位似的概念
- 格式:doc
- 大小:80.50 KB
- 文档页数:5
初中数学什么是位似位似是初中数学中的一个重要概念,它是指由两个图形通过平移、旋转、翻转或者这些变换的组合而得到的相似图形。
在本文中,我们将详细介绍位似的定义、性质以及一些例子来帮助理解这个概念。
首先,让我们来定义位似。
如果有两个图形,它们的形状和大小是相似的,但位置可能不同,那么我们可以说这两个图形是位似的。
换句话说,位似是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。
接下来,我们来讨论位似的性质。
位似具有以下性质:1. 形状相似:位似图形的形状是相似的,即它们的对应角相等,对应边的比例相等。
2. 大小相似:位似图形的大小是相似的,即它们的对应边的比例是相等的。
3. 位置可能不同:位似图形的位置可能不同,它们可以通过平移、旋转、翻转或者这些变换的组合来得到。
4. 变换保持相似性:位似图形之间的变换(如平移、旋转、翻转)保持它们的相似性,即变换前后仍然是位似图形。
让我们来看一些例子来帮助理解位似。
例子1:考虑两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F。
如果我们通过将三角形ABC沿顺时针方向旋转90度,并将它平移到DEF的位置,那么我们可以说三角形ABC和DEF是位似的。
它们具有相似的形状和大小,但位置可能不同。
例子2:考虑一个正方形和一个矩形,它们的边长比例是相等的,但是它们的形状和位置不同。
通过将正方形进行翻转或者旋转,我们可以得到一个与原正方形位似但位置不同的矩形。
例子3:考虑一个正三角形和一个等腰梯形,它们的形状和位置都不同,但是它们的对应边的比例相等。
通过将正三角形进行翻转或者旋转,我们可以得到一个与原正三角形位似但位置不同的等腰梯形。
通过这些例子,我们可以看到位似的性质和应用。
位似可以帮助我们在研究图形的形状和大小时,通过变换来得到相似的图形,从而简化问题的求解。
此外,位似也可以帮助我们理解和应用其他几何概念,如相似三角形、比例关系等。
位似图形的定义及性质什么是位似图形?位似图形(IsomorphicGraphs)是由同一类图形组成的图,它们的全部节点及边都相同,但是它们的外形可能不太一样。
位似图形的定义主要指的是一种同构的连通图,它们之间的节点和边都是相似的。
准确来说,这些图形之间的数量和结构是相同的,只是它们的外形不同。
位似图形的研究可以追溯到1890年,当时首先由荷兰数学家安德森威尔金斯提出。
它是一种独特的结构,可以通过某种形式从一个图中转换到另一个图,而且,只要这两个图是位似图形,它就能够完全保持它们之间的联系。
从数学上来看,位似图形可以被表示为一对有向图。
它们中可能包含一个或多个节点和一个或多个边,这些边可以有不同的方向。
两个位似图形的关系可以用一个分析函数来表示,这个函数的输入是一对图,而输出是一个布尔值,如果给定的两个图形是位似图形,它就会返回一个真值,反之亦然。
位似图形的性质是相当有用的,特别是在研究图论的早期,位似图形的研究有助于数学家们理解图论中的基本概念以及图结构之间的联系。
它也帮助人们发现更多有关任意给定图结构的细节,例如有关它的节点数量、边数量、节点之间的关系等等。
位似图形的研究也是一个重要的工具,它帮助数学家们研究不同图论结构之间的关系。
例如,研究人员可以比较两个不同的图形,看看它们之间有何不同,从而发现它们之间的联系,从而给出更深入的结论。
另外,位似图形在算法和机器学习方面也有很多应用,它们可以帮助计算机程序发现图形之间的关系,并找出有用的特征以及对它们进行分类。
有时,它们甚至可以帮助计算机解决复杂的问题,比如解决最短路径问题。
总的来说,位似图形的定义和性质有助于数学家们更好地理解图结构之间的联系,从而发现更多有用的信息。
它们也有许多应用,例如在计算机程序,机器学习,以及算法研究方面。
九年级下册位似的知识点位似是九年级下册数学学习的一个重要知识点。
位似是指两个多边形的形状相似,但是大小不同。
在本文中,将探讨位似的定义、性质以及其在实际生活和其他学科中的应用。
一、位似的定义位似,即位置似相似。
在数学中,当两个多边形的对应角相等,并且对应边的比例相等时,我们可以说这两个多边形是位似的。
位似的概念是相似三角形的推广,它不仅适用于三角形,也适用于其他形状的多边形。
二、位似的性质1.对应角相等:两个位似的多边形的对应角是相等的,即对应角的度数相等。
2.对应边比例相等:两个位似的多边形的对应边的长度比例相等,即对应边的比值相等。
3.面积比例相等:两个位似的多边形面积的比例等于对应边的长度比例的平方。
三、位似的应用1.建筑设计:在建筑设计中,位似的概念可以用来设计不同比例的建筑物。
例如,在设计一个模型房屋时,需要按照实际房屋的尺寸比例缩小或放大建模,以便更好地展示设计效果。
2.地图制作:地图是我们生活中常用的工具之一。
在制作地图时,为了让地图更加美观和实用,会使用位似的概念将真实地貌比例缩小到地图上。
3.计算测量:在实际测量中,我们可以利用位似的性质估算无法直接测量的距离或高度。
通过已知的尺寸比例,我们可以推算出未知物体的尺寸。
4.数学推理:位似的概念也在数学推理中得到应用。
利用位似的性质,我们可以推导出多边形的各种性质和公式,从而解决实际问题。
总结:位似作为数学中的一个重要概念,可以帮助我们了解和解决各种实际问题。
通过对位似的定义和性质的掌握,我们可以在实际生活和其他学科中更好地应用数学知识,提高问题解决能力。
同时,位似也是几何学中的一个重要内容,对于九年级学生来说,掌握位似的概念和性质是非常重要的,将会为他们以后的学习打下坚实的基础。
因此,我们应该通过实际问题的解决和推理,将数学知识与实际应用相结合,以帮助我们更好地理解和应用位似的概念。
通过不断的学习和实践,我们可以在数学学习的道路上取得更好的成绩。
相似三角形的位似定理与位似点相似三角形是几何学中重要的概念之一,它们具有相同的形状但可能不同的大小。
在研究相似三角形时,我们需要掌握位似定理和位似点的概念,这些概念有助于我们在解题时进行推理和判断。
一、位似定理位似定理是研究相似三角形时最主要的定理之一,它表明相似三角形的对应角度相等。
具体而言,如果两个三角形的对应角度相等,则它们是相似的。
我们可以将位似定理表示为以下形式:若三角形ABC与三角形DEF相似,记作△ABC∼△DEF,则有∠A=∠D,∠B=∠E,∠C=∠F。
通过位似定理,我们可以利用已知信息来推导未知信息。
例如,如果我们知道两个三角形的某些角度相等,我们可以得出它们是相似的结论。
这种关系对于解决实际问题具有很大的帮助。
二、位似点位似点是指在两个相似三角形中,对应边上的点成比例。
也就是说,如果两个三角形的对应边上的点成比例,则它们是相似的。
我们可以将位似点表示为以下形式:若三角形ABC与三角形DEF相似,记作△ABC∼△DEF,则有(AB/DE)=(AC/DF)=(BC/EF)。
位似点的概念能够帮助我们求解相似三角形中未知长度的边。
通过观察对应边上的点的比例关系,我们可以利用已知长度来推导出未知长度。
三、应用示例下面,我们通过一个具体的问题来应用位似定理和位似点的概念。
问题:在△ABC中,∠B = 50°,∠C = 70°。
如果BC边的长度为8 cm,求出AB和AC边的长度。
解答:根据已知条件,我们知道∠B = 50°,∠C = 70°。
现在我们可以利用位似定理来判断三角形△ABC与另一个三角形是否相似。
假设△ABC与△DEF相似,根据位似定理,我们得出∠B = ∠E = 50°,∠C = ∠F = 70°。
根据题目要求,我们已知BC边的长度为8 cm。
现在我们可以利用位似点的概念来求解AB和AC边的长度。
根据位似点,我们可以得到(BC/EF)=(AB/DE)=(AC/DF)。
位似一、知识要点1、位似的概念如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2、性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
①位似多边形的对应边平行或共线。
②位似可以将一个图形放大或缩小。
③位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
(2)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
(3)在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.注意:1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
1.位似图形上某一对对应顶点到位中心的距离分别为 5 cm和15 cm,则它们的相似比为_________2.如图27-33,蜡烛与成像板之间的距离为3m,小孔纸板距蜡烛1m,若蜡烛AB长20cm,则所成的像长为_________cm.图27-333.四边形ABCD和四边形A'B'C'D'是位似图形,O为位似中心,若OA∶OA',=1∶2,那么AB∶A'B'=________,S四边形ABCD∶S四边形A'B'C'D'=________.4.如图27-34所示,点O是等边△PQR的中心,P,Q',R'分别是OP、OQ、OR的中点,则△P'Q'R'与△PQR是________,点O是_____,相似比是________.图27-34 图27-355.如图27-35所示,矩形AOBC与DOEF是位似图形,且O为位似中心,相似比为1∶2,若A(0,1)、B(2,0),则F点的坐标为________.6.下列两个图形不是位似图形的是( )7.把△ABC三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以3得△A'B'C',的坐标A',(0,3)、B'(6,0)、C(9,6),那么△ABC与△A'B'C'是______图形,位似中心是_______,相似比为________8.把△ABC三点坐标A(0,1)、B(2,0)、C(3,2)分别乘以-3,得△A'B'C',的坐标A'(0,-3)、B(-6,0)、C'(-9,-6),那么△A BC与△A'B'C'是_____图形,位似中心是_____,相似比为_____.9.如图27-36所示,按如下方法将△ABC 的三边缩小为原来的21,任取一点O ,连AO 、BO 、CO ,并取它们的中点D 、E 、F ,则下列说法: (1)△ABC 与△DEF 是位似形. (2)△ABC ∽△DEF.(3)△ABC 与△DEF 周长的比为2∶1(4)△ABC 与△D EF 面积的比为4∶1.其中正确的个数是( )图27-36A.1B.2C.3D.410.图27-36中,△ABC 与△DEF 是位似图形.那么,DE 与AB 平行吗?为什么?EF 与BC 呢?DF 与AC 呢?11.如图27-37所示,O 为四边形ABCD 上一点,以O 为位似中心,将四边形ABCD 放大为原来的2倍.12.如图27-38所示,O 为位似中心,将△ABC 缩小为原来的32(要求对应顶点在位似中心的同旁).13.如图27-39所示,O 为位似中心,将△ABC 放大为原来的2倍(要求对应顶点在位似中心的两旁).图27-37 图27-38 图27-3914.有一个正六边形,将其按比例缩小,使得缩小后的正六边形的面积为原正六边形面积的31,已知原正六边形一边为3,则后来正六边形的边长为( ) A.9 B.3 C.3 D.332 15.在任意一个三角形内部,画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是( )A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点16.下列说法正确的个数是( )①位似图形一定是相似图形;②相似图形一定是位似图形;③两个位似图形若全等,则位似中心在两个图形之间;④若五边形ABCDE与五边形A'B'C'D'E'位似,则其中△ABC与△A'B'C'也是位似的且相似比相等.A.1个B.2个C.3个D.4个17.若两个图形位似,则下列叙述不正确的是( )A.每对对应点所在的直线相交于同一点;B.两个图形上的对应线段之比等于相似比C.两个图形上对应线段必平行D.两个图形的面积比等于相似比的平方18.如图27-40所示,在直角坐标系中,A(1,2),B(2,4),C(4,5),D(3,1)围成四边形ABCD.作出四边形ABCD的位似图形,使得新图形与原图形对应线段的比为2∶1,位似中心是坐标原点.图27-4019.(1)如图27-41所示,作山四边形ABCD的位似图形A'B'C'D',使四边形ABCD与四边形A'B'C'D'的相似比为2∶1;(2)若已知AB=2cm,BC=3cm,∠A=60°,AB⊥BC,CD⊥DA,求四边形A'B'C'D'的面积.图27-4120.正方形ABCD各顶点的坐标分别为A(1,1),B(-1,1),C(-1,2),D(1,2),以坐标原点为位似中心,将正方形ABCD放大,使放大后的正方形A'B'C'D'的边是正方形边的3倍。
位似图形的定义及性质
位似图形是一种强大的几何图形,由它可以刻画出许多几何概念,从而使得几何知识更加容易理解和运用。
它已经被广泛应用于许多领域,如研究物理学,以及一些工程领域。
那么,位似图形究竟是什么?以及位似图形的性质有哪些?
一、位似图形的定义
位似图形是一种可以用来描述几何形状的图形。
它被称为位似图形,是因为它由一系列的位置感知的图案组成,它们几乎可以完全重叠,而不会改变它们的形状,大小以及位置。
例如,圆形是一个最常见的位似图形,它是一个由很多小的圆点组成,而这些小圆点几乎可以重叠并且完全相同。
二、位似图形的性质
1、符号化:位似图形能将复杂的空间状态用简单的符号来表示,从而使得几何知识更加容易理解和运用。
2、视觉感知:位似图形的形状和大小可以在视觉上进行感知,
可以更加直观地感受几何状态。
3、精确度高:位似图形可以很好地反映几何形状的精确度,它
可以准确地反映几何的形状和大小,使得几何知识更加有效。
4、信息量大:位似图形能够精确表达出几何形状的详细信息,
能够体现出几何形状的复杂性并反映出它在特定空间位置的信息。
由以上性质可知,位似图形是一种获取几何信息的有效工具,能够较为准确地描述出几何形状的精细细节。
它既适用于描述几何图形,
也可以用来描述物理、空间等属性。
位似图形性质的学习,可以帮助我们更好地理解几何知识,更好地应用几何知识。
综上所述,位似图形是一种具有符号化、视觉感知、精确度高、信息量大等性质的一种几何图形。
它为学习和应用几何知识提供了一个良好的视角,可以让我们更加清晰地感受到几何形状的变化,辅助我们更好地理解和应用几何知识。
图形的位似
图形的位似是一种数学概念,用于描述两个图形之间的相似程度。
在几何图形中,位似是指两个图形的形状和大小相似,只是其中一个图形经过了缩放、旋转或平移等变换。
要判断两个图形是否位似,主要需要比较它们的比例关系和形状。
比例关系表示两个图形的对应部分的边长或面积的比值是相等的;形状表示两个图形的边长和角度之间的关系是相等的。
图形的位似可以用于解决很多实际问题。
例如,当我们要放大或缩小一个图形时,可以利用位似的概念来确定新图形的尺寸;当我们需要判断两个地图或建筑物是否相似时,也可以采用位似的方法来比较它们的形状和比例关系。
在实际应用中,通常可以通过计算两个图形的相似比来确定它们的位似程度。
相似比是两个图形的对应边长的比值。
如果两个图形的相似比相等,则它们是位似的。
例如,假设有两个三角形ABC和DEF,它们的对应边长比为a:b:c和d:e:f,如果a/b=c/d=e/f,则可以判断三角形ABC和DEF是位似的。
当然,在实际中判断图形的位似还有其他方法和指标。
例如,可以通过计算两个图形的面积比或计算它们的角度之间的差值来判断它们的位似程度。
不同的方法可以根据具体的问题进行选择和应用。
总之,图形的位似是一种数学概念,用于描述和比较两个图形之间的相似程度。
通过比较两个图形的比例关系和形状
等特征,可以判断它们的位似程度。
在解决实际问题时,可以利用位似的概念来确定图形的尺寸和形状,并进行比较和分析。
中考数学复习----《位似》知识点总结与专项练习题(含答案)知识点总结1. 位似的概念:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心。
2. 位似与平面直角坐标系:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或﹣k 。
练习题1、(2022•百色)已知△ABC 与△A 'B 'C '是位似图形,位似比是1:3,则△ABC 与△A 'B 'C '的面积比是( )A .1:3B .1:6C .1:9D .3:1【分析】利用为位似的性质得到△ABC 与△A 'B 'C '相似比是1:3,然后根据相似三角形的性质求解.【解答】解:∵△ABC 与△A 'B 'C '是位似图形,位似比是1:3,∴△ABC 与△A 'B 'C '相似比是1:3,∴△ABC 与△A 'B 'C '的面积比是1:9.故选:C .2、(2022•梧州)如图,以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,已知 OA OA =31,若四边形ABCD 的面积是2,则四边形A ′B ′C ′D ′的面积是( )A .4B .6C .16D .18【分析】直接利用位似图形的性质得出面积比进而得出答案.【解答】解:∵以点O 为位似中心,作四边形ABCD 的位似图形A ′B ′C ′D ′,=,∴==, 则四边形A ′B ′C ′D ′面积为:18.故选:D .3、(2022•威海)由12个有公共顶点O 的直角三角形拼成如图所示的图形,∠AOB =∠BOC =∠COD =…=∠LOM =30°.若S △AOB =1,则图中与△AOB 位似的三角形的面积为( )A .(34)3B .(34)7C .(34)6D .(43)6 【分析】根据余弦的定义得到OB =OA ,进而得到OG =()6OA ,根据位似图形的概念得到△GOH 与△AOB 位似,根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:在Rt △AOB 中,∠AOB =30°,∵cos∠AOB=,∴OB=OA,同理,OC=OB,∴OC=()2OA,……OG=()6OA,由位似图形的概念可知,△GOH与△AOB位似,且位似比为()6,∵S△AOB=1,∴S△GOH=[()6]2=()6,故选:C.4、(2022•重庆)如图,△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,则△ABC与△DEF的周长之比是()A.1:2 B.1:4 C.1:3 D.1:9【分析】根据两三角形位似,周长比等于相似比即可求解.【解答】解:∵△ABC与△DEF位似,点O是它们的位似中心,且相似比为1:2,∴△ABC与△DEF的周长之比是1:2,故选:A.5、(2022•重庆)如图,△ABC与△DEF位似,点O为位似中心,相似比为2:3.若△ABC 的周长为4,则△DEF的周长是()A.4 B.6 C.9 D.16【分析】根据位似图形是相似图形,相似三角形的周长比等于相似比,可以求得△DEF 的周长.【解答】解:∵△ABC与△DEF位似,相似比为2:3.∴C△ABC:C△DEF=2:3,∵△ABC的周长为4,∴△DEF的周长是6,故选:B.6、(2022•黔西南州)如图,在平面直角坐标系中,△OAB与△OCD位似,位似中心是坐标原点O.若点A(4,0),点C(2,0),则△OAB与△OCD周长的比值是.【分析】利用关于原点为位似中心的对应点的坐标变换规律得到相似比为2:1,然后根据相似三角形的性质解决问题.【解答】解:∵△OAB与△OCD位似,位似中心是坐标原点O,而点A(4,0),点C(2,0),∴相似比为4:2=2:1,∴△OAB与△OCD周长的比值为2.故答案为:2.7、(2022•潍坊)《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.【分析】如图,连接B′D′.利用相似多边形的性质求出正方形A′B′C′D′的面积,求出边长,再求出B′D′可得结论.【解答】解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.8、(2022•成都)如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA:AD=2:3,则△ABC与△DEF的周长比是.【分析】先根据位似的性质得到△ABC和△DEF的位似比为OA:OD,再利用比例性质得到OA:OD=2:5,然后利用相似比等于位似比和相似三角形的性质求解.【解答】解:∵△ABC和△DEF是以点O为位似中心的位似图形.∴△ABC和△DEF的位似比为OA:OD,∵OA:AD=2:3,∴OA:OD=2:5,∴△ABC与△DEF的周长比是2:5.故答案为:2:5.。
平面几何中的相似比定理与位似在平面几何中,相似比定理与位似是两个重要的概念。
它们对于解决几何问题以及在实际生活中的应用都具有重要的意义。
本文将详细介绍相似比定理与位似的概念、性质以及应用案例。
一、相似比定理相似比定理是在几何形状相似的情况下,两个相似图形的对应边的长度之间的比值是相等的。
设有两个相似的三角形ABC和DEF,其中BC与EF对应,AC与DF对应,AB与DE对应。
那么有以下相似比定理成立:1. 侧边比定理:AB/DE=BC/EF;2. 高度比定理:h_a/h_d=BC/EF;3. 面积比定理:S_△ABC/S_△DEF=(BC/EF)^2。
相似比定理在解决几何问题时非常有用。
通过利用相似比定理,我们可以在已知图形的一部分信息的情况下,推导出其余部分的信息。
例如,如果我们知道一个三角形的底边长度和高度之间的比例,利用相似比定理可以求得其他边的长度、面积等信息。
二、位似的概念与性质位似是指在平面上,两个图形虽然形状不同,但是它们的对应边相互平行且长度之比相等。
位似的关键在于保持对应边的比例不变。
在位似的情况下,两个图形之间存在以下性质:1. 对应边平行:位似的图形中,对应边是平行的;2. 对应角相等:位似的图形中,对应角是相等的;3. 边长比相等:位似的图形中,对应边之间的长度比例是相等的。
位似在实际生活中的应用非常广泛。
例如在地图上,两个不同比例尺的地图是位似的,通过位似关系,我们可以在不同比例尺的地图上进行距离和角度的换算。
三、相似比定理与位似的应用案例相似比定理与位似在日常生活和工作中有着广泛的应用,下面将介绍几个典型的应用案例。
1. 地理测量:地理测量中常用的仪器如测绘仪、全站仪等,其数据处理过程中用到了相似比定理。
通过测量不同位置上的三角形边长比例关系,我们可以计算出高度、距离等信息。
2. 建筑设计:在建筑设计中,相似比定理与位似常被运用于平面设计、线条设计等。
通过调整不同形状的图形的比例关系,实现建筑设计的美观与和谐。
分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可. 解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形) 例2(教材P48例题)把图1中的四边形ABCD 缩小到原来的2
1. 分析:把原图形缩小到原来的
2
1
,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 . 作法一:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;
(3)分别在射线OA ,OB ,OC ,OD 上取点A′、B′、C′、D′, 使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C′D′,如图2.
问:此题目还可以如何画出图形? 作法二:(1)在四边形ABCD 外任取一点O ; (2)过点O 分别作射线OA , OB , OC ,OD ;
(3)分别在射线OA , OB , OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D′A′,得到所要画的四边形A′B′C′D′,如图3. 作法三:(1)在四边形ABCD 内任取一点O ; (2)过点O 分别作射线OA ,OB ,OC ,OD ;
(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得
2
1
OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D′A′,得到所要画的四边形A′B′C′D′,如图4.
(当点O 在四边形ABCD 的一条边上或在四边形ABCD 的一个顶点上时,作法略——可以让学生自己完成) 三、课堂练习 1.教材P48.1、2
2.画出所给图中的位似中心.
1.把右图中的五边形ABCDE扩大到原来的2倍.
作业设计必做教科书P51:1、2
选做教科书P51:4、P52:7
教学反思
教学时间课题27. 3 位似(二)课
型
新
授
课
教学目标知识
和
能力
1.巩固位似图形及其有关概念.
过程
和
方法
2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小
比例放大或缩小后,点的坐标变化的规律.
情感
态度
价值观
3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找
出这些变换.
教学重点用图形的坐标的变化来表示图形的位似变换.
教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.教学准备教师多媒体课件学生“五个一”。