现代控制理论实验报告—中国石油大学
- 格式:doc
- 大小:800.00 KB
- 文档页数:17
实验报告( 2016-2017年度第二学期)名称:《现代控制理论基础》题目:状态空间模型分析院系:控制科学与工程学院班级: ___学号: __学生姓名: ______指导教师: _______成绩:日期: 2017年 4月 15日线控实验报告一、实验目的:l.加强对现代控制理论相关知识的理解;2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析;二、实验内容1第一题:已知某系统的传递函数为G (s)S23S2求解下列问题:(1)用 matlab 表示系统传递函数num=[1];den=[1 3 2];sys=tf(num,den);sys1=zpk([],[-1 -2],1);结果:sys =1-------------s^2 + 3 s + 2sys1 =1-----------(s+1) (s+2)(2)求该系统状态空间表达式:[A1,B1,C1,D1]=tf2ss(num,den);A =-3-210B =1C =0 1第二题:已知某系统的状态空间表达式为:321A,B,C 01:10求解下列问题:(1)求该系统的传递函数矩阵:(2)该系统的能观性和能空性:(3)求该系统的对角标准型:(4)求该系统能控标准型:(5)求该系统能观标准型:(6)求该系统的单位阶跃状态响应以及零输入响应:解题过程:程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0;[num,den]=ss2tf(A,B,C,D); co=ctrb(A,B);t1=rank(co);ob=obsv(A,C);t2=rank(ob);[At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' );[Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' );Ao=Ac';Bo=Cc';Co=Bc';结果:(1) num =0 01den =1 32(2)能控判别矩阵为:co =1-30 1能控判别矩阵的秩为:t1 =2故系统能控。
现代控制理论(第三版)课后习题答案与刘豹、唐万生的第三版教材配套,中国石油大学(华东)参考教材后面还附有相关的复习资料1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
11K s K K p +sK s K p 1+s J 11sK n 22s J K b -++-+-)(s θ)(s U 图1-27系统方块结构图解:系统的模拟结构图如下:)(s U )(s θ---+++图1-30双输入--双输出系统模拟结构图1K pK K 1pK K 1+++pK n K ⎰⎰⎰11J ⎰2J K b ⎰⎰-1x 2x 3x 4x 5x 6x系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n p b1611166131534615141313322211+--=+-==++--===∙∙∙∙∙∙阿令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡∙∙∙∙∙∙654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
R1L1R2L2CU---------Uc---------i1i2图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:∙∙∙+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=∙∙∙写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
一、前言随着科技的飞速发展,自动化、智能化已成为现代工业生产的重要特征。
为了更好地掌握现代控制理论,提高自己的实践能力,我参加了现代控制理论实训课程。
本次实训以状态空间法为基础,研究多输入-多输出、时变、非线性一类控制系统的分析与设计问题。
通过本次实训,我对现代控制理论有了更深入的了解,以下是对本次实训的总结。
二、实训目的1. 巩固现代控制理论基础知识,提高对控制系统的分析、设计和调试能力。
2. 熟悉现代控制理论在工程中的应用,培养解决实际问题的能力。
3. 提高团队合作意识,锻炼动手能力和沟通能力。
三、实训内容1. 状态空间法的基本概念:状态空间法是现代控制理论的核心内容,通过建立状态方程和输出方程,描述系统的动态特性。
2. 状态空间法的基本方法:包括状态空间方程的建立、状态转移矩阵的求解、可控性和可观测性分析、状态反馈和观测器设计等。
3. 控制系统的仿真与实现:利用MATLAB等仿真软件,对所设计的控制系统进行仿真,验证其性能。
4. 实际控制系统的分析:分析实际控制系统中的控制对象、控制器和被控量,设计合适的控制策略。
四、实训过程1. 理论学习:首先,我对现代控制理论的相关知识进行了复习,包括状态空间法、线性系统、非线性系统等。
2. 实验准备:根据实训要求,我选择了合适的实验设备和软件,包括MATLAB、控制系统实验箱等。
3. 实验操作:在实验过程中,我按照以下步骤进行操作:(1)根据实验要求,建立控制系统的状态空间方程。
(2)求解状态转移矩阵,并进行可控性和可观测性分析。
(3)设计状态反馈和观测器,优化控制系统性能。
(4)利用MATLAB进行仿真,观察控制系统动态特性。
(5)根据仿真结果,调整控制器参数,提高控制系统性能。
4. 结果分析:通过对仿真结果的分析,我对所设计的控制系统进行了评估,并总结经验教训。
五、实训成果1. 掌握了现代控制理论的基本概念和方法。
2. 提高了控制系统分析与设计能力,能够独立完成实际控制系统的设计。
实验三典型非线性环节一.实验要求1.了解和掌握典型非线性环节的原理。
2.用相平面法观察和分析典型非线性环节的输出特性。
二.实验原理及说明实验以运算放大器为基本元件,在输入端和反馈网络中设置相应元件(稳压管、二极管、电阻和电容)组成各种典型非线性的模拟电路。
三、实验内容3.1测量继电特性(1)将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。
(2)模拟电路产生的继电特性:继电特性模拟电路见图慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下:函数发生器产生的继电特性①函数发生器的波形选择为‘继电’,调节“设定电位器1”,使数码管右显示继电限幅值为3.7V。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
实验结果与理想继电特性相符波形如下:3.2测量饱和特性将信号发生器(B1)的幅度控制电位器中心Y测孔,作为系统的-5V~+5V输入信号(Ui):B1单元中的电位器左边K3开关拨上(-5V),右边K4开关也拨上(+5V)。
(2)模拟电路产生的饱和特性:饱和特性模拟电路见图3-4-6。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
如下所示:函数发生器产生的饱和特性①函数发生器的波形选择为‘饱和’特性;调节“设定电位器1”,使数码管左显示斜率为2;调节“设定电位器2”,使数码管右显示限幅值为3.7V。
慢慢调节输入电压(即调节信号发生器B1单元的电位器,调节范围-5V~+5V),观测并记录示波器上的U0~U i图形。
波形如下:。
3.3测量死区特性模拟电路产生的死区特性死区特性模拟电路见图3-4-7。
现代控制理论实验指导书实验一:线性系统状态空间分析1、模型转换图1、模型转换示意图及所用命令传递函数一般形式:)()(11101110n m a s a s a s a b s b s b s b s G n n n n m m m m ≤++++++++=----K KMATLAB 表示为:G=tf(num,den),其中num,den 分别是上式中分子,分母系数矩阵。
零极点形式:∏∏==--=n i j mi i ps z s K s G 11)()()( MATLAB 表示为:G=zpk(Z,P ,K),其中 Z ,P ,K 分别表示上式中的零点矩阵,极点矩阵和增益。
传递函数向状态空间转换:[A,B,C,D] = TF2SS(NUM,DEN);状态空间转换向传递函数:[NUM,DEN] = SS2TF(A,B,C,D,iu)---iu表示对系统的第iu个输入量求传递函数;对单输入iu为1;验证教材P438页的例9-6。
求P512的9-6题的状态空间描述。
>> A=[0 1;0 -2];>> B=[1 0;0 1];>> C=[1 0;0 1];>> D=[0 0;0 0];>> [NUM,DEN] = ss2tf(A,B,C,D,1)NUM =0 1 20 0 0DEN =1 2 0>> [NUM,DEN] = ss2tf(A,B,C,D,2)NUM =0 0 10 1 0DEN =1 2 0给出的结果是正确的,是没有约分过的形式P512 9-6>> [A,B,C,D]=tf2ss([1 6 8],[1 4 3])A =-4 -31 0B =1C =2 5D =12、状态方程求解单位阶跃输入作用下的状态响应:G=ss(A,B,C,D);[y,t,x]=step(G);plot(t,x). 零输入响应[y,t,x]=initial(G,x0)其中,x0为状态初值。
现代控制理论实验报告实验一 系统的传递函数阵和状态空间表达式的转换一、实验目的1.熟悉线性系统的数学模型、模型转换。
2.了解MATLAB 中相应的函数 二、实验内容及步骤 1.给定系统的传递函数为1503913.403618)(23++++=s s s s s G 要求(1)将其用Matlab 表达;(2)生成状态空间模型。
2.在Matlab 中建立如下离散系统的传递函数模型y (k + 2) +5y (k +1) +6y (k ) = u (k + 2) + 2u (k +1) +u (k ) 3.在Matlab 中建立如下传递函数阵的Matlab 模型⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++++++=726611632256512)(2322s s s s s s s s s s s s G4.给定系统的模型为)4.0)(25)(15()2(18)(++++=s s s s s G求(1)将其用Matlab 表达;(2)生成状态空间模型。
5.给定系统的状态方程系数矩阵如下:[]0,360180,001,0100011601384.40==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=D C B A用Matlab 将其以状态空间模型表示出来。
6.输入零极点函数模型,零点z=1,-2;极点p=-1,2,-3 增益k=1;求相应的传递函数模型、状态空间模型。
三、实验结果及分析1. num=[18 36];den=[1 40.3 391 150]; >> G=tf(num,den) Transfer function: 18 s + 36----------------------------s^3 + 40.3 s^2 + 391 s + 150>> sys=ss(G)a =x1 x2 x3x1 -40.3 -24.44 -4.688x2 16 0 0x3 0 2 0b =u1x1 2x2 0x3 0c =x1 x2 x3y1 0 0.5625 0.5625d =u1y1 0Continuous-time model.2. num=[1 2 1];den=[1 5 6];tf(num,den,0.1) Transfer function:z^2 + 2 z + 1-------------z^2 + 5 z + 6Sampling time: 0.13. num={[1 2 1] [1 5] [2 3] [6]};den={[1 5 6] [1 2] [1 6 11 6] [2 7]};>> tf(num,den)Transfer function from input 1 to output:s^2 + 2 s + 1-------------s^2 + 5 s + 6Transfer function from input 2 to output:s + 5-----s + 2Transfer function from input 3 to output:2 s + 3----------------------s^3 + 6 s^2 + 11 s + 6Transfer function from input 4 to output:6-------2 s + 74. sys=zpk([-2],[-15 -25 -0.4],[18])Zero/pole/gain:18 (s+2)---------------------(s+15) (s+25) (s+0.4)z=-2;p=[-15;-25;-0.4];k=18;>> [A,B,C,D]=zp2ss(z,p,k)A =-0.4000 0 01.6000 -40.0000 -19.36490 19.3649 0B =11C =0 0 0.9295D =5. A=[-40.4 -138 -160;1 0 0;0 1 0];B=[1;0;0];C=[0 18 360];D=0; >> sys=ss(A,B,C,D)a =x1 x2 x3 x1 -40.4 -138 -160x2 1 0 0x3 0 1 0b =u1x1 1x2 0x3 0c =x1 x2 x3y1 0 18 360d =u1y1 0Continuous-time model.6. z=[1;-2];p=[-1;2;-3];k=1;>> [A,B,C,D]=zp2ss(z,p,k)A =2.0000 0 01.0000 -4.0000 -1.73210 1.7321 0B =1C =1.0000 -3.0000 -2.8868D =>> [num,den]=ss2tf(A,B,C,D)num =0 1.0000 1.0000 -2.0000 den =1 2 -5 -6 >> tf(num,den) Transfer function: s^2 + s - 2 --------------------- s^3 + 2 s^2 - 5 s - 6 四、实验总结本次实验主要是熟悉利用matlab 建立线性系统数学模型以及模型间的相应转换(如状态空间、传递函数模型等)、并了解matlab 中相应函数的使用,如tf 、ss 、zp2ss 、ss2tf 等。
倒立摆控制系统实验报告实验一建立一级倒立摆的数学模型一、实验目的学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。
二、实验内容写出系统传递函数和状态空间方程,用Matlab进行仿真。
三、Matlab源程序及程序执行结果⑴Matlab源程序⑵给出系统的传递函数和状态方程传递函数gs(输出为摆杆角度)传递函数gspo(输出为小车位置)状态空间sys(A,B,C,D)⑶给出传递函数极点和系统状态矩阵A的特征值传递函数gs极点P传递函数gspo极点Po系统状态矩阵A的特征值E⑷给出系统开环脉冲响应和阶跃响应的曲线系统开环脉冲响应曲线系统开环阶跃响应曲线四、思考题(1) 由状态空间方程转化为传递函数,是否与直接计算传递函数相等?通过比较,可知传递函数gspo由状态空间方程转化为传递函数时,多了s的一次项,但是系数可以近似为0。
传递函数gs,则完全相等。
所以,状态空间方程转化为传递函数与直接计算传递函数可以认为是相等的。
(2) 通过仿真表明开环系统是否稳定?请通过极点(特征值)理论来分析。
开环系统不稳定。
根据极点理论可知,系统稳定的条件是极点均在左半平面。
但是,系统有一个极点5.4042不在左半平面。
因此,系统不稳定(3) 传递函数的极点和状态方程的特征值的个数、大小是否相等?如果不相等,请解释其原因。
传递函数gspo的极点和状态方程的特征值的个数、大小相等。
但是传递函数gs的极点和状态方程的特征值个数不相等。
因为存在零极点对消。
Matlab源程序:clear all;f1=0.001;%实际系统参数M=1.32;m=0.132;b=0.1;l=0.27;I=0.0032;g=9.8;T=0.02;%求传递函数gs(输出为摆杆角度)和gspo(输出为小车位置)q=(M+m)*(I+m*l^2)-(m*l)^2;num=[m*l/q 0];den=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q];gs=tf(num,den);numpo=[(I+m*l^2)/q 0 -m*g*l/q];denpo=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0];gspo=tf(numpo,denpo);%求状态空间sys(A,B,C,D)p=I*(M+m)+M*m*l^2;A=[0 1 0 0;0 -(I+m*l^2)*b/p m^2*g*l^2/p 0;0 0 0 1;0 -m*b*l/p m*g*l*(M+m)/p 0];B=[0;(I+m*l^2)/p;0;m*l/p];C=[1 0 0 0;0 0 1 0];D=[0;0];sys=ss(A,B,C,D);%通过传递函数求系统(摆杆角度和小车位置)的开环脉冲响应t=0:T:5;y1=impulse(gs,t);y2=impulse(gspo,t);figure(1);plot(t,y2,'b',t,y1,'r');xlabel('t/s');ylabel('Position/m or Angle/rad');axis([0 2 0 80]);legend('Car Position','Pendulum Angle');%将状态空间方程sys转化为传递函数gs0gs0=tf(sys);%通过状态方程求系统(摆杆角度和小车位置)的开环脉冲响应t=0:T:5;y=impulse(sys,t);figure(2);plot(t,y(:,1),t,y(:,2),'r');xlabel('t/s');ylabel('Position/m or Angle/rad');axis([0 2 0 80]);legend('Car Position','Pendulum Angle');%通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应t=0:T:5;y1=step(gs,t);y2=step(gspo,t);figure(3);plot(t,y2,'b',t,y1,'r');axis([0 2.5 0 80]);xlabel('t/s');ylabel('Position/m or Angle/rad');legend('Car Position','Pendulum Angle');%通过状态方程求系统(摆杆角度和小车位置)的开环阶越响应t=0:T:5;y=step(sys,t);figure(4);plot(t,y(:,1),t,y(:,2),'r');xlabel('t/s');ylabel('Position/m or Angle/rad');axis([0 2.5 0 80]);legend('Car Position','Pendulum Angle');%求传递函数极点P=pole(gs);Po=pole(gspo);%求A的特征值E=eig(A);实验二倒立摆系统控制算法的状态空间法设计一、实验目的学习如何使用状态空间法设计系统的控制算法。
现代控制理论姓名:滕翔学号:10051321班级:自动化10-3班一、实验内容:已知系统传递函数1. 用Simulink 对该系统进行实现●能控性实现●串联实现●能观性实现(选做)●并联实现(选做)2. 以上述系统的串联实现为基础,实验研究:●系统在初始条件作用下的状态响应和输出响应●系统在阶跃输入信号作用下的状态响应和输出响应●分析系统在状态空间坐标原点的稳定性3. 以上述系统的串联实现为基础,设计状态反馈控制器要求:系统输出的最大超调量,调节时间ts=1秒仿真分析系统的实际工作效果,由系统输出的实际阶跃响应曲线计算最大超调量、调节时间、稳态误差等系统的性能参数分析该系统在输出比例控制下是否会存在稳态误差?状态反馈控制下是否会存在稳态误差?分析出现这种差异的原因,讨论消除状态反馈稳态误差的方法。
4. 以上述系统的串联实现为基础,设计系统的全维状态观测器,观测器极点全为-4,仿真分析在原系统和观测器系统初始条件相同和不同时,观测状态与原状态变量的差值随时间变化的情况,例如改变观测器极点配置到-9,结果有何不同?5. 结合以上3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态反馈与观测状态反馈系统控制效果的异同。
6. 选做降维观测器设计及状态反馈实验平台采用MATLAB 及Simulink 工具,注意:实验过程中要善于应用MATLAB 控制系统工具箱的工具。
二、实验过程,结果及分析:1.用Simulink 对该系统进行实现能控性实现(1)(2)很容易就可以得到能控Ⅰ型实现,状态空间表达式如下:(3)由上述表达式可得结构模拟图如下:(4)根据结构模拟图在simulink中仿真子系统如下图:● 串联实现(1)(2) 由上式很容易得到结构模拟图如下:(3) 根据结构模拟图在simulink 中仿真子系统如下图:● 能观性实现(选做)(1)(2) 可以写出能观Ⅱ型实现,状态空间表达式如下:(3) 结构模拟图如下:(4) 根据结构模拟图在simulink 中仿真子系统如下图:并联实现(选做)(1)(2) 由上式可写出约当标准型实现,状态空间表达式如下:(3)由状态空间表达式可以得到结构模拟图如下:(4)根据结构模拟图在simulink中仿真子系统如下图:综上,将所有子系统一起进行仿真,仿真模型如下图:仿真结果如下图:分析:上图曲线由上及下分别是能控实现,串联实现,能观实现,并联实现以及各种实现混合,可见各种实现仿真曲线一致,证明同一系统各种实现效果唯一,只是形式方式不一样而已,在表观性质上有区别但本质是相同的。
课程名称:成分分析仪表课程编号:05103120适用专业:自动化、测控技术与仪器课程总学时:32 实验学时:2大纲执笔人:廖明燕授课单位:自动化系一、教学目标本实验是自动化专业的一门选修课实验。
通过实验,加深理解气相色谱分析仪、液相色谱分析仪、红外线气体分析器的结构原理和工作过程。
二、基本要求要求学生画出结构框图、分析测量原理。
四、实验教材及参考书(一)教材《化工测量及仪表》,范玉玖等,化学工业出版社,2003(二)参考书《化验员实用手册》,夏玉宇,化学工业出版社,1999课程名称:新型测控仪表课程编号:05104120适用专业:自动化、测控技术与仪器课程总学时:32 实验学时:4大纲执笔人:耿艳峰授课单位:自动化系一、教学目标《新型测控仪表》实验课程是一门专业选修课实验。
通过实验使学生了解自动化仪表的现状与发展、新型测控技术等内容,并能够针对几种典型传感器特性进行实验测试,了解不同的被测参数转换成电信号的原理和过程,学习实际仪表中使用的不同的测量误差补偿方法和抗干扰措施,为将来的设计与开发工作奠定基础。
二、基本要求掌握典型传感器的特性,理解测量信号转换的原理,了解在实际的工业生产中仪表的使用方法。
四、实验教材及参考书内部实验讲义《自动化仪表与DCS》实验教学大纲课程名称:自动化仪表与DCS 课程编号:05106130适用专业:自动化、测控技术与仪器课程总学时:48 实验学时:8大纲执笔人:耿艳峰授课单位:自动化系一、教学目标《自动化仪表与DCS》实验课程是一门专业课实验,通过实验教学使学生深入理解几种典型自动化仪表的工作原理及参数设置方法,内容包括:调节仪表的比例、积分、微分调节规律各个参数的设置及其对输出结果的影响,学会可编程序调节器的使用;可以对小型的PLC进行基本的编程、调试、完成一定的逻辑控制功能,了解小型PLC控制系统的设计;了解气动执行机构的结构和调校方法。
二、基本要求要求学生通过实验深入理解调节类仪表执行类仪表的基本概念,掌握小型PLC控制系统的基本开发方法。
现代控制理论基础实验报告专业:年级:姓名:学号:提交日期:实验一系统能控性与能观性分析1、实验目的:1. 通过本实验加深对系统状态的能控性和能观性的理解;2. 验证实验结果所得系统能控能观的条件与由它们的判据求得的结果完全一致。
2、实验内容:1•线性系统能控性实验 2.线性系统能观性实验。
3、实验原理:系统的能控性是指输入信号u 对各状态变量x 的控制能力。
如果对于系统任意的初始状态,可以找到一个容许的输入量,在有限的时间内把系统所有的状态变量转移到状态空间的坐标原 点。
则称系统是能控的。
系统的能观性是指由系统的输出量确定系统所有初始状态的能力。
如果在有限的时间内,根据 系统的输出能唯一地确定系统的初始状态,则称系统能观。
(10-1)i Ly=U c =[01]U c由上式可简写为x Ax bU y cxR 3对于图10-1所示的电路系统,设i L 和u c 分别为系统的两个状态变量,如果电桥中旦R 2 &则输入电压U 能控制i L 和U c 状态变量的变化,此时,状态是能控的;状态变量i L 与U c 有耦合关系, 输出U c 中含有i L 的信息,因此对U c 的检测能确定i L 。
即系统能观的。
R 1 R 3反之,当」时, R 2 R 4变i L 的大小,故系统不能控; 即系统不能观。
Ri R 31.1当13时R 2 R 4电桥中的由于输出R 31( R 1R 2 L (R , R 2R 3 R 4R3R4R 2c 点和d 点的电位始终相等,U c 不受输入U 的控制,u 只能改U c 和状态变量i L 没有耦合关系,故 U c 的检测不能确定i L ,丄(亠亠)C R R 2R 3 R 41 ( R 1R2 L (R R 2R 3 R 4R3R4I L U C(10-2)I LR 2R 1 R 2 i L式中X U C1 (L R 1 R 21 R2 ( —— C R 1 R 2 R3 R 4)R3 R 4R 3 R 4R 1 R 2 1 (L R 1 R 21 1 -( CR 1R 2R3 R 4) R 4 1 )R 3 R 4[0 1]由系统能控能观性判据得 ran k[b Ab] =2c rank cA 故系统既能控又能观。
现代控制理论
姓名:滕翔
学号:10051321
班级:自动化10-3班
一、实验内容:
已知系统传递函数
1. 用Simulink 对该系统进行实现
●能控性实现
●串联实现
●能观性实现(选做)
●并联实现(选做)
2. 以上述系统的串联实现为基础,实验研究:
●系统在初始条件作用下的状态响应和输出响应
●系统在阶跃输入信号作用下的状态响应和输出响应
●分析系统在状态空间坐标原点的稳定性
3. 以上述系统的串联实现为基础,设计状态反馈控制器
要求:系统输出的最大超调量,调节时间ts=1秒仿真分析系统的实际工作效果,由系统输出的实际阶跃响应曲线计算最大超调量、调节时间、稳态误差等系统的性能参数分析该系统在输出比例控制下是否会存在稳态误差?状态反馈控制下是否会存在稳态误差?分析出现这种差异的原因,讨论消除状态反馈稳态误差的方法。
4. 以上述系统的串联实现为基础,设计系统的全维状态观测器,观测器极点全
为-4,仿真分析在原系统和观测器系统初始条件相同和不同时,观测状态与原
状态变量的差值随时间变化的情况,例如改变观测器极点配置到-9,结果有何不同?
5. 结合以上3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态反馈与观测状态反馈系统控制效果的异同。
6. 选做降维观测器设计及状态反馈
实验平台采用MATLAB 及Simulink 工具,注意:实验过程中要善于应用MATLAB 控制系统工具箱的工具。
二、实验过程,结果及分析:
1.用Simulink 对该系统进行实现
能控性实现
(1)
(2)很容易就可以得到能控Ⅰ型实现,状态空间表达式如下:
(3)由上述表达式可得结构模拟图如下:
(4)根据结构模拟图在simulink中仿真子系统如下图:
● 串联实现
(1)
(2) 由上式很容易得到结构模拟图如下:
(3) 根据结构模拟图在simulink 中仿真子系统如下图:
● 能观性实现(选做)
(1)
(2) 可以写出能观Ⅱ型实现,状态空间表达式如下:
(3) 结构模拟图如下:
(4) 根据结构模拟图在simulink 中仿真子系统如下图:
并联实现(选做)
(1)
(2) 由上式可写出约当标准型实现,状态空间表达式如下:
(3)由状态空间表达式可以得到结构模拟图如下:
(4)根据结构模拟图在simulink中仿真子系统如下图:
综上,将所有子系统一起进行仿真,仿真模型如下图:
仿真结果如下图:
分析:
上图曲线由上及下分别是能控实现,串联实现,能观实现,并联实现以及各种实现混合,可见各种实现仿真曲线一致,证明同一系统各种实现效果唯一,只是形式方式不一样而已,在表观性质上有区别但本质是相同的。
2. 以上述系统的串联实现为基础,实验研究:
系统在初始条件作用下的状态响应和输出响应
以串联实现为基础,在simulink中模型实现如下图:
(1)当时,仿真模型如上图,仿真结果如下图1:
图1
(2)时,仿真模型如下:
仿真结果如下图2:
图2
结果分析:
观察图1和图2,对应各状态及输出结果的区别,在阶跃信号来之前,都有从初始状态走向0
的趋势,阶跃信号来到之后,状态及输出响应基本呈线性增长。
系统在阶跃输入信号作用下的状态响应和输出响应保证,1s时信号0->2,4s时信号2->1,模型如下:
仿真结果如下图3:
图3
分析:
图3与图1比较,很容易就发现,阶跃信号影响的是之后状态及输出响应值线性增长的斜率。
●分析系统在状态空间坐标原点的稳定性
由实验要求1串联实现的结构模拟图,写出状态空间表达式:
det[λI-A]=(λ+3)(λ+2)λ=0→
有0,并不是全具有负实部,0不在s左半平面,所以系统并非在时渐进稳定系统。
3. 以上述系统的串联实现为基础,设计状态反馈控制器
采用配置极点方式将系统转换成二阶系统,所以其中一个极点为-1,通过要求计算参数:二阶系统的标准形式为:
所以另外两个极点是:
在matlab中利用place函数求出K。
可以得到如下模型:
仿真结果:
4. 以上述系统的串联实现为基础,设计系统的全维状态观测器。
在matlab中运行命令脚本tets4.m:
A = [0 1 0;0 -3 -1;0 -2 0];
B = [0;6;6];
P1 = [-4,-4,-4];
G1 = place(A',B',P1)'
P2 = [-9,-9,-9];
G2 = place(A',B',P2)
可以得到如下模型:
仿真结果:
实现观测器反馈的模型如下图:
仿真结果如下:
5. 结合以上3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态反馈与观测状态反馈系统控制效果的异同。
根据3、4种仿真结果,可以看到两种反馈控制效果一样,只不过是观测状态反馈能更清晰地观测状态变量,符合能观特性,根据输出就能观测状态,而状态反馈并没体现这一点。
总结起来也就是说,只要取F=HC的状态反馈即可达到与线性非动态输出反馈H相同的控制效果。
但状态反馈F所能达到的控制效果,采用线性非动态输出反馈H却不一定能实现,这是因为一般线性系统的输出y=Cx只是部分状态变量的线性组合,故线性非动态输出反馈一般可视为一种部分状态反馈,其不能象全状态反馈那样任意配置反馈系统的极点。
三、实验总结:
通过本次实验,我们用Simulink 对该系统进行实现,能控性实现以及串联实现,增强了对理论知识的理解与认识。