;③对角线相等的菱形是正方形;④一个内角是直角的菱形是正方形.A.1个B.2个C.3个D.4个考点:正方形的判定.3259693分析:根据正方形的判定方法对各个条件进行分析,从而得到答案.解答:解:①对角线互相平分、相等且垂直的四边形是正方形,正确;②一组邻边相等的矩形是正方形,正确;③对角线相等的菱形是正方形,正确;④一个内角是直角的菱形是正方形,正确.故选D.点评:本题考查了正方形的判定,判定一个四边形是正方形的一般方法是:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.14.(3分)(•江苏)某商场试销一种新款衬衫,一周内销售情况如下表所示:商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来说最有意义的是()型号(厘米)38 39 40 41 42 43数量(件)25 30 36 50 28 8A.平均数B.众数C.中位数D.方差考点:众数.3259693专题:图表型.分析:商场经理要了解哪些型号最畅销,所关心的即为众数.解答:解:根据题意,知:对商场经理来说,最有意义的是各种型号的衬衫的销售数量,即众数.故选B.点评:本题主要考查数据集中趋势中的平均数、众数、中位数在实际问题中的正确应用.15.(3分)如图,是一种饮料的包装盒,长、宽、高分别为4cm、3cm、12cm,现有一长为16cm的吸管插入到盒的底部,则吸管露在盒外的部分h的取值范围为()A.3<h<4 B.3≤h≤4 C.2≤h≤4 D.h=4考点:勾股定理的应用.3259693分析:根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时露在杯口外的长度最长为16﹣12=4cm;最短时与底面对角线和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.解答:解:①当吸管放进杯里垂直于底面时露在杯口外的长度最长,最长为16﹣8=8cm;②露出部分最短时与底面对角线和高正好组成直角三角形,底面对角线直径为5cm,高为12cm,由勾股定理可得杯里面管长为=13cm,则露在杯口外的长度最长为16﹣13=3cm;则可得露在杯口外的长度在3cm和4cm范围变化.故选B.点评:本题考查了矩形中勾股定理的运用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.16.(3分)如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.196考点:二元一次方程组的应用.3259693专题:应用题.分等量关系为:5个小矩形的宽等于2个小矩形的长;6个小矩形的宽加一个小矩形的长等于大长方形析:周长的一半.解答:解:设小长方形的长、宽分别为x、y,依题意得:,解得:,则矩形ABCD的面积为7×2×5=70.故选C.点评:考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.三、解答题17.(10分)(1)化简:•(2)解方程:=.考点:解分式方程;分式的乘除法.3259693专题:计算题.分析:(1)原式分子分母分解因式后,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=•=;(2)去分母得:7x=5x﹣10,解得:x=﹣5,经检验x=﹣5是分式方程的解.点评:此题考查了解分式方程,以及分式的乘除法,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.(8分)某厂从开始投入技改资金来降低产品成本,设投入技改资金为x万元,产品成本为y万元/件,观察表中规律:…x 2.5 3 4 4.5 …y 3.6 3 2.25 2 …(1)若每年均满足此规律,求y与x的函数关系式;(2)在(1)的条件下,若投入技改资金5万元,预计生产成本每件比降低多少万元?考点:反比例函数的应用.3259693分析:(1)根据实际题意和数据特点分情况求解,根据排除法可知其为反比例函数,利用待定系数法求解即可;(2)直接把x=5万元代入函数解析式即可求解.解答:解:(1)由表中规律可发现xy=9,所以y=;(2)当x=5时,y==1.82﹣1.8=0.2万元,∴生产成本每件比降低0.2万元.点评:主要考查了反比例函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.要注意用排除法确定函数的类型.19.(8分)如图,四边形ABCD是平行四边形,点E、F均在对角线AC上,且∠DEF=∠BFE,求证:四边形BEDF为平行四边形.考点:平行四边形的判定与性质.3259693专题:证明题.分析:由平行线的判定定理“内错角相等,两直线平行”证得DE∥BF.通过全等三角形△AED≌△CFB (AAS)的对应边相等推知,DE=BF解答:证明:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC∴∠DAE=∠BCF.又∵∠DEF=∠BFE.∴∠AED=∠CFB,DE∥BF.在△AED与△CFB中,∴△AED≌△CFB(AAS).∴DE=BF.∴四边形BEDF为平行四边形.点评:本题考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.20.(8分)张明4小时清点完一批图书的一半,李强加入清点另一半图书的工作,两人合作1小时清点完另一半图书.如果李强单独清点这批图书需要几小时?考点:分式方程的应用.3259693分析:根据关键描述语是:“张明4小时清点完一批图书的一半”;等量关系为:“两人合作1小时清点完另一半图书”,依此列出方程求解即可.解答:解:设李强单独清点这批图书需要x小时,根据题意,得+=,解得:x=,经检验x=是原方程的根.答:李强单独清点这批图书需要小时.点评: 本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.21.(10分)(•河北)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表: 员工 管理人员 普通工作人员 人员结构总经理部门经理科研人员 销售人员 高级技工 中级技工勤杂工员工数(名) 1 3 2 324 1每人月工资(元)2100084002025 2200 1800 1600 950请你根据上述内容,解答下列问题: (1)该公司“高级技工”有名;(2)所有员工月工资的平均数x 为2500元,中位数为元,众数为元;(3)小张到这家公司应聘普通工作人员.请你回答右图中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资(结果保留整数),并判断能否反映该公司员工的月工资实际水平. 考点: 中位数;算术平均数;众数.3259693 专题: 应用题;压轴题;图表型.分析: 此题文字比较多,解题时首先要理解题意,掌握众数、中位数和平均数的意义.首先求出工资数的中位数,众数,进行判断.解答: 解:(1)该公司“高级技工”的人数=50﹣1﹣3﹣2﹣3﹣24﹣1=16(人);(2)工资数从小到大排列,第25和第26分别是:1600元和1800元,因而中位数是1700元;在这些数中1600元出现的次数最多,因而众数是1600元;(3)这个经理的介绍不能反映该公司员工的月工资实际水平.用1700元或1600元来介绍更合理些.(说明:该问中只要写对其中一个数据或相应统计量(中位数或众数)也得分)(4)≈1713(元).能反映该公司员工的月工资实际水平.点评:本题考查众数、平均数等统计知识,考查统计思想在实际生活中应用,属较基础的题目.统计知识与人们的日常生活联系密切,中考以统计量为题眼进行试题设置时,重点是结合学生熟悉的现实生活中实际问题进行定量(计算统计量)和定性(估计、判断和预测)分析,用以考查同学们对统计基本思想的理解和用数学的意识.22.(8分)(•苏州)台球是一项高雅的体育运动.其中包含了许多物理学、几何学知识.图①是一个台球桌,目标球F与本球E之间有一个G球阻挡(1)击球者想通过击打E球先撞击球台的AB边.经过一次反弹后再撞击F球.他应将E球打到AB边上的哪一点,请在图①中用尺规作出这一点H,并作出E球的运行路线;(不写画法.保留作图痕迹)(2)如图②,现以D为原点,建立直角坐标系,记A(0,4),C(8,0),E(4,3),F(7,1),求E球接刚才方式运行到F球的路线长度.(忽略球的大小)考点:作图-轴对称变换.3259693专题:计算题;作图题.分析:入射角等于反射角,找出E点关于AB的对称点E1,连接E1F交AB于H根据对称图形的特点及对顶角相等得出∠BHF=∠E1HA=∠EHA,求出E1N及NF的长运用勾股定理求出E1F的长,因对应边EH=E1H,E1H即为所求.解答:解:(1)画出正确的图形(可作点E关于直线AB的对称点E1,连接E1F,E1F与AB交于点H,球E的运动路线就是EH→HF)有正确的尺规作图痕迹,过点F作AB的平行线交E1E的延长线于点N,由题意可知,E1N=4,FN=3;(2)在Rt△FNE1中,E1F=,∵点E1是点E关于直线AB的对称点,∴EH=E1H,∴EH+HF=E1F=5,∴E球运行到F球的路线长度为5.点评:本题考查应用数学知识解决生活中问题的能力,学生应该根据题意联系所学,运用相关的数学知识,合理构建数学模型23.(8分)如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF (1)证明四边形ADEF是平行四边形.(2)当△ABC满足条件∠BAC=150°时,四边形ADEF为矩形.(3)当△ABC满足条件∠BAC=60°时,四边形ADEF不存在.(4)当△ABC满足条件AB=AC且∠BAC≠60°(或AB=AC≠BC)时,四边形ADEF为菱形.考点:矩形的判定;全等三角形的判定与性质;等边三角形的性质;平行四边形的判定;菱形的判定.3259693分析:(1)可先证明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根据两组对边分别相等的四边形是平行四边形,可证四边形ADEF是平行四边形;(2)如四边形ADEF是矩形,则∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°时,四边形ADEF是矩形;(3)根据∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在;(4)利用菱形的性质与判定得出即可.解答:证明:(1)∵△ABD,△BCE都是等边三角形,∴∠DBE=∠ABC=60°﹣∠ABE,AB=BD,BC=BE.在△ABC和△DBE中,∴△ABC≌△DBE(SAS).∴DE=AC.又∵AC=AF,∴DE=AF.同理可得EF=AD.∴四边形ADEF是平行四边形.(2)∵四边形ADEF是平行四边形,∴当∠DAF=90°时,四边形ADEF是矩形,∴∠FAD=90°.∴∠BAC=360°﹣∠DAF﹣∠DAB﹣∠FAC=360°﹣90°﹣60°﹣60°=150°.则当∠BAC=150°时,四边形ADEF是矩形;故答案为:∠BAC=150°;(3)当∠BAC=60°时,∠DAF=180°,此时D、A、F三点在同一条直线上,以A,D,E,F为顶点的四边形就不存在;故答案为:∠BAC=60°;(4)当AB=AC且∠BAC≠60°时,四边形ADEF是菱形,理由是:由(1)知:AD=AB=EF,AC=DE=AF,∵AC=AB,∴AD=AF,∵四边形ADEF是平行四边形,AD=AF,∴平行四边形ADEF是菱形.故答案为:AB=AC且∠BAC≠60°(或AB=AC≠BC).点评:本题考查了等边三角形的性质及三角形内角和为180°、平行四边形和矩形的判定等知识,熟练掌握相关的定理是解题关键.24.(12分)如图,已知直线y=x,与双曲线y=(k>0)交于A、B两点,且A点的横坐标为4.(1)求k的值及B点的坐标;(2)若双曲线y=(k>0)上一点C的纵坐标为2,求△AOC的面积;(3)在x轴上找一点P,使以点O、C、P为顶点的三角形是等腰三角形,试写出P点的坐标.考点:反比例函数综合题.3259693专题:综合题.分析:(1)由于A点的横坐标为4,所以把x=4代入y=x得y=1,得到A点坐标为(4,1),再把A点坐标代入•反比例函数解析式可求出k的值;然后利用正比例函数与反比例函数的交点关于原点对称确定B点坐标;(2)作CD⊥x轴于D,AE⊥x轴于E,先确定C点坐标为(2,2),根据反比例函数的比例系数的几何意义得到S△OCD=S△OAE=×4=2,再利用S△OCD+S梯形CDEA=S△OAE+S△AOC,得到S△AOC=S梯形CDEA,然后根据梯形的面积公式进行计算;(3)分类讨论:当OC=OP时,△OCP是等腰三角形,即P点落在P1或P2的位置;当CO=CP时,△OCP是等腰三角形,即P点落在E点的位置;当PO=PC时,△OCP是等腰三角形,即P点落在D 点的位置,然后根据x轴上点的坐标特征写出满足条件的P点坐标.解答:解:(1)把x=4代入y=x得y=1,∴A点坐标为(4,1),把A(4,1)代入y=得k=4×1=4,∵直线y=x与双曲线y=的交点关于原点对称,∴B点坐标为(﹣4,﹣1);(2)作CD⊥x轴于D,AE⊥x轴于E,如图,把x=2代入y=得y=2,∴C点坐标为(2,2),∴S△OCD=S△OAE=×4=2,∵S△OCD+S梯形CDEA=S△OAE+S△AOC,∴S△AOC=(1+2)(4﹣2)=3;(3)∵C(2,2)∴OC=2,当OC=OP时,△OCP是等腰三角形,即P点落在P1或P2的位置,此时P点坐标为(﹣2,0)或(2,0);当CO=CP时,△OCP是等腰三角形,即P点落在E点的位置,此时P点坐标为(4,0);当PO=PC时,△OCP是等腰三角形,即P点落在D点的位置,此时P点坐标为(2,0),∴满足条件的P点坐标为(,0)、(﹣,0)、(4,O)、(2,0).点评:本题考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、反比例函数的比例系数的几何意义和等腰三角形的判定与性质.创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校。
天津市2020年〖人教版〗八年级数学下册期末复习试卷参考答案与试题解析创作人:百里公地创作日期:202X.04.01审核人:北堂址重创作单位:博恒中英学校一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)(•江津区)下列式子是分式的是()A.B.C.D.考分式的定义.点:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.分析:解解:∵,+y,的分母中均不含有字母,因此它们是整式,而不是分式.答:分母中含有字母,因此是分式.故选B.点本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.评:2.(2分)下列各分式中,最简分式是()A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;B、=m﹣n,故本选项错误;C 、=,故本选项错误;D 、=,故本选项错误.故选A、点评:本题考查了最简分式的知识,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.(2分)解分式方程+=,下列四步中,错误的一步是()A.方程两边分式的最简公分母是x2﹣1B.方程两边都乘以(x2﹣1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程得:x=1D.原方程的解为x=1考点:解分式方程.专题:计算题.分析:观察可得方程最简公分母为(x2﹣1).去分母,转化为整式方程求解.结果要检验.解答:解:分式方程两边乘以最简公分母(x+1)(x﹣1),可得2(x﹣1)+3(x+1)=6,解得x=1,当x=1时,代入x2﹣1=0,故x=1是增根.原方程无解.故选D.点评:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.4.(2分)(•青海)反比例函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限考反比例函数的性质.点:根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.分析:解解:y=﹣中k=﹣2<0,答:根据反比例函数的性质,图象位于第二、四象限.故选D.点本题考查了反比例函数的性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分评:别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.5.(2分)(•铜仁地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2 C.4D.﹣4考点:反比例函数系数k的几何意义.专题:数形结合.分析:根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.解答:解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.点评:本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.6.(2分)(•闵行区三模)一组数据有m个x1,n个x2,p个x3,那么这组数据的平均数为()A.B.C.D.考点:加权平均数.分析:只要求出所有数据的总和除以出现的次数,即可得出加权平均数.解答:解:依题意得,这组数据的平均数为.故选D.点评:本题考查了加权平均数的定义.平均数=总数÷总个数.7.(2分)(•黔西南州)已知甲、乙两组数据的平均数相同,甲组数据的方差=,乙组数据的方差=,则()A.甲组数据比乙组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据与乙组数据的波动一样大D.甲乙两组数据的波动不能比较考点:方差.分析:根据方差的定义,方差越小数据越稳定,进而得出答案即可.解答:解:S2甲=<S 2乙=.得出乙组数据比甲组数据的波动大.故选:B.点评:本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(2分)小明用火柴棒摆直角三角形,已知他摆两条直角边分别用了6根和8根火柴棒,他摆完这个直角三角形共用火柴棒()A.20根B.14根C.24根D.30根考点:勾股定理.分析:根据勾股定理即可求得斜边需要的火柴棒的数量.再由三角形的周长公式来求摆完这个直角三角形共用火柴棒的数量.解答:解:∵两直角边分别用了6根、8根长度相同的火柴棒∴由勾股定理,得到斜边需用:=10(根),∴他摆完这个直角三角形共用火柴棒是:6+8+10=24.故选C.点评:本题考查勾股定理的应用,是基础知识比较简单.9.(2分)(•宜宾)如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.6考点:翻折变换(折叠问题);勾股定理.专题:压轴题;探究型.分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解答:解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.点评:本题考查的是翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.10.(2分)下列性质中正方形具有而矩形没有的是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.四个角都是直角考点:正方形的性质;矩形的性质.分析:根据矩形是特殊的正方形,因而矩形具有的性质一定是正方形具有的性质,据此即可作出判断.解答:解:A、B、D都是矩形的性质,正方形是特殊的矩形,矩形的性质一定是正方形的性质,因而A、B、C错误;正方形的对角线互相垂直,但矩形的对角线不一定互相垂直,故C正确.故选C.点评:本题主要考查了正方形与矩形的性质,正确记忆两个图形的性质,理解两者之间的关系是关键.11.(2分)(•扬州)在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中四边形的三个角都为直角考点:矩形的判定.专题:方案型.分析:根据矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.解答:解:A、对角线是否相互平分,能判定平行四边形;B、两组对边是否分别相等,能判定平行四边形;C、一组对角是否都为直角,不能判定形状;D、其中四边形中三个角都为直角,能判定矩形.故选D.点评:本题考查的是矩形的判定定理,难度简单.12.(2分)(•桂林)如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变D.线段EF的长不能确定考点:三角形中位线定理.专题:压轴题.分析:因为R不动,所以AR不变.根据中位线定理,EF不变.解答:解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选C.点评:本题考查了三角形的中位线定理,只要三角形的边AR不变,则对应的中位线的长度就不变.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.(3分)分式,,的最简公分母为3x(x+1)(x﹣1)或3x(x2﹣1);;考点:最简公分母.分析:因为三个分式的分母分别含有3x,(x﹣1),(x2﹣1),所以最简公分母为3x(x+1)(x﹣1)或3x(x2﹣1).解答:解:三个分式的分母分别为3x,(x﹣1),(x2﹣1),所以分式的最简公分母为3x(x+1)(x﹣1)或3x(x2﹣1).点评:分式的加减运算中,如果是同分母分式,那么分母不变,把分子直接相加减即可;如果是异分母分式,则必须先通分,把异分母分式化为同分母分式,然后再相加减.14.(3分)有一种病毒的直径为0.00000201米,用科学记数法可表示为 2.01×10﹣6米.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00000201=2.01×10﹣6,故答案为:2.01×10﹣6.点评:本题主要考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.15.(3分)若分式方程无解,则m的值为 1 .考点:分式方程的解.专题:计算题.分析:关键是理解方程无解即是分母为0,由此可得x=1,再按此进行计算.解答:解:关于x的分式方无解即是x=1,将方程可转化为x=m,当x=1时,m=1.故答案为1.点评:本题是一道基础题,考查了分式方程的解,要熟练掌握.16.(3分)某班一组男生参加体育测试,引体向上成绩(单位:个)如下:6,9,11,13,11,7,10,8,12.这组男生成绩的众数是11 ;中位数是10 .考点:众数;中位数.分析:一组数据按照从小到大的顺序进行排列,排在中间位置上的数叫作这组数据的中位数,若这组数据的个数为偶数个,那么中间两个数的平均数就是这组数据的中位数,在这组数据中出现次数最多的数据叫作这组数据的众数.解答:解:11出现的次数最多,则这组数据的众数是:11,按照从小到大的顺序排列为:6,7,8,9,10,11,11,12,13,最中间的是10,所以这组数据的中位数是:10.故答案为:11;10.点评:此题考查了众数与中位数的意义,熟练掌握相关定义是解题关键.17.(3分)已知反比例函数y=的图象上有两点A(1,y1)、B(2,y2),则y1> y2.(填“>”或“=”或“<”)考点:反比例函数图象上点的坐标特征.分析:直接把点A(1,y1)、B(2,y2)代入反比例函数y=,求出y1、y2的值,再比较出其大小即可.解答:解:∵点A(1,y1)、B(2,y2)在反比例函数y=的图象上,∴y1==2;y2==1,∴y1>y2.故答案为:>.点评:本题考查的是反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.18.(3分)(•潍坊)已知边长为a的正三角形ABC,两顶点A、B分别在平面直角坐标系的x轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则OC的长的最大值是.考点:坐标与图形性质;等边三角形的性质;勾股定理.专题:压轴题.分析:根据题意可知,当AB的中点D、O、C三点共线时OC最长,再结合等边三角形的性质即可得出本题的答案.解答:解:取AB中点D,连OD,DC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值是OD+CD.∵△ABC为等边三角形,∴AB=BC=AC=a,根据三角形的性质可知:OD=a,CD==a.∴OC= a点评:本题考查的是等边三角形的性质;要注意直角三角形斜边中点到三顶点距离相等,即等于斜边的一半.19.(3分)(•烟台)如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是17 cm.考点:菱形的性质;勾股定理.专题:计算题;压轴题.分析:画出图形,设菱形的边长为x,根据勾股定理求出周长即可.解答:解:当两张纸条如图所示放置时,菱形周长最大,设这时菱形的边长为xcm,在Rt△ABC中,由勾股定理:x2=(8﹣x)2+22,解得:x=,∴4x=17,即菱形的最大周长为17cm.故答案为17.点评:本题的解答关键是怎样放置纸条使得到的菱形的周长最大,然后根据图形列方程.20.(3分)附加题:观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…请你写出有以上规律的第⑤组勾股数:11,60,61 .考点:勾股定理的逆定理;勾股数.专题:规律型.分析:勾股定理和了解数的规律变化是解题关键.解答:解:从上边可以发现第一个数是奇数,且逐步递增2,故第5组第一个数是11,又发现第二、第三个数相差为一,故设第二个数为x,则第三个数为x+1,根据勾股定理得:112+x2=(x+1)2,解得x=60,则得第5组数是:11、60、61.故答案为:11、60、61.点评:本题考查了勾股数的概念也是找规律题,发现第一个数是从3,5,7,9,…的奇数.三、解答题(共72分.解答应写出文字说明、证明过程或演算步骤)21.(8分)计算或化简(1)计算:;(2)先化简,再求值:,其中x=2.考点:分式的化简求值;分式的加减法.分析:(1)利用同分母的分式的减法法则计算;(2)首先对括号内的分式进行同分相减,然后进行乘法运算即可.解答:解:(1)原式===﹣(x+y);(2)原式=•=•=2x+4,当x=2时,原式=4+4=8.点评:考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.22.(8分)解方程(1)(2).考点:解分式方程.分析:(1)、(2)先去分母,化分式方程为整式方程,然后解整式方程,注意分式方程需要验根.解答:解:(1)由原方程,得1﹣x﹣6+3x=﹣1,即2x=4,解得x=2.经检验x=2是增根.所以,原方程无解.(2)由原方程,得7(x﹣1)+(x+1)=6x,即2x=6,解得x=3.经检验x=3是原方程的根.所以,原方程的解为:x=3.点评:本题考查了解分式方程的解法.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.23.(10分)甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15乙厂:6,6,8,8,8,9,10,12,14,15丙厂:4,4,4,6,7,9,13,15,16,16请回答下列问题:(1)分别求出以上三组数据的平均数、众数、中位数;(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数;(3)如果你是顾客,宜选购哪家工厂的产品?为什么?考点:中位数;算术平均数;众数.专题:应用题.分析:(1)平均数就是把这组数据加起来的和除以这组数据的总数,众数就是一堆数中出现次数最多的数,中位数,就是一组数按从小到大的顺序排列,中间位置的那个数,如果有偶数个数,那就是中间的两个数的平均数;(2)一组数据的平均数、众数、中位数从不同角度表示这种数据集中趋势.由(1)的结果容易回答(2),甲厂、乙厂、丙厂,分别利用了平均数、众数、中位数进行广告推销,顾客在选购产品时,一般以平均数为依据.(3)根据平均数大的进行选择.解答:解:(1)甲厂:平均数为(4+5+5+5+5+7+9+12+13+15)=8,众数为5,中位数为6;乙厂:平均数为(6+6+8+8+8+9+10+12+14+15)=9.6,众数为8,中位数为8.5;丙厂:平均数为(4+4+4+6+7+9+13+15+16+16)=9.4,众数为4,中位数为8;(2)甲厂用的是平均数,乙厂用的是众数,丙厂用的是中位数;(3)顾客在选购产品时,一般以平均数为依据,选平均数大的厂家的产品,因此应选乙厂的产品.点评:本题是平均数、众数、中位数在实际生活中的应用,选取以哪个数据为主要结合它们的定义来考虑.24.(10分)(•建邺区一模)如图,已知点E,C在线段BF上,BE=EC=CF,AB∥DE,∠ACB=∠F.(1)求证:△ABC≌△DEF;(2)试判断:四边形AECD的形状,并证明你的结论.考点:平行四边形的判定;全等三角形的判定与性质;三角形中位线定理.分析:(1)根据平行线得出∠B=∠DEF,求出BC=EF,根据ASA推出两三角形全等即可;(2)根据全等得出AC=DF,推出AC∥DF,得出平行四边形ACFD,推出AD∥CF,MAD=CF,推出AD=CE,AD∥CE,根据平行四边形的判定推出即可.解答:证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=EC=CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.(2)四边形AECD的形状是平行四边形,证明:∵△ABC≌△DEF,∴AC=DF,∵∠ACB=∠F,∴AC∥DF,∴四边形ACFD是平行四边形,∴AD∥CF,AD=CF,∵EC=CF,∴AD∥EC,AD=CE,∴四边形AECD是平行四边形.点评:本题考查了平行线的性质和判定,平行四边形的性质和判定,全等三角形的判定和性质的应用,主要考查学生的推理能力.25.(12分)(•梧州)由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工程所需时间比是3:2,两队合做6天可以完成.(1)求两队单独完成此项工程各需多少天?(2)此项工程由甲、乙两队合做6天完成任务后,学校付给他们20 000元报酬,若按各自完成的工程量分配这笔钱,问甲、乙两队各得到多少元?考点:分式方程的应用.专题:应用题.分析:(1)求工效,时间明显,一定是根据工作总量来列等量关系的.等量关系为:甲6天的工作总量+乙6天的工作总量=1;(2)让20000×各自的工作量即可.解答:解:(1)设甲队单独完成此项工程需x天,(1分)由题意得(3分)解之得x=15(4分)经检验,x=15是原方程的解.(5分)答:甲队单独完成此项工程需15天,乙队单独完成此项工程需15×=10(天)(6分)(2)甲队所得报酬:20000××6=8000(元)(8分)乙队所得报酬:20000××6=12000(元)(10分)点评:应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.(12分)如图,一次函数y=ax+b的图象与反比例函数的图象交于C,D两点,与坐标轴交于A、B两点,连结OC,OD(O是坐标原点).(1)利用图中条件,求反比例函数的解析式和m的值;(2)利用图中条件,求出一次函数的解析式;(3)如图,写出当x取何值时,一次函数值小于反比例函数值?(4)坐标平面内是否存在点P,使以O、D、P、C为顶点的四边形是平行四边形?若存在,直接写出P点的坐标;若不存在,说明理由.考点:反比例函数综合题.分析:(1)由一次函数y=ax+b的图象与反比例函数的图象交于C,D两点,利用待定系数法即可求得此反比例函数的解析式,然后将点D(1,m)代入,即可求得m的值;(2)由点C(1,4),D(4,1),利用待定系数法即可求得此一次函数的解析式;(3)结合图象即可求得当x取何值时,一次函数值小于反比例函数值;(4)首先可求得直线OC与OD的解析式,然后由O、D、P、C为顶点的四边形是平行四边形,根据平行线的性质,即可求得直线P1P2的解析式为:y=﹣x①,直线P1P3的解析式为:y=4x﹣15②,直线P2P3的解析式为:y=x+③,然后可求得P点的坐标.解答:解:(1)∵一次函数y=ax+b的图象与反比例函数的图象交于C,D两点,且点C(1,4),∴k=xy=1×4=4,∴反比例函数的解析式为:y=;当x=4时,m=y==1,∴m=1;(2)∵C(1,4),D(4,1),∴,解得:,∴一次函数的解析式为:y=﹣x+5;(3)结合图象的可得:当0<x<1或x>4是,一次函数值小于反比例函数值;(4)存在.如图,∵点C的坐标为:(1,4),点D的坐标为;(4,1),∴直线OC的解析式为:y=4x,直线OD的解析式为:y=x,∵使以O、D、P、C为顶点的四边形是平行四边形,∴直线P1P2的解析式为:y=﹣x①,直线P1P3的解析式为:y=4x﹣15②,直线P2P3的解析式为:y=x+③,联立①②得:,联立①③得:,联立②③得:,∴P1(3,﹣3);P2(﹣3,3);P3(5,5).点评:此题考查了待定系数法求函数的解析式、一次函数与反比例函数交点问题以及平行四边形的性质.此题难度较大,注意掌握数形结合思想与方程思想的应用.27.(12分)在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,交∠CBE的平分线于点N.(1)写出点C的坐标;(2)求证:MD=MN;(3)连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,其中只有一个结论是正确的,请你指出正确的结论,并给出证明.考点:正方形的性质;坐标与图形性质;全等三角形的判定与性质;角平分线的性质.专题:动点型.分析:(1)根据四边形OBCD是正方形所以点C的坐标应该是C(2,2);(2)可通过构建全等三角形来求解.在OD上取OH=OM,通过证三角形DHM和MBN全等来得出DM=MN.(3)本题也是通过构建全等三角形来求解的.在BO延长线上取OA=CF,通过三角形OAD,FDC和三角形DAM,DMF这两对全等三角形来得出FM和OM,CF的关系,从而得出FM是否是定值.然后再看∠FMN是否与∠NME相等.解答:解:(1)C(2,2);(2)在OD上取OH=OM,连接HM,∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,∴∠DHM=180﹣45=135°,∵NB平分∠CBE,∴∠NBE=45°,∴∠NBM=180﹣45=135°,∴∠DHM=∠NBM,∵∠DMN=90°,∴∠DMO+∠NMB=90°,∵∠HDM+∠DMO=90°,∴∠HDM=∠NMB,在△DHM和△MBN中,∴△DHM≌△MBN(ASA),∴DM=MN.(3)MN平分∠FMB成立.证明如下:在BO延长线上取OA=CF,可证△DOA≌△DCF,△DMA≌△DMF,FM=MA=OM+CF(不为定值),∠DFM=∠DAM=∠DFC,过M作MP⊥DN于P,则∠FMP=∠CDF,由(2)可知∠NMF+∠FMP=∠PMN=45°,∠NMB=∠MDO,∠MDO+∠CDF=45°,进一步得∠NMB=∠NMF,即MN平分∠FMB.点评:本题主要考查了正方形的性质,全等三角形的判定等知识点,根据全等三角形得出角或边相等是解题的关键.。
天津市和平区2020年初二下期末复习检测数学试题 一、选择题(每题只有一个答案正确) 1.如图, 在ABC 中,3AB =,AC 4=,5BC =,P 为边BC 上一个动点,PE AB ⊥于点E ,PF 上AC 于点F ,M 为EF 的中点,则AM 的最小值是( )A .65B .54C .52D .452.下列式子中属于最简二次根式的是( )A .17B .8C .51D .0.2 3.如图,矩形ABCD 中,对角线AC 、BD 交于点O .若30ACB ∠=︒,10AC =,则AB 的长为( )A .6B .5C .4D .34.已知一个多边形的内角和是540︒,则这个多边形是( )A .四边形B .五边形C .六边形D .七边形5.点A 在直线35y x =-上,则点A 不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,在平行四边形ABCD 中,∠BAC=78°,∠ACB=38°,则∠D 的度数是( )A .52°B .64°C .78°D .38°7.甲、乙两人各射击次,甲所中的环数是,,,,,,且甲所中的环数的平均数是,众数是;乙所中的环数的平均数是,方差是4.根据以上数据,对甲,乙射击成绩的正确判断是( )A .甲射击成绩比乙稳定B .乙射击成绩比甲稳定C .甲,乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较 8.在Rt △ABC 中,∠C=90°,AB=13,AC=12,则sinB 的值是( )A .135B .1213C .512D .5139.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的平均数、中位数分别是( ) A .3,4 B .4,3 C .3,3 D .4,410.已知反比例函数的图象过点M(-1,2),则此反比例函数的表达式为( )A .y =2xB .y =-2xC .y =12xD .y =-12x二、填空题11.如图,在平面直角坐标系中,点(0,3),(1,0)A B -,过点A 作AB 的垂线交x 轴于点1A ,过点1A 作1AA 的垂线交y 轴于点2A =,过点2A =作12A A 的垂线交x 轴于点3A ……按此规律继续作下去,直至得到点2019A 为止,则点2019A 的坐标为_________.12.计算:2221()-=_____.13.已知矩形,给出三个关系式:①②③如果选择关系式__________作为条件(写出一个即可),那么可以判定矩形为正方形,理由是_______________________________ . 14.如图,在平面直角坐标系中,一次函数和函数的图象交于A 、B 两点.利用函数图象直接写出不等式的解集是____________.151a +有意义,则a 的取值范围是______.16.已知一个直角三角形的两条直角边的长分别为6cm 、8cm ,则它的斜边的中线长________cm . 17.下列函数的图象(1)y x =-,(2)1y x =+,(3)21y x =-+,(4)1y x =-不经过第一象限,且y 随x 的增大而减小的是__________.(填序号)三、解答题18.(1)解方程:x 2+3x-4=0 (2) 计算:12sin 60cos 452⨯ 19.(6分)如图,等边△ABC 的边长6cm .①求高AD ;②求△ABC 的面积.20.(6分)如图,小亮从点O 处出发,前进5米后向右转15,再前进5米后又向右转15,这样走n 次后恰好回到出发点O 处.(1)小亮走出的这个n 边形的每个内角是多少度?这个n 边形的内角和是多少度?(2)小亮走出的这个n 边形的周长是多少米?21.(6分)如图,在△ABC 中,AB=AC ,AD ⊥BC 于D ,点E ,F 分别是AB ,AC 的中点.求证:四边形AEDF 是菱形.22.(8分)观察下列各式:22111111212++=+⨯, 22111112323++=+⨯, 22111113434++=+⨯,请利用你所发现的规律,(1)计算22222222111111111111122334910++++++++++++; (2)根据规律,请写出第n 个等式(1n ≥,且n 为正整数).23.(8分)某市建设全长540米的绿化带,有甲、乙两个工程队参加.甲队平均每天绿化的长度是乙队的1.5倍.若由一个工程队单独完成绿化,乙队比甲队对多用6天,分别求出甲、乙两队平均每天绿化的长度。
2020年天津市名校八年级第二学期期末统考数学试题一、选择题(每题只有一个答案正确)1.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大2.某班20位男同学所穿鞋子的尺码如下表所示,则鞋子尺码的众数和中位数分别是()尺码数3839404142人数251021A.39,39B.38,39C.40,40D.40,393.已知一次函数y=kx+b(k≠0),若k+b=0,则该函数的图像可能是A.B.C.D.42,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.455.下面几个函数关系式中,成正比例函数关系的是()A.正方体的体积和棱长B.正方形的周长和边长C.菱形的面积一定,它的两条对角线长D.圆的面积与它的半径6.如图,在平行四边形ABCD中,点E是CD边上一点,:2:3DE EC=,连接AE、BE、BD,且AE、BD 2A .15.5B .16.5C .17.5D .18.57.下列给出的四个点中,在函数y=2x ﹣3图象上的是( ) A .(1,﹣1) B .(0,﹣2) C .(2,﹣1) D .(﹣1,6) 8.已知一个多边形的内角和是540︒,则这个多边形是( ) A .四边形B .五边形C .六边形D .七边形9.已知一次函数y ax m =+图像如图所示,点()()121,,3,A y B y 在图像上,则1y 与2y 的大小关系为( )A .12y y >B .12y y <C .12y y ≥D .12y y ≤10.将方程x 2+4x+3=0配方后,原方程变形为( ) A .2(x 2)1+= B .2(x 4)1+=C .2(x 2)3+=-D .2(x 2)1+=-二、填空题11.若一个直角三角形的其中两条边长分别为6和8,则第三边长为_____.12.平面直角坐标系中,A 、O 两点的坐标分别为(2,0),(0,0),点P 在正比例函数y =x (x >0)图象上运动,则满足△PAO 为等腰三角形的P 点的坐标为_____.13.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x ,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.14.不等式组123122x x -<⎧⎪⎨+≤⎪⎩的所有整数解的积是___________.15.在正方形中,在上,,,是上的动点,则的最小值是_____________.16.如图,菱形ABCD 的对角线AC =32cm ,BD =42cm ,则菱形ABCD 的面积是_____.17.化简:2a1a1a1---=______.三、解答题18.如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC交BD于点F,且AE=CF,求证:四边形ABCD是平行四边形.19.(6分)为了从甲、乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验,两人在相同条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7如果你是教练你会选拔谁参加比赛?为什么?20.(6分)矩形ABCO中,O(0,0),C(0,3),A(a,0),(a≥3),以A为旋转中心顺时针旋转矩形ABCO得到矩形AFED.(1)如图1,当点D落在边BC上时,求BD的长(用a的式子表示);(2)如图2,当a=3时,矩形AFED的对角线AE交矩形ABCO的边BC于点G,连结CE,若△CGE是等腰三角形,求直线BE的解析式;(3)如图3,矩形ABCO的对称中心为点P,当P,B关于AD对称时,求出a的值,此时在x轴、y轴上是否分别存在M,N使得四边形EFMN为平行四边形,若存在直接写出M,N坐标,不存在说明理由.21.(6分)某学校开展课外体育活动,决定开设A:篮球、B:乒乓球、C:武术、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了m名学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题:()1m =______;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为______; ()3请把图的条形统计图补充完整;()4若该校有学生1200人,请你估计该校最喜欢武术的学生人数约是多少?22.(8分)关于x 的一元二次方程222(1)0x mx m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)写出一个满足条件的m 的值,并求此时方程的根.23.(8分)如图,在ABC 中,点E ,F 分别为边AB ,AC 的中点,延长EF 到点G 使FG EF =. 求证:四边形EGCB 是平行四边形.24.(10分)计算:(1)分解因式:m 2(x ﹣y )+4n 2(y ﹣x ); (2)解不等式组250(2)(1)0x x x -<⎧⎨-+<⎩,并把解集在数轴上表示出来;(3)先化简,再求解, 231()11x x x x x x-+-+,其中x 2﹣2. 25.(10分)已知一次函数y =kx+b 的图象与直线y =﹣2x+1的交点M 的横坐标为1,与直线y =x ﹣1的交点N 的纵坐标为2,求这个一次函数的解析式.一、选择题(每题只有一个答案正确) 1.A 【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188,方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187,方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593 ∵188>187,683>593,∴平均数变小,方差变小, 故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.2.C 【解析】 【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【详解】解:数据1出现了10次,次数最多,所以众数为1,一共有20个数据,位置处于中间的数是:1,1,所以中位数是(1+1)÷2=1. 故选:C . 【点睛】本题考查了确定一组数据的中位数和众数的能力.解题的关键是熟练掌握求中位数和众数的方法. 3.A 【解析】由k+b=0且k≠0可知,y=kx+b 的图象在一、三、四象限或一、二、四象限,观察四个选项即可得出结论. 【详解】解:由题意可知:当k<0时,则b>0,图象经过一、二、四象限; 当k>0时,则b<0,图象经过一、三、四象限. 故选A. 【点睛】本题考查了一次函数图象与系数的关系,由k+b=0且k≠0找出一次函数图象在一、三、四象限或一、二、四象限是解题的关键. 4.C 【解析】∵?0? 3.14?6π、、、这5个数中只有0、3.14和6为有理数, ∴?0? 3.14?6π、、、这5个数中随机抽取一个数,抽到有理数的概率是35. 故选C . 5.B 【解析】 【分析】根据正比例函数的定义进行判断. 【详解】解:A 、设正方体的体积为V ,棱长为a ,则V =a 3,不符合正比例函数的定义,故本选项错误; B 、设正方形的周长为C ,边长为a ,则C =4a ,符合正比例函数的定义,故本选项正确; C 、设菱形面积为S ,两条对角线长分别为m ,n ,则S =12mn ,不符合正比例函数的定义,故本选项错误; D 、设圆的面积为S ,半径为r ,则S =πr 2,不符合正比例函数的定义,故本选项错误; 故选:B. 【点睛】本题主要考查正比例函数的定义:一般地,两个变量x ,y 之间的关系式可以表示成形如y =kx (k 为常数,且k≠0)的函数,那么y 就叫做x 的正比例函数. 6.C 【解析】 【分析】根据已知可得到相似三角形,从而可得到其相似比,根据相似三角形的面积比等于相似比的平方求出△ABF ,再根据同高的三角形的面积之比等于底的比得出△BEF 的面积,则ABE S ∆= ABF S ∆+BEF S ∆即可求解.解:∵四边形ABCD 是平行四边形, ∴DE ∥AB , ∴△DFE ∽△BFA , ∵DE :EC=2:3,∴DE :AB=2:5,DF :FB=2:5,∵DEF S ∆=2,根据相似三角形的面积比等于相似比的平方, ∴DEF S ∆:ABF S ∆ =4:25,即ABF S ∆=DEF S ∆254⨯=12.5, ∵同高的三角形的面积之比等于底的比,△DEF 和△BEF 分别以DF 、FB 为底时高相同, ∴DEF S ∆:BEF S ∆= DF :FB=2:5,即BEF S ∆=DEF S ∆52⨯=5, ∴ABE S ∆= ABF S ∆+BEF S ∆=12.5+5=17.5, 故选C . 【点睛】本题考查了相似三角形的性质,相似三角形的面积比等于相似比的平方,同高的三角形的面积之比等于底的比,解题的关键是掌握相似三角形的性质. 7.A 【解析】 【分析】把点的坐标代入解析式,若左边等于右边,则在图象上. 【详解】各个点的坐标中,只有A (1,-1)能是等式成立,所以,在函数y=2x ﹣3图象上的是(1,﹣1). 故选:A 【点睛】本题考核知识点:函数图象上的点. 解题关键点:理解函数图象上的点的意义. 8.B 【解析】 【分析】 【详解】根据多边形内角和定理,n 边形的内角和公式为()n 2180-︒,因此, 由()n 2180540︒-=︒得n=1.故选B .【解析】 【分析】根据图像y 随x 增大而减小,比较横坐标的大小,再判断纵坐标的大小. 【详解】根据图像y 随x 增大而减小 1<3∴12y y >故选A 【点睛】本题考查一次函数图像上的坐标特征,解题关键在于判断y 与x 的关系. 10.A 【解析】 【分析】把常数项3移项后,应该在左右两边同时加上一次项系数4的一半的平方. 【详解】 移项得,x 2+4x=−3, 配方得,x 2+4x+4=−3+4, 即(x+2)2=1. 故答案选A. 【点睛】本题考查了一元二次方程,解题的关键是根据配方法解一元二次方程. 二、填空题11.10或 【解析】 【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求解. 【详解】 设第三边为x ,(1)若8是直角边,则第三边x 是斜边,由勾股定理得,62+82=x 2解得:x =10,(2)若8是斜边,则第三边x 为直角边,由勾股定理得,62+x 2=82,解得x = 故第三边长为10或故答案为:10或27.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.12.(1,1)或(2,2)或(1,1)【解析】【分析】分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论【详解】∵点A的坐标为(1,0),∴OA=1.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=1,∴点P1的坐标为(1,1);②当OP1=OA时,过点P1作P1B⊥x轴,则△OBP1为等腰直角三角形.∵OP1=OA=1,∴OB=BP12,∴点P122);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=1,∴点P3的坐标为(1,1).综上所述:点P的坐标为(1,1)或(2,2)或(1,1).故答案为:(1,1)或(2,2)或(1,1).【点睛】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.13.1.【解析】【分析】【详解】∵100,80,x,1,1,这组数据的众数与平均数相等,∴这组数据的众数只能是1,否则,x=80或x=100时,出现两个众数,无法与平均数相等.∴(100+80+x+1+1)÷5=1,解得,x=1.∵当x=1时,数据为80,1,1,1,100,∴中位数是1.14.1【解析】【分析】先解不等式组得到-1<x≤3,再找出此范围内的整数,然后求这些整数的积即可.【详解】由1-2x<3,得:x>-1,由12x≤2,得:x≤3,所以不等式组的解集为:-1<x≤3,它的整数解为1、1、2、3,所有整数解的积是1.故答案为1.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.15.【解析】根据题意画出图形,连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC 的最小值,再根据勾股定理求出AE的长即可.【详解】如图所示:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE=,∴PE与PC的和的最小值为.故答案为:.【点睛】本题考查的是轴对称-最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解决问题的关键.16.11cm1【解析】【分析】利用菱形的面积公式可求解.【详解】解:因为菱形的对角线互相垂直平分,∵AC=32,BD=42,则菱形ABCD的面积是13242122⨯=cm1.故答案为11cm1.【点睛】此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.17.a+1【解析】【分析】先根据同分母分式加减法进行计算,再约分化简分式即可.【详解】2a 1a 1a 1-=--()()2111111a a a a a a +--==+--. 故答案为a+1【点睛】本题考核知识点:分式的加减.解题关键点:熟记分式的加减法则,分式的约分.三、解答题18.见解析.【解析】【分析】由垂直得到∠EAD=∠FCB=90°,根据AAS 可证明Rt△AED≌Rt△CFB,得到AD=BC ,根据平行四边形的判定判断即可.【详解】证明:∵AD//BC∴∠ADE=∠CBF∵AE⊥AD,CF⊥BC.∴∠DAE=∠BCF=90°在△ADE 和△CBF 中∵∠DAE=∠BCF,∠ADE=∠CBF,AE=CF.∴△ADE≌△CBF(AAS)∴AD=BC∵AD//BC∴四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形的判定,平行线的性质,全等三角形的性质和判定等知识点的应用,关键是推出AD=BC .19.乙同学的成绩较稳定,应选乙参加比赛【解析】试题分析:比较甲、乙两人的成绩的方差作出判断.试题解析:x 甲=110(7+8+6+8+6+5+9+10+4+7)=7; S 甲2=110 [(7-7)2+(8-7)2+(6-7)2+(8-7)2+(6-7)2+(5-7)2+(9-7)2+(10-7)2+(4-7)2+(7-7)2]=3;x 乙=110(9+5+7+8+6+8+7+6+7+7)=7; S 乙2=110[(9-7)2+(5-7)2+(7-7)2+(8-7)2+(6-7)2+(8-7)2+(7-7)2+(6-7)2+(7-7)2+(7-7)2]=1.2;∴因为甲、乙两名同学射击环数的平均数相同,乙同学射击的方差小于甲同学的方差,∴乙同学的成绩较稳定,应选乙参加比赛.20.(1)BD (2)y =﹣x+6;(3)M 0),N (0,32) 【解析】【分析】(1)如图1,当点D 落在边BC 上时,BD 2=AD 2-AB 2,即可求解;(2)分CG=EG 、CE=GE 、CE=CG 三种情况分别求解;(3)①由点P 为矩形ABCO 的对称中心,得到322a P ⎛⎫ ⎪⎝⎭,求得直线PB 的解析式为3PB y x a=,得到直线AD 的解析式为:233a y x a =-+,解方程即可得到结论;②根据①中的结论得到直线AD 的解析式为9y =+,求得∠DAB=30°,连接AE ,推出A ,B ,E 三点共线,求得()32E F ⎫⎪⎭,,,设M (m ,0),N (0,n ),解方程组即可得到结论.【详解】(1)如图1,在矩形ABCO 中,∠B=90°当点D 落在边BC 上时,BD 2=AD 2﹣AB 2,∵C(0,3),A (a ,0)∴AB=OC =3,AD =AO =a ,(2)如图2,连结AC ,∵a=3,∴OA=OC =3,∴矩形ABCO是正方形,∴∠BCA=45°,设∠ECG的度数为x,∴AE=AC,∴∠AEC=∠ACE=45°+x,①当CG=EG时,x=45°+x,解得x=0,不合题意,舍去;②当CE=GE时,如图2,∠ECG=∠EGC=x∵∠ECG+∠EGC+∠CEG=180°,∴x+x+(45°+x)=180°,解得x=45°,∴∠AEC=∠ACE=90°,不合题意,舍去;③当CE=CG时,∠CEG=∠CGE=45°+x,∵∠ECG+∠EGC+∠CEG=180°,∴x+(45°+x)+(45°+x)=180°,解得x=30°,∴∠AEC=∠ACE=75°,∠CAE=30°如图3,连结OB,交AC于点Q,过E作EH⊥AC于H,连结BE,∴EH=12AE=12AC,BQ=12AC,∴EH=BQ,EH∥BQ且∠EHQ=90°∴四边形EHQB是矩形∴BE∥AC,设直线BE的解析式为y=﹣x+b,∵点B(3,3)在直线上,则b=6,∴直线BE的解析式为y=﹣x+6;(3)①∵点P为矩形ABCO的对称中心,∴322aP⎛⎫ ⎪⎝⎭,,∵B(a,3),∴PB的中点坐标为:4934a⎛⎫ ⎪⎝⎭,,∴直线PB的解析式为3PBy xa=,∵当P,B关于AD对称,∴AD⊥PB,∴直线AD的解析式为:233ay xa=-+,∵直线AD过点3944a⎛⎫⎪⎝⎭,,∴2291443aa=-+,解得:a=±33,∵a≥3,∴a=33;②存在M,N;理由:∵a=33,∴直线AD 的解析式为y=﹣3x+9,∴∴∠DAO=60°,∴∠DAB=30°,连接AE,∵AD=OA=33,DE=OC=3,∴∠EAD=30°,∴A,B,E三点共线,∴AE=2DE=6,∴()32E F ⎫⎪⎭,,, 设M (m ,0),N (0,n ),∵四边形EFMN 是平行四边形,∴03602m n ⎧=⎪⎪⎨⎪+=+⎪⎩,解得:232m n ⎧=⎪⎪⎨⎪=⎪⎩,0),N (0,32). 【点睛】本题考查的是一次函数综合运用,涉及到正方形和等腰三角形性质、圆的基本知识,其中(2),要注意分类求解,避免遗漏.21.(1)50;(2)108°;(3)见解析;(4)1.【解析】【分析】(1)由B 项目人数及其所占百分比可得总人数m ;(2)用360°乘以B 项目对应百分比可得;(3)根据各项目人数之和为50求得A 项目人数即可补全图形;(4)总人数乘以样本中C 项目人数所占比例即可得.【详解】()1m 1530%50=÷=,故答案为50;()2在扇形统计图中“乒乓球”所对应扇形的圆心角的度数为36030%108⨯=,故答案为108; ()3A 项目人数为()501551020-++=人,补全图形如下:()4估计该校最喜欢武术的学生人数约是5120012050⨯=人. 【点睛】 本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小. 22. (1) 12m >;(2) 120,2x x ==. 【解析】【分析】(1)由题意,得()()222410m m ∆=--->;可再求m 的取值范围;(2)比如取m=1.【详解】解:(1)由题意,得()()222410m m ∆=--->. 解得12m >. (2)答案不唯一.如:取m=1,此时方程为220x x -=.解得 120,2x x ==.【点睛】本题考核知识点:一元二次方程根判别式.解题关键点:熟记一元二次方程根判别式的意义.23.证明见解析.【解析】【分析】 根据中位线的性质得到12EF BC =∥,再得到EG BC =∥,故可证明. 【详解】解:∵E ,F 分别为AB ,AC 的中点,∴EF 是△ABC 的中位线, ∴12EFBC =∥. ∵EF FG =,∴EG BC =.∴EG BC =∥∴四边形EGCB 是平行四边形.【点睛】此题主要考查平行四边形的判定,解题的关键是熟知三角形的中位线定理及平行四边形的判定方法. 24.(1)(x ﹣y )(m +2n )(m -2n );(2)12x -<<,见解析;(3)42-6.【解析】【分析】(1)先提公因式,再用平方差公式二次分解;(2)先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可;(3)先把括号内通分化简,然后把分子、分母分解因式约分,再把x =2﹣2代入化简的结果计算.【详解】解:(1)m 2(x ﹣y )+4n 2(y ﹣x )=(x ﹣y )(m 2-4n 2)=(x ﹣y )(m +2n )(m -2n ).(2)∵250(2)(1)0x x x -<⎧⎨-+<⎩∴5212x x ⎧<⎪⎨⎪-<<⎩, 解得:12x -<<,如下图,(3)原式=22222331()11x x x x x x x x+--+-- =2224211x x x x x+--=42x +,当x﹣2时,原式=-6【点睛】本题考查了因式分解,解不等式组,分式的化简求值,熟练掌握各知识点是解答本题的关键.25.y=32x﹣52.【解析】【分析】依据条件求得交点M的坐标是(1,﹣1),交点N的坐标是(3,2),再根据待定系数法即可得到一次函数的解析式.【详解】解:把x=1代入y=﹣2x+1中,可得y=﹣1,故交点M的坐标是(1,﹣1);把y=2代入y=x﹣1中,得x=3,故交点N的坐标是(3,2),设这个一次函数的解析式是y=kx+b,把(1,﹣1),(3,2)代入,可得123k bk b -=+⎧⎨=+⎩,解得3252kb⎧=⎪⎪⎨⎪=-⎪⎩,故所求函数的解析式是y=32x﹣52.【点睛】本题考查了两直线相交的问题,解题的关键是理解交点是两条直线的公共点.。