双背压600MW凝汽器介绍
- 格式:ppt
- 大小:1.01 MB
- 文档页数:28
一、双背压的原因是循环水造成的,也一是一个低压凝汽器循环水出来到的高压凝汽器,所以会产生双背压;这样的话可以给电厂循环水管路的布置在一定情况下提供方便,要知道循环水管路都是很粗大的,布置起来不是很方便;二、又背压的平均压力要比单背压低,这是教科书上说的,有分析,经济性要比单背压好;三、也有的厂把设计为双背压的汽轮机当单背压用,比如浙江宁海电厂;还有一个原因,做成一个太大太重了,从喉部的连接到底部的支撑都不如做成2个方便就是减少布置循环水管路,接约材质,并且对运行也没有什么多大影响双背压凝汽器的概念:背压,是指汽轮机排汽压力,我们公司现有的110MW、220MW机组都是单背压的,即所有低压缸的排汽压力都相等。
双背压是指汽轮机有两个不同的排汽压力,这样的汽轮机,被称为双背压汽轮机,相对应的,这样的凝汽器被称为双背压凝汽器。
双背压凝汽器的优点:1.根据传热学原理,双背压凝汽器的平均背压低于同等条件下单背压凝汽器的背压,因此汽机低压缸的焓降就增大了,从而提高了汽轮机的经济性。
(我们四期工程可研报告中,双背压分别为4.4/5.4KPA,平均背压为4.9 KPA)。
2.双背压凝汽器的另一个优点就是低背压凝汽器中的低温凝结水可以进入高背压凝汽器中去进行加热,既提高了凝结水温度,又减少了高背压凝汽器被冷却水带走的的冷源损失。
低背压凝汽器中的低温凝结水通过管道利用高度差进入高背压凝汽器管束下部的淋水盘,在淋水盘内,低温凝结水与高温凝结水混合在一起,再经盘上的小孔流下,凝结水从淋水盘孔中下落的过程中,凝结水被高背压低压缸的排汽加热到相应的饱和温度。
正因为双被压凝汽器能够提高机组的经济性,所以被广泛应用到600MW三缸四排汽汽轮机中。
邹县的600MW亚临界机组,平圩发电厂600MW亚临界机组等,从收资的五家电厂的情况看, 600MW超临界机组也都配置了双背压凝汽器。
600MW三缸四排汽汽轮机设有四台凝汽器,每两台一组,两台低背压凝汽器为一组,两台高背压凝汽器为一组,分别布置在低压缸的下方。
85张图片带你了解600MW机组凝汽器结构一、双压凝汽器1、概念:双压凝汽器是指来自两个汽轮机排汽口的蒸汽分别引入汽侧分隔、水侧串联的真空不同的两个汽室中冷却凝结的凝汽器。
双压凝汽器结构2、双压凝汽器汽水流程凝结水串联方式3、凝汽器真空的建立和维持(1)通过使蒸汽凝结建立真空:凝汽器压力=蒸汽分压力+空气分压力(2)通过保持热量和物质平衡保持真空:蒸汽排入量=蒸汽凝结量:Ps空气漏入量=空气抽出量:Pa凝汽器换热示意图4、凝汽器真空的确定蒸汽凝结温度5、凝汽器双压的形成因高,低压侧凝汽器冷却水进口温度不同,故在两个凝汽器壳体内形成不同的压力。
凝汽器冷却水流程冷却水先从低压侧凝汽器前水室进入低压侧管束,然后从低压侧后水室流出,经过冷却水连通管进入高压侧凝汽器.因高,低压侧凝汽器冷却水进口温度不同,故在两个凝汽器壳体内形成不同的压力.6、双压凝汽器特点与单压凝汽器相比,采用双压凝汽器具有以下优点:(1)首先,双压凝汽器比相同冷却面积和冷却水流量的单压凝汽器具有更低的平均凝汽器压力,因而可以提高机组的效率和出力.(2)当凝汽器压力相同时,采用双压凝汽器可减少冷却面积或冷却水量,因而可以减少投资或降低运行费用.(3)由于双压凝汽器将低压侧的凝结水引入高压侧,并使之回热到高压侧所对应的较高的饱和温度,使得凝结水出口温度得以提高,从而提高了凝结水泵进口温度,改善了凝结水回热系统,增加了机组的效率.7、多压凝汽器的应用1)一般循环水温tw1较高、缺水(m小,Δt大)的地区,多压凝汽器的经济性较好。
2)600~1000MW机组,采用多压凝汽器可提高电厂经济性约0.2%~0.3%。
二、凝汽器结构1、总体结构:凝汽器一般由接颈、外壳、水室、管束、管板(中间隔板)、支撑杆、挡汽板、空气冷却区、热井等部分组成。
东方600MW超临界汽轮机凝汽器采用双背压、双壳体、表面式、双汽室、八水室、对分单流程、并列横向布置、壳体和水室全焊接结构。
600MW级超临界直接空冷凝汽式汽轮机概述1.1概述二期工程2×600MW级超临界直接空冷凝汽式汽轮发电机组,汽轮机设备为东方汽轮机有限公司生产超临界空冷汽轮机,型号为:TC4F-26(24.2MPa/566℃/566℃),型式:超临界、一次中间再热、三缸四排汽、单轴、直接空冷凝汽式汽轮机;该机组额定出力637MW;最大连续出力为662MW,汽轮机采用复合变压运行方式;具有七级非调整回热抽汽。
给水系统采用2×50%汽动给水泵,不设备用泵,由于主汽轮机采用直接空冷汽轮机,其背压变化幅度较大,给水泵驱动汽轮机排汽不宜排入主汽轮机的空冷器中,每台给水泵汽轮机各自配置一台水冷凝汽器,给水泵驱动汽轮机排汽凝结水直接排入主汽轮机的排汽装置中,给水泵汽轮机本体疏水排入给水泵汽轮机凝汽系统中。
由于二期汽轮机乏汽采用空冷冷却系统,节省了一期湿冷系统的风吹、蒸发、排污等水量损失,年平均节约水量约1904m3/h。
其用水量比一期湿冷系统节水70%。
投资上与混凝式间接空冷系统相比,可降低工程投资35.7%;与表凝式间接空冷系统相比,可降低工程投资40.2%。
王曲电厂超临界机组与我厂一期亚临界机组相比汽轮机组热耗将低约4.5%。
超临界机组是指锅炉的新蒸汽的压力大于临界压力(22.115MPa)小于25MPa的锅炉和汽轮机发电机组。
在超临界和超超临界状态,水由液态直接成为汽态(由湿蒸汽直接成为过热蒸汽或饱和蒸汽),热效率高。
因此,超临界,超超临界发电机组已经成为国外,尤其是发达国家主力机组。
由于机组效率提高,污染物的排放也相应减少,经济效益十分明显。
超临界机组是火电机组大家族中的“节能减排新星”。
超临界机组和亚临界机组特点比较它具有如下特点:(1) 热效率高、热耗低。
可节约燃料,降低能源消耗和大气污染物的排放量。
(2) 超临界压力时水和蒸汽比容相同,状态相似,单相的流动特性稳定,没有汽水分层和在中间集箱处分配不均的困难,并不需要象亚临界压力锅炉那样用复杂的分配系统来保证良好的汽水混合,回路比较简单。
600MW超超临界汽轮机介绍第一部分两缸两排汽 600MW超超临界汽轮机介绍0 前言近几年来我国电力事业飞速发展,大容量机组的装机数量逐年上升,同时随着国家对环保事业的日益重视及电厂高效率的要求,机组的初参数已从亚临界向超临界甚至超超临界快速发展。
根据我国电力市场的发展趋势,25MPa/600℃/600℃两缸两排汽 600MW 超超临界汽轮发电机组将依据其环保、高效、布局紧凑及利于维护等特点占据相当一部分市场份额,下面对哈汽、三菱公司联合制造生产的25MPa/600℃/600℃两缸两排汽600MW超超临界汽轮机做一个详细的介绍。
1 概述哈汽、三菱公司联合制造生产的600MW超超临界汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。
高中压汽轮机采用合缸结构,低压汽轮机采用一个48英寸末级叶片的双分流低压缸,这种设计降低了汽轮机总长度,紧缩电厂布局。
机组的通流及排汽部分采用三维设计优化,具有高的运行效率。
机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。
机组设计有两个主汽调节联合阀,分别布置在机组的两侧。
阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大地降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。
主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。
这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。
调节阀为柱塞阀,出口为扩散式。
来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后进入四个喷嘴室。
导汽管通过挠性进汽套筒与喷嘴室连接。
进入喷嘴室的蒸汽流过冲动式调节级,然后流过反动式高压压力级,做功后通过外缸下半的排汽口进入再热器。
再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。
双背压凝汽器简介凝汽器是凝汽式汽轮机的一个十分重要的设备,其工作性能直接影响着整个汽轮机组的经济性和安全性,当机组容量达到600MW甚至更大等级时,由于材料、叶片制造工艺、机组空间布置等方面的限制,采用多压凝汽嚣成了现代大型电站凝汽器研制发展的一个必然的重要方向,采用多背压可以降低热耗、减小凝汽器表面积,减少冷却水量、改进设备布置和运行。
黄岛电厂两台670MW机组就是采用双背压凝汽器,本文以此为例简单介绍双背压凝汽器的优越性、典型结构及运行中的特殊故障。
黄岛电厂670MW机组凝汽器的主要参数:型式:双背压、双壳体、单流程、表面式冷却面积:38000m2凝汽器平均背压:4.4/5.4kpa冷却水流量:68300t/h冷却面积: 36600 m2循环水允许温升:≤10.28冷却水设计温度/最高水温:20/33℃循环倍率(实际工况凝汽量)55冷却管规格:φ25×O.5mm(主凝结区) φ25×0.7mm(空冷区及顶部迎汽区)一、多背压凝汽器的优越性所谓多背压凝汽器就是由一个串联的冷却水冷却来自汽轮机低压缸两个或以上排出口的蒸汽,使得蒸汽在分隔开的多个不同绝对压力的凝汽器汽室中凝结成水。
多压凝汽器与单压凝汽器相比具有以下优越性:(1)多压凝汽器从根本上改善了蒸汽负荷的不均匀性,从而提高了凝汽器的传热性能。
(2)多压凝汽器在传热过程中,冷却水温度除了在进口处和出口处与单压凝汽器相等外,当中过程均比单压凝汽器低,因此多压凝汽器的传热性能优于单压凝汽器。
(3)把低压侧温度较低的凝结水设法送往高压侧回热,利用高压汽室中的蒸汽将它加热到比单背压凝汽器凝结水温度更高的温度,则送往锅炉的凝结水温度将高于平均温度,从而可使整个系统循环热效率进一步提高。
(4)多背压凝汽器的平均背压低于相同条件下单背压凝汽器的背压,这样就增大了汽轮机在低压缸处的焓降,提高了整个机组的经济性。
一般来说采用双背压凝汽器,机组热效率可提高0.15%~0.25%。
某600MW汽机介绍(含抽汽参数)第一章汽机概述汽轮机为上海汽轮机厂生产的2 台N600-16.7/538/538 型600MW 机组。
最大连续出力可达648.624MW。
这是上海汽轮机厂在引进美国西屋电气公司技术的基础上,对通流部分作了设计改进后的新型机组,它采用积木块式的设计。
形式为亚临界参数、一次中间再热、单轴、四缸、四排汽凝汽式汽轮机。
具有较好的热负荷和变负荷适应性,采用数字式电液调节(DEH)系统。
机组能在冷态、温态、热态和极热态等不同工况下启动。
N600 汽轮机通流级数为58级。
(1+11,2X9,2X2X7)第一节汽机系统设备简介汽轮机有一个单流的高压缸、一个双流的中压缸和两个双流的低压缸组成;总通流级数为58级。
高中压汽缸为双层缸结构,低压汽缸为三层缸结构,能够节省优质钢材,缩短启动时间。
汽机各转子均为无中心孔转子,采用刚性联接,,提高了转子的寿命及启动速度。
汽轮机设有一个推力轴承和八个径向轴承。
推力轴承为单独的滑动式自位推力轴承。
高、中压转子的径向轴承采用四瓦块的可倾瓦轴承,自位性能好。
#1 低压转子的前轴承采用两瓦块可倾瓦轴承,这种轴承不仅有良好的自位性能,而且能承受较大的载荷,运行稳定。
低压转子的另外三个轴承为圆筒轴承,能承受更大的负荷。
主机的润滑油管路采用套装式设计,可有效地防止因高压油泄漏导致的火灾事故发生。
该汽轮机采用八级抽汽,分别用于4 台低加、1 台除氧器、3 台高加及小汽机、热网等的加热汽源。
N600-16.7/538/538汽轮机采用一次中间再热,其优点是提高机组的热效率,在同样的初参数条件下,再热机组一般比非再热机组的热效率提高4%左右,而且由于末级蒸汽湿度较非再热机组大大降低,因此,对防止汽轮机组低压末级叶片水蚀特别有利。
但是中间再热式机组的热力系统比较复杂。
每台机组的给水系统配备沈阳水泵厂生产的2 台50%容量的汽动给水泵组和1 台30%容量的电动调速给水泵组。
600MW超超临界汽轮机介绍第一部分两缸两排汽 600MW超超临界汽轮机介绍0 前言近几年来我国电力事业飞速发展,大容量机组的装机数量逐年上升,同时随着国家对环保事业的日益重视及电厂高效率的要求,机组的初参数已从亚临界向超临界甚至超超临界快速发展。
根据我国电力市场的发展趋势,25MPa/600℃/600℃两缸两排汽 600MW 超超临界汽轮发电机组将依据其环保、高效、布局紧凑及利于维护等特点占据相当一部分市场份额,下面对哈汽、三菱公司联合制造生产的25MPa/600℃/600℃两缸两排汽600MW超超临界汽轮机做一个详细的介绍。
1 概述哈汽、三菱公司联合制造生产的600MW超超临界汽轮机为单轴、两缸、两排汽、一次中间再热、凝汽式机组。
高中压汽轮机采用合缸结构,低压汽轮机采用一个48英寸末级叶片的双分流低压缸,这种设计降低了汽轮机总长度,紧缩电厂布局。
机组的通流及排汽部分采用三维设计优化,具有高的运行效率。
机组的组成模块经历了大量的实验研究,并有成熟的运行经验,机组运行高度可靠。
机组设计有两个主汽调节联合阀,分别布置在机组的两侧。
阀门通过挠性导汽管与高中压缸连接,这种结构使高温部件与高中压缸隔离,大大地降低了汽缸内的温度梯度,可有效防止启动过程缸体产生裂纹。
主汽阀、调节阀为联合阀结构,每个阀门由一个水平布置的主汽阀和两个垂直布置的调节阀组成。
这种布置减小了所需的整体空间,将所有的运行部件布置在汽轮机运行层以上,便于维修。
调节阀为柱塞阀,出口为扩散式。
来自调节阀的蒸汽通过四个导汽管(两个在上半,两个在下半)进入高中压缸中部,然后进入四个喷嘴室。
导汽管通过挠性进汽套筒与喷嘴室连接。
进入喷嘴室的蒸汽流过冲动式调节级,然后流过反动式高压压力级,做功后通过外缸下半的排汽口进入再热器。
再热后的蒸汽通过布置在汽缸前端两侧的两个再热主汽阀和四个中压调节阀返回中压部分,中压调节阀通过挠性导汽管与中压缸连接,因此降低了各部分的热应力。
运行与维护Operation And Maintenance电力系统装备Electric Power System Equipment2019年第23期2019 No.232019.23 电力系统装备丨127随着电力市场竞争机制的进一步完善,降低发电成本,提高机组运行经济性已成为发电企业的当务之急。
凝汽器真空与端差是影响凝汽器热力特性的重要指标,选择合适的循环水泵运行方式就成为提高机组运行经济性的重要途径,因而也成为一个非常值得关注的研究课题。
1 概述某厂4号机组采用N-32000-1型湿冷凝汽器,双背压、双壳体、单流程、表面式、横向布置,可在机组最大出力、循环冷却水温33 ℃,背压不大于11.8kPa 工况下长期运行。
循环水先后通入A 、B 侧凝汽器,由于冷却水进口温度差异形成不同背压,达到双背压效果。
循环水系统为闭式循环,补给水为黄河水和地下备用水源。
抽真空系统配备3台50%容量纳西姆生产的2BW4353-0MK4-S 型水环真空泵,运行方式为二运一备。
凝汽器端差是机组“达设计值”的一项主要指标,也是冷端优化的重要一环,端差治理是目前国内火电企业普遍面临的一大难题。
某厂4号机组运行中发现,当B 真空泵运行时凝汽器端差较A 泵、C 泵运行时偏高,最高达10 ~13 ℃。
后针对B 真空泵进行解体检修,抽真空能力虽有好转,但问题依然未能彻底解决。
另外,高低压凝汽器两侧背压几乎相等,压差接近消失,失去双背压凝汽器节能效果。
2016年机组升参数通流改造后,在凝汽器真空严密性优良的情况下,凝汽器端差较3号机组仍偏大,尤其B 泵运行时端差增加明显。
本文针对双背压凝汽器端差治理进行系统的分析讨论,为同型机组类似缺陷的处理提供思路。
2 双背压凝汽器原理及抽真空系统的构成凝汽器由汽侧与水侧构成,主要由接颈、壳体、水室、排汽接管和汽轮机旁路的第三级减温减压装置组成,每个凝汽器底部用五个大支墩和四个小支墩支撑。
凝汽器接颈内布置有汽轮机5~8段抽汽管,为安装7、8号组合式低加,在接颈侧板上开设有孔洞,内部设有支撑板。
凝汽器介绍凝汽器是一种常见的热力发电厂设备,用于将汽轮机排出的高温高压蒸汽冷却成水,以供重新注入锅炉进行循环。
凝汽器能有效提高热力发电厂的热效率,降低燃料消耗,也为环境提供了更好的保护。
600MW级的凝汽器是指其能够处理600兆瓦电力产生的蒸汽。
该规模的凝汽器通常采用下列结构:冷凝器、冷却塔和增压泵。
冷凝器是凝汽器的主要组成部分,也是蒸汽冷却的地方。
它包括了大量的垂直管束,蒸汽在其中冷却并凝结成水。
这些管束一般由优质的铜管制成,以保证其良好的导热性能。
蒸汽进入冷凝器后,通过与管束中的冷却水接触而被冷却,最终转化为水。
冷凝器中的水蒸汽混合物经过进一步处理会被抽取并注入循环系统,形成闭合循环。
冷却塔是凝汽器的另一个重要组成部分,用于冷却冷凝器中的冷却水。
它通常由水箱、填料材料和风机等组成。
冷却水从冷凝器中抽出,经过填料材料的扩散排布形成薄膜,使风机尽可能多地与薄膜接触,从而使水蒸气能够更快地散发热量,冷却下来。
风扇先将冷却空气吸入,然后将热空气排放到大气中。
在这个过程中,冷却水中的热量被风扇带走,从而冷却冷凝器回流到锅炉中。
为了确保冷却水能以足够的流速经过冷却塔,凝汽器还配备了增压泵。
增压泵能够提高冷却水的压力,使其能够迅速流经整个冷却塔。
冷却水通过增压泵后,会再次回到冷凝器中与蒸汽接触,从而形成循环。
600MW级的凝汽器具有较高的热效率和水准,其设计和制造都需遵循严格的标准。
它能更有效地利用燃料,提高发电效率。
同时,凝汽器能够回收一部分热能,减少对环境的污染。
这些因素使得600MW级的凝汽器成为热力发电厂不可或缺的设备之一。
600MW双背压机组凝结器抽真空系统改造研究及效果作者:刘国正来源:《中国科技博览》2013年第16期摘要:随着火力发电机组的发展及国家“十一五”节能减排约束性目标的制定,节能减排已经成为火力发电厂日常工作的的重头戏。
各个电厂都通过积极查找自身设备系统问题、深挖设备降煤耗潜力。
下面把某厂通过对双背压凝结器抽真空系统进行优化改造,从而提高机组真空,降低机组煤耗的经验向大家介绍一下。
关键词:经济性、节能、凝结器、真空中图分类号:TM621.71.前言河北大唐国际王滩发电有限责任公司的汽轮机是哈尔滨汽轮机厂生产的N600-16.67-538/538型亚临界机组,配备N-32000-1型凝结器,凝结器循环水采用海水直接冷却,双背压,双壳体。
设计循环水量59558T/h:设计冷却水温18℃,循环水温升 9.6℃,在高、低压凝结器内的温升分配均为4.8℃[1]。
2.原系统结构概述河北王滩发电厂一期工程1号、2号机组为两台国产600MW亚临界参数燃煤发电机组,汽轮机为哈尔滨汽轮机厂有限责任公司与日本东芝公司联合设计和制造生产的型号为N600-16.7/538/538的亚临界、单轴、三缸四排汽、一次中间再热、双背压、凝汽式汽轮机。
本机组凝汽器采用双背压、双壳体、单流程、表面式、横向布置。
抽真空设备采用纳西姆有限公司制造的2BW4353-OMK4-Z型平圆盘式水环式真空泵。
2.1凝汽器机组所采用凝汽器是表面式的热交换器,冷却水在管内流动过程中与管外的排汽进行热交换,使排汽凝结成水,同时使凝汽器形成真空。
凝汽器采用双背压设计,即两个凝汽器在运行中处于两个不同的压力下工作。
当循环水进入第一个凝汽器后吸收热量,水温升高,然后再进入第二个凝汽器(第一个凝汽器出口水温即为第二个凝汽器的入口水温)。
由于凝汽器的特性主要取决于冷却水的温度,不同的水温对应不同的背压,于是在两个凝汽器中形成了不同压力,即低压凝汽器和高压凝汽器。
凝汽器两个壳体底部为连通的热井,上部布置有低压加热器、小汽机排汽管、减温减压器和低压侧抽气管等。