看示波器波形维开关电源实例
- 格式:doc
- 大小:48.50 KB
- 文档页数:1
示波器波形分析法——案例剖析摘要:介绍了利用曲轴位置传感器和凸轮轴位置传感器信号波形分析,检修大修后大众捷达王发动机起动困难、无怠速故障的过程和方法。
前言:现在,汽车维修技术的科技含量已越来越高,从最开始的专用点火示波器和美国进口的福禄克98(约2万左右人民币)到现在的平板解码仪和功能更加完善的汽车专用示波器及红外测温仪、发动机内窥镜……处处体现着现代汽车维修对诊断设备和电子测量仪器的依赖程度越来越高。
汽车维修已不再是简单的零件修复,而是需要通过对发动机传感器、执行器的数据流以及波形的分析,准确无误地诊断出故障所在。
本文以一款大众捷达王轿车在大修后发动机起动困难的故障为例,介绍利用示波器波形法检修故障的过程和方法,供维修朋友们参考。
故障现象描述:一辆大众捷达王轿车因发动机烧机油进厂大修,完工后,起动困难,但发动机无故障代码。
基本分析与检测:发动机起动困难,说明发动机电路、油路、气路和机械装配基本正常;无故障代码,说明电脑控制单元没有故障代码存储,即各主要传感器、执行器和ECU工作基本正常。
本着先易后难的维修原则,做以下基本参数测试:1、发动机基本工作条件检查(1)高压“跳火”试验。
分别拔出1、2缸高压线,进行高压“跳火”试验,观察到火花呈蓝白色,基本正常;(2)触摸各喷油器,都有震动感,基本正常(由于冷车起动过程中喷油脉宽变化达50mS-3mS,因此,不宜以喷油脉宽判别此类故障);(3)用解码仪读取点火提前角,显示点火提前角在8°左右,属正常范围;(4)检测各缸缸压,缸压接近0.9Mpa,正常;(5)读取起动过程中的空气流量数据流,空气流量值为3.19/s,属正常范围;(6)检测燃油压力,约270Kpa,正常。
基本分析:由以上检测可见,发动机的基本工作条件已经具备,但为什么会出现发动机起动困难、无怠速故障呢?我们都知道电控发动机ECU是利用曲轴位置传感器、凸轮轴位置传感器等来检测曲轴和凸轮轴的位置,以确定正确的喷油时刻和点火时刻。
开关电源维修从入门到精通– 306 –以上简要分析了波形经过几种类型元器件和电路后的变化过程,具体到开关电源,由于电路复杂,信号多样,波形的变化过程远非以上介绍的这些,要正确分析波形的变化过程,需要读者具备一定的模拟电路基础知识,夯实理论基本功。
11.4 如何用示波器维修开关电源开关电源故障率非常高,作为维修者,要想用示波器快速准确地排除故障,做到手动心明,除掌握必要的基本理论和示波器操作技能外,还需具备一定的检修方法和故障处理技巧。
11.4.1 用示波器修开关电源的方法用示波器修开关电源时,主要有以下几种常见方法。
1.信号寻迹法信号寻迹法是在检修开关电源的过程中,根据故障现象,沿着信号的走向,测量某些关键点或延伸测量点的电压波形。
操作者只需掌握开关电源的电路结构,掌握各关键点信号的特点及正常波形,通过对测试点进行测试,就可以很快查找到故障部位。
这是维修中最为常用的一种方法。
2.监视测量法对于不定期出现的故障,或是在较长的考验过程中才有可能出现的故障,就要采用监视测量法,方法是将示波器探头固定地挂在被怀疑的测量点上,进行较长时间的测量。
如果被测量点的引脚或焊点过小,不便于悬挂探头,可在此焊点上另焊上长度不超过1cm 的细硬导线,但注意该导线不要和附近其他焊点短路。
在导线上轻挂示波器探头,切勿将电路板上的铜箔扳起来。
3.串联探头测量法对双踪示波器,一般都配有两个10:1衰减探头,测量开关电源和高压板电路较高幅度的电压波形时,如果没有100:1的探头,也可将此两个10:1的探头串联起来,组成100:1探头使用。
使用时,两探头衰减开关均置 × 10位置,首尾相接,使用起来非常方便,如图11-27所示。
图11-27 示波器两探头串联的使用第11章 如何用示波器修开关电源– 307 – 11.4.2 用示波器检修开关电源的技巧1.认识常见波形在维修中,我们会遇到各种各样的波形,但归纳起来,主要有以下几种。
第11章 如何用示波器修开关电源在电源维修中,当我们用万用表测试电路中的电压等数据无法判断电路的工作状态时,可以采用示波器测量电路中的信号波形,从波形中获得更多的信息和数据,分析这些数据,可快速圈定故障范围,查找到故障点。
因此,用示波器结合万用表修开关电源,快捷、直观、准确,作用十分明显。
11.1 为什么用示波器修开关电源在开关电源维修中,示波器是判断故障部位和分析故障机理的重要仪器,相对于万用表,示波器具有以下三个优点,这也是选用示波器修开关电源的重要根据。
1.能准确判断万用表难以查清的故障示波器是反映信号瞬变过程的仪器,把信号波形变化直观显示出来,开关电源中的振荡波形、驱动信号波形、脉冲直流电压等,都能在示波器的荧屏上看到。
通过将实测波形与图纸上的标准波形作比较,为维修人员提供判断故障的依据。
尽管某些故障不会引起测量点的直流电压变化,但波形的变化却是明显的,这正是示波器的优越性。
2.能直观看出故障机理维修人员根据万用表测量一些电压、电流等,有时很难分析出故障的原因,而用示波器则方便多了,维修人员通过分析波形的幅度、频率的变化,很容易看出故障的机理,查找出故障部位和元器件。
3.检修后工作可靠故障彩电换过某个元器件后,若善后工作没做好,仍会留下隐患,故障很可能再次出现。
采用示波器检查,可以提高维修后工作的可靠性,减少“治标不治本”的情况。
11.2 示波器的使用11.2.1 检修开关电源需要用什么样的示波器示波器的种类很多,随着测量领域和要求的不同,有通用示波器和专用示波器之分。
从功能上看有模拟示波器(单踪、双踪、多踪)、取样示波器、矢量示波器、数字存储示波器等。
检修开关电源选用示波器的标准是什么呢?主要可从Y通道带宽、灵敏度、是否具有同步功能、能否比较两个被测信号的相位等方面来考虑,选用适合的单踪或双踪通用模拟示波器,条件较好的维修人员可选用数字存储示波器。
开关电源检修中要观察的波形不多,从频带宽度上来看,应选用Y轴带宽大于待测信– 290 –第11章 如何用示波器修开关电源– 291 – 号带宽的示波器,业余条件下选用Y 轴带宽在20MHz 的双踪通用示波器可满足一般维修的需要。
使用DPO示波器测量开关电源中的功耗电源需求的变化推动了开关电源系统的体系结构变化,能够测量和分析下一代开关式电源 (SMPS)的功耗至关重要。
支持高得多的数据速度及千兆赫级处理器的新型电源,需要更大的电流和更低的电压,在效率、功率密度、可靠性和成本方面给电源设计人员带来了新的压力。
为满足这些需求,设计人员正在采用新的结构,其中包括同步整流器、有源功率系数校正和更高的开关频率。
这些技术也带来了新的挑战,如开关设备上的高功耗、温度上升和EMI/EMC过高等影响。
了解这些影响的一个关键参数是在开关过程中发生的功率损耗。
在从“off”状态转换到“on”状态的过程中,电源会发生更高的功率损耗。
而开关设备处于“on”或“off”状态时的功率损耗较低,因为流过设备的电流或加在设备上的电压相当小。
与开关设备有关的电感器和变压器会平滑负荷电流隔离输出电压。
这些电感器和变压器还受到开关频率的影响,会产生一定功耗,偶尔会由于饱和而发生故障。
由于开关电源中消耗的功率决定着电源的整体效率及热量效应,因此测量开关设备及电感器和变压器上的功率损耗具有非常重要的意义,特别是在指明功率效率和温度上升方面。
因此,工程师需要测量和分析设备能够在变化的负荷条件下迅速精确地测量和分析瞬时功率损耗。
需要精确测量和分析不同设备瞬时功率损耗的设计人员面临的挑战如下:● 如何组建测试设备,精确测量功率损耗● 校正电压探头和电流探头中的传输延迟引起的误差● 计算非周期性的开关周期中的功率损耗● 在负荷动态变化时分析功率损耗● 计算电感器或变压器的核心损耗幸运的是,市场上已经出现了完善的功率分析软件,这种软件在最新一代数字荧光示波器上运行,与示波器用户界面拥有共同的“感观”,提供了直观的导航能力和简便易用性。
开关电源纹波测试方法
开关电源的纹波测试方法如下:
1. 准备测试设备:需要一台示波器和一个负载电阻。
2. 连接测试设备:将示波器的探头连接到开关电源的输出端,将负载电阻连接到开关电源的输出端和地线之间。
3. 调整示波器:选择合适的示波器探头放大倍数和时间基准,确保能够观察到电源输出的纹波。
4. 设置电源负载:根据开关电源的额定输出电流和电压,选择一个适当的负载电阻值。
确保负载电阻不会超过开关电源的额定功率。
5. 测量纹波:打开开关电源,观察示波器上的波形。
通常,纹波的峰-峰值(Peak-to-Peak)或峰值(Peak)被用来描述纹波的大小。
6. 记录结果:将纹波的数值记录下来,并与开关电源的规格进行比较,以确定其纹波是否在规定范围内。
7. 分析结果:如果纹波超过规定范围,可能需要考虑采取一些措施来降低纹波,例如添加滤波电路或改变开关频率等。
需要注意的是,开关电源的纹波测试方法可能会因具体的产品和测试要求而有所不同,因此在进行测试时应根据具体情况进行调整。
开关电源中阻尼振荡波形图(1)是一个典型的Buck-Boost电路,如果其电感中电流不连续,一般教材中其开关管集电极(或漏极)电压波形的波形如图(2),其中上面曲线纵轴表示开关管T集电极(漏极)电压,下面曲线表示电感L中电流。
图(1)通常,对类似图(1)的开关电源电路分析时,总假定元件是理想的,即:忽略磁材料的非线性,忽略电感的电阻和电容的等效电阻,忽略晶体管和二极管的管压降,电容的容量足够大因而一个周期中电容两端电压不变化,等等。
而且假定电路已经达到稳态。
这个稳态指的是每个周期中占空比电压电流等与下一个周期相同。
图(2)图(2)中,从TA到TB这段时间开关管导通,集电极(或漏极)电压接近于零,因电流不连续,电感中电流已经为零,所以电感中电流从零开始线性上升,电感中储存的能量不断增加。
时刻TB开关管关断,但电感中电流不能突变,故电感中电流经二极管向电容C充电。
因为我们已经假定电容两端电压不会在一个周期中变化,所以电感中电流线性下降,电感中储存的能量向电容C转移,电感的自感电动势等于电容两端电压,方向上负下正。
所以三极管两端电压等于电源电压加上负载两端电压。
随着电感中储存的能量不断减少,在时刻TC电感中电流降到零,二极管关断。
因电感中电流不再变化,所以电感的自感电动势为零。
既然电感两端电压为零,功率管两端电压降低到电源电压,TC时刻之后开关管集电极电压出现一个“台阶”。
时刻TD功率管导通,开始重复上一周期过程。
图(3)但用示波器看功率管集电极电压波形,看到的却是如图(3)那样,时刻TC(二极管关断)到时刻TD(功率管导通)这段时间里,集电极电压是图中的衰减振荡波形。
很多开关电源的初学者感到迷惑:这是怎么回事?怎么和书上的不一样?甚至怀疑自己的电路有错误。
其实什么问题都没有,这是完全正常的波形。
那么,这样的波形是如何产生的?这样的波形与图(2)不一样,是由于前面的分析中我们把电路中的元件理想化,忽略了电感和功率管的分布电容而产生的。
示波器测试开关电源纹波的方法以20M示波器带宽为限制标准,电压设为PK-PK(也有测有效值的),去除示波器控头上的夹子与地线(因为这个本身的夹子与地线会形成环路,像一个天线接收杂讯,引入一些不必要的杂讯),使用接地环(不使用接地环也可以,不过要考虑其产生的误差),在探头上并联一个10UF电解电容与一个0.1UF瓷片电容,用示波器的探针直接开展测试;如果示波器探头不是直接接触输出点,应该用双绞线,或者50Ω同轴电缆方式测量。
开关电源输出纹波主要来源于五个方面:输入低频纹波;高频纹波;寄生参数引起的共模纹波噪声;功率器件开关过程中产生的超高频谐振噪声;闭环调节控制引起的纹波噪声。
纹波是叠加在直流信号上的交流干扰信号,是电源测试中的一个很重要的标准。
尤其是作特殊用途的电源,如激光器电源,纹波则是其致命要害之一。
所以,电源纹波的测试就显得极为重要。
电源纹波的测量方法大致分为两种:一种是电压信号测量法;另一钟是电流信号测量法。
一般对于恒压源或纹波性能要求不大的恒流源,都可以用电压信号测量法。
而对于纹波性能要求高的恒流源则最好用电流信号测量法。
电压信号测量纹波是指,用示波器测量叠加在直流电压信号上的交流纹波电压信号。
对于恒压源,测试可以直接用电压探头测量输出到负载上的电压信号。
对于恒流源的测试,则一般是通过使用电压探头,测量采样电阻两端的电压波形。
整个测试过程中,示波器的设置是能否采样到真实信号的关键。
所用的仪器是:配有电压测量探头的TDS1012B示波器。
测量之前需要开展如下设置。
1.通道设置:耦合:即通道耦合方式的选择。
纹波是叠加在直流信号上的交流信号,所以,我们要测试纹波信号就可以去掉直流信号,直接测量所叠加的交流信号就好。
宽带限制:关探头:首先选用电压探头的方式。
然后选择探头的衰减比例。
必须与实际所用探头的衰减比例保持一致,这样从示波器所读取数才是真实的数据。
比方,所用电压探头放在×10档,则此时,这里的探头的选项也必须设置为×10档。
使用台式示波器进行电源测量和分析应用指南引言从儿童玩具到计算机和办公设备、再到工业设备,许多不同的电子设备都会使用电源,电源用来把电能从一种形式转换成另一种形式,以使设备正确运行。
常见的电源实例包括:把AC电压转换成稳定的DC电压的AC到DC转换器;把电池电源转换成要求的电压电平的DC到DC转换器。
电源分成许多不同的类型和规格,包括传统线性电源到为复杂动态工作环境设计的高效开关式电源(SMPS)。
设备负载和需求在不同时间之间可能会大幅度变化。
即使是商用开关电源也必须能够承受突然出现的远远超过平均工作电流的峰值电流。
从静止条件到最坏情况条件,设计电源的工程师或使用电源的系统需要了解电源在各种条件下的行为。
2 /power应用指南图1. 使用DPOxPWR 电源分析软件检定SMPS 元件。
线路电压输入滤波器电源质量谐波分析总谐波失真开关设备开关损耗安全工作区di/dt, dv/dt控制电路调制分析反馈整流器和滤波器纹波输出电压从历史上看,检定电源行为意味着使用数字万用表进行静态电流和电压测量,然后在计算器或计算机上进行麻烦的计算。
今天,大多数工程师正转向示波器,作为首选的电源测量平台。
本应用指南将介绍使用泰克M D O 4000、M S O /DPO4000B或MSO/DPO3000系列示波器进行常见的开关式电源测量,如图1所示。
通过选配电源测量和分析软件(DPOxPWR),这些示波器提供了自动测量功能,可以快速进行分析,简化设置,校正探头偏移,实现最大精度。
准备电源测量在理想情况下,电源的工作方式应与设计和建模的性能一模一样。
但事实上,各种元件都是不完美的:负载会变化,电源可能会失真,环境变化会影响性能。
提高性能、改善效率、缩小尺寸和降低成本的需求,则进一步提高了电源设计的复杂性。
考虑到这些设计挑战,必须正确设置测量系统,准确捕获波形进行分析和调试。
要考察的主要课题有: 示波器采集模式消除电压探头和电流探头之间的偏移 消除探头偏置 电流探头消磁 带宽限制滤波器使用台式示波器进行电源测量和分析图2. 采样模式。
开关电源纹波噪声测试方法我折腾了好久开关电源纹波噪声测试这事儿,总算找到点门道。
最开始的时候啊,我真是瞎摸索。
我就知道得找个示波器来测,心想这能有多难呢。
就随便拿了个示波器,把探头往电源输出那一端一接,我以为就能看到准确的纹波噪声了,结果大错特错。
那显示出来的数值啊,看起来就很不靠谱。
后来才明白,探头的接地方式太重要了。
如果接地没接好,那测出来的结果就全乱套了。
就好比你要量一个东西的长度,但是尺子没放正一样。
后来我又试了一次,这次我特别注意探头的接地。
我把探头的接地弹簧尽量靠近测试点接地。
这就像是你去钓鱼,要把鱼钩尽可能靠近鱼多的地方一样。
但是又碰到新问题了,测试环境干扰太大了。
周围有其他设备开着的时候,示波器上的波形看起来就有很多毛刺,根本分不清哪些是真正的纹波噪声,哪些是干扰。
又失败了几次后,我就想啊,得把测试环境弄得干净点。
我专门挑了个周围没有什么大型电气设备运行的时间去测试。
还把开关电源单独放在一个绝缘的台子上,减少和其他物体的耦合。
这就像是你要安静地做一件事,就找个没人打扰的小角落一样。
同时呢,示波器的带宽限制也很重要。
我最开始没管这个,后来设置了合适的带宽限制后,发现波形看起来就清晰多了。
我不确定每个型号的示波器这个操作是不是都一样,反正我这个示波器得仔细看说明书才能搞定这个带宽设置呢。
再一个就是测试点的选取。
我最开始就在电源输出线随便找个地方接探头,其实最好是在电容后面,也就是电源滤波之后的地方测。
这地方更能反映纹波经过滤波后的真实情况,就好比你要检测经过净化器后的空气,肯定是要在净化器出风口处检测最准确。
还有采样率,这个设置不好也会影响结果。
要是采样率太低,波形细节就显示不出来,就好像你用低像素的相机拍照,很多细节都看不到了。
我还在不断摸索,但是现在按照这些法子来测试,结果已经靠谱多了。
这就是我在开关电源纹波噪声测试里的一些尝试和经验啦。
示波器检测全电视视频信号的波形图解彩电维修更是示波器用武之地,图 ① ② ③是全电视视频信号的波形,这种波形贯穿图像通道的全过程。
对有光栅有伴音而无图像的故障此波形的有无处就是故障所在点。
图④是场输出波形,当光栅出现异常是此波形将有明显变形。
最下边是三幅波形图和对应的电视屏幕图像场畸形⑤是行输出变形,一般情况下不要测行管集电极,以免击穿探头。
可测低压绕组的输出端,也可在1比10衰减探头后再接一个9M的电阻去测试。
图⑩是行振荡电路输出的行激励波形。
当行输出波形变成图11波形时多是行激励不足,行管发热温升快,易烧坏。
图12是高压包局部短路的波形。
图⑥是晶体振动器的波形,在示波器频率指标不够时看到的是一条亮带。
它是判断CPU是否工作的主要依据。
图⑦是开关电源开关管集电极的波形,是判断电源是否振荡的基本条件。
如波形上沿有毛刺将导致开关变压器支支响和开关管损坏。
图⑧是沙堡脉冲波形,它是由三个作用不同的脉冲组合而成,在场频时将观察不到它的全貌。
它的有无将影响视频信号的色彩和亮度处理。
图⑨是视放尾板上三个电子枪阴极的波形,与一些图纸上所标波形不一样,因图纸所标是彩条信号的波形,这是电视图像的信号波形。
浅述ET521A数字示波表与实时(模拟)示波器实测波形比较健伍CS-4035为带宽40MHz的实时模拟示波器,属典型的手动调节(无CRT读出功能)测试示波器,其所有测试均需手动调节,需对水平扫描速度、垂直灵敏度、同步电平等控制功能进行适当调节方能获得稳定合适的波形显示,由于其采用屏幕为8*10cm内刻度高亮度示波管进行波形显示,故而扫描线亮度清晰度高,内设有电视行场同步触发滤波通道,能方便观察到稳定的行场同步电视信号波形,是比较适合的常用模拟示波器。
ET521A波形测量采用数字取样、液晶显示,显示采用几秒刷新一次,方便人眼观察,当波形变化较多时,其显示的波形在显示一种波形后,下一次显示的波形又会有所不同,初次接触到的该类显示方式的朋友会不习惯,感觉到波形老是一跳一跳的,实际上是示波表在捕捉动态波形,进行静态显示,此时更能观察到波形的各个细节;当测量的波形为稳定而变化很小的信号时,则显示波形的稳定性与CRT模拟示波器显示无多大差别的,以上是笔者对数字示波表测量显示的粗浅理解,请大家多多指教。
开关电源维修步骤| 开关电源的常见故障及应对方法什么是开关电源?开关电源由主电路、控制电路、检测电路、辅助电源四大部分组成。
它是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。
因为开关三极管总是工作在“开”和“关”的状态,所以叫开关电源。
开关电源维修步骤:1、查电源:检查电源,不仅要用万用表检查电压大小,还要用示波器检查电压波形2、查晶振:检查晶振有没有起振,可以用示波器检查晶振脚的波形来查看3、查复位:检查复位信号是不是正常,复位脉冲有没有正确送到CPU芯片的复位脚。
4、查总线:数据总线、地址总线、控制总线的任何一根开路或短路都可引发故障,可以通过测试平行总线的对地电阻比较某路有没有故障来判断,或者观察各路总线的波形来判断。
5、查接口芯片:接口芯片是坏得较多的一类元件,可通过代换或专用仪器检测来判断是否损坏。
6、更换元器件:通过线路测试、元器件检测等工作,对找出的故障进行处理,包括线路修复、元器件更换、改造等工作。
7、测试电源:故障排除后,上机前,要进行离线加载测试。
合格后方可进行上机负载测试和使用。
开关电源的常见故障及应对方法:1.保险丝或保险管烧断主要检查整流桥各二极管、大滤波电容及开关管等部位,抗干扰电路出问题也会导致保险丝或保险管烧断、发黑。
值得注意的是,因开关管击穿导致的保险丝或保险管烧断往往还伴随着过流检测电阻和电源控制芯片的损坏,负温度系数热敏电阻也裉容易和保险丝或保险管一起烧坏。
2.无输出,但保险丝或保险管正常这种现象说明开关电源未工作,或者工作后进入了保护状态。
首先测量电源控制芯片的启动脚是否有启动电压,若无启动电压或者启动电压太低,则检查启动电阻和启动脚外接的元器件是否有漏电存在,此时如电源控制芯片正常,则经上述检查可很快查到故障。
若有启动电压,则测量控制芯片的驱动输出脚(厚膜电路没有驱动输出脚)在开机瞬间是否有高低电平的跳变。
若无跳变,说明控制芯片损坏、外围振荡电路元器件或保护电路有问题,可先代换控制芯片,再检查外围元器件。
用示波器测量开关电源冲击电流测试方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言当今电子产品普及,开关电源已经成为电子设备中常见的电源供应方式。
示波器有效辅助开关电源实现Q/AQ1:开关电源输出电压的纹波是一个重要的指标,如何正确使用示波器来测量这个指标?A1:纹波的定义是附着于直流电平之上的包含周期性与随机性成分的杂波信号,英文称为 PARD (Periodic And Random Deviation)。
它的定义是杂波的峰峰值。
测量纹波要注意的事项:示波器探头地线会带来很大纹波,应该拔掉地线直接使用探头内地线进行测量。
当然,最好的测量方法是使用50欧姆终端电阻,用BNC电缆直接联结到示波器,这里应该注意该50欧姆电阻要考虑功耗,可能要大功率电阻。
相关的标准要求,比如是否要分出周期性工频纹波和开关纹波,高频噪声等。
再比如,测量频率是否要限制在20MHz以下。
Q2:开关电源总会有电磁辐射,同时也有可能受到其他电器设备的干扰。
怎样做才能达到开关电源即不受其他电器的干扰,又有效地防止其向外辐射呢?A2:开关电源因工作在高电压大电流的开关状态下,其引起的电磁兼容性问题是相当复杂的。
从整机的电磁兼容性讲,主要有共阻抗耦合、线间耦合、电场耦合、磁场耦合和电磁波耦合几种。
电磁兼容产生的三个要素为:干扰源、传播途径及受干扰体。
共阻抗耦合主要是干扰源与受干扰体在电气上存在共同阻抗,通过该阻抗使干扰信号进入受干扰对象。
线间耦合主要是产生干扰电压及干扰电流的导线或PCB线,因并行布线而产生的相互耦合。
电场耦合主要是由于电位差的存在,产生的感应电场对受干扰体产生的耦合。
磁场耦合主要是大电流的脉冲电源线附近产生的低频磁场对干扰对象产生的耦合。
而电磁波耦合,主要是由于脉动的电压或电流产生的高频电磁波,通过空间向外辐射,对相应的受干扰体产生的耦合。
实际上,每一种耦合方式是不能严格区分的,只是侧重点不同而已。
从电磁兼容性的三要素讲,要解决开关电源的电磁兼容性,可从三个方面入手。
1)减小干扰源产生的干扰信号;2)切断干扰信号的传播途径;3)增强受干扰体的抗干扰能力。
在解决开关电源内部的电磁兼容性时,可以综合运用上述三个方法,以成本效益比及实施的难易性为前提。
用示波器进行开关电源测量和分析 1 开关电源原理简介 1)、开关电源是一种高频开关式的能量变换电子电路,常作为设备的电源供应器,常见变换分类有:AC-DC、DC-DC、DC-AC 等。
2)、开关电源原理框(1)市电进入电源后,首先经过是最前级的EMI滤波电路部份,EMI 滤波的主要作用是滤除外界电网的高频脉冲对电源的干扰,同时还有减少开关电源本身对外界的电磁干扰。
实际上它是利电感和电容的特性,使频率为50Hz 左右的交流电可以顺利通过滤波器,而高于50Hz 以上的高频干扰杂波将被滤波器滤除。
(2)经过EMI 滤波,所得到较为平整的正弦波交流电被送入前级整流电路进行整流,整流工作都由全桥式整流二极管来担任。
经过全桥式整流二级管整流后,电压全部变成正相电压。
不过此时得到的电压仍然存在较大的起伏,这就必须使用高压滤波电容进行初步稳压,将波形修正为起伏较小的波形。
(3)把直流电转化为高频率的脉动直流电,这一步由控制电路来完成。
输出部分通过一定的电路反馈给控制电路,控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。
控制电路目前已集成化,制成了各种开关电源用集成电路。
(4)把得到的脉动直流电,送到高频开关变压器进行降压。
再由二极管和滤波电容组成的低压滤波电路进行整流和滤波就得到了设备上使用的纯静的低压直流电。
3)、开关电源特点: (1)开关电源是一种非线性电源,体积和重量轻。
(2)功率晶体管工作在开关状态,晶体管上的功耗小,转化效率高。
2 开关电源测量考虑 目前的电源设计人员在开发高效率、低成本电源的过程中正面临着越来越多的限制。
过去,设计人员的主要目标是经济高效的解决方案。
而现在,不断上涨的能源成本使电源效率倍受关注。
另外,例如设计紧凑性、向数字控制技术的过渡、更严格的电压容限和电力质量管理规定以及EMI规定等方面的限制都迫切要求进行快速、可靠的电源测试。
日益增加的设计限制使目前的电源设计人员必须花费更多的时间进行功率设备的测量和分析。
怎么用示波器测试摄像头电源波纹测电源纹波电源纹波如何测得?你设计的电源纹波多大?你怎么降低电源的纹波和噪声?以上一系列问题是笔者在面试过程中总结出来的,这也是很多面试硬件工程师很喜欢问的问题。
之前的博客多多少少都有提到关于电源纹波和噪声的滤除方法,这里就不再赘述。
本小节就讲讲该如何去测得电源纹波和噪声。
图1 电源纹波和噪声示意图上图是电源纹波和噪声的示意图,纹波就是电源输出直流中的交流部分,也就是低频部分,而噪声是其中的高频部分。
只要我们设计的电源在合理的范围之内,通常认为都是可以的。
如5V和3.3V在50mV以下都认为是正常的。
一般纹波不能超过供电电压值的1%。
图2 利用示波器侧电源纹波的示意图上图是利用示波器去测电源纹波和噪声的示意图。
对于我们使用的示波器来说,探头一般是无源探头。
关于示波器探头的选取,这里不过多详细的解释,读者可自行搜索资料。
就是上面一个简单的示意图,导致很多初级工程师会想当然的用图3来测试电源的纹波。
图3 错误利用示波器侧电源纹波的示意图上述可能是大多初级工程师上来就测试的方法。
这种测量往往测得电源纹波值和噪声指偏大,不能尽可能的去显示真实的情况。
注意这里的用词,其实示波器也不能完全显示真实的情况,也有一定的偏差,只要在容忍的范围,都是可以接受的。
图4 错误利用示波器侧电源纹波的影响图4是利用示波器错误的测量方法所带来的后果,由于地线与探头组成的回路面积太大(由剖面线组成的面积),它相当于一根“天线”,极易受到EMI的干扰,也会吸收空中的其他高频噪声,所以输出的纹波和噪声电压相当大。
图5是采用专用示波器测量探头测量的示意图,探头上面的弹簧绕线,一般在购买示波器的时候,都会带有,将常用示波器探头上面的带有鳄鱼夹的地线取下来,然后套上弹簧绕线,这样会构成一个极小的地线和探头之间的回路,最大限度的减少噪声的误入。
图23.6是笔者所用的示波器探头。
图5 正确使用示波器探头方法图6 实际示波器接法示波器探头搞定之后,接下来就是要调整示波器各参数了。
利用数字示波器测试开关电源的方式从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。
它们都要面对复杂、动态的工作环境。
设备负载和需求可能在刹时发生专门大转变。
即便是“日用的”开关电源,也要能够经受远远超过其平均工作电平的刹时峰值。
设计电源或系统中要利用电源的工程师需要了解在静态条件和最差条件下电源的工作情形。
过去,要描述电源的行为特点,就意味着要利用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。
今天,大多数工程师转而将示波器作为他们的首选电源测量平台。
现代示波器能够配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。
用户能够定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。
电源设计问题及其测量需求理想情形下,每部电源都应该像为它设计的数学模型那样地工作。
但在现实世界中,元器件是有缺点的,负载会转变,供电电源可能失真,环境转变会改变性能。
而且,不断转变的性能和本钱要求也使电源设计加倍复杂。
考虑这些问题:电源在额定功率之外能维持多少瓦的功率?能持续多长时刻?电源散发多少热量?过热时会如何?它需要多少冷却气流?负载电流大幅增加时会如何?设备能维持额定输出电压吗?电源如何应付输出端的完全短路?电源的输入电压转变时会如何?设计人员需要研制占用空间更少、降低热量、缩减制造本钱、知足更严格的EMI/EMC标准的电源。
只有一套严格的测量体系才能让工程师达到这些目标。
示波器和电源测量对那些适应于用示波器进行高带宽测量的人来讲,电源测量可能很简单,因为其频率相对较低。
事实上,电源测量中也有很多高速电路设计师从来没必要面对的挑战。
整个开关设备的电压可能很高,而且是“浮动的”,也确实是说,不接地。
信号的脉冲宽度、周期、频率和占空比都会转变。
必需如实捕捉并分析波形,发觉波形的异样。
这对示波器的要求是苛刻的。
多种探头——同时需要单端探头、差分探头和电流探头。
仪器必需有较大的存储器,以提供长时刻低频搜集结果的记录空间。
看示波器波形维修开关电源实例
一个开关电源损坏,经查发现尖峰吸收电路,箝位二极管击穿,反向二极管炸毁,开关管损坏。
更换损坏器件,开关电源开始工作,试机半小时后,变压器啸叫,箝位二极管冒烟。
上示波器后测的Vds波形。
从波形上看大致可以知道D22为什么会损坏,因为Vin和Vds的压差大于350V,TVS开始工作这种情况时间一长,TVS就被损坏,最后导致反向二极管的击穿,最后连累了开关管。
先解释一下Vor,Vor叫做反射电压,是当开关管断开后,次级输出电压Vout*N1/N2,折射到初级的电压和输入电压的方向一致两者相加,开关管的耐压必须大于这个值,不然就会被击穿。