数的开方练习题
- 格式:docx
- 大小:1.57 MB
- 文档页数:5
数的开方测试题及答案1. 对以下数进行开方运算,并给出结果:a) 16b) 81c) 25d) 144e) 49f) 100答案:a) √16 = 4b) √81 = 9c) √25 = 5d) √144 = 12e) √49 = 7f) √100 = 102. 求解下列方程的解:a) x² = 49b) y² = 81c) z² = 121d) w² = 169答案:a) x = ±7b) y = ±9c) z = ±11d) w = ±133. 根据已知条件计算下列开方:a) 若x² = 25,则x的值为多少?b) 若y² = 64,则y的值为多少?c) 若z² = 196,则z的值为多少?答案:a) x = ±5b) y = ±8c) z = ±144. 使用近似值计算下列开方,并保留两位小数:a) √7b) √13c) √18d) √23答案:a) √7 ≈ 2.65b) √13 ≈ 3.61c) √18 ≈ 4.24d) √23 ≈ 4.805. 请判断以下说法是否正确,并给出理由:a) √16 + √9= √25b) (a + b)² = a² + b²c) √(2² + 3²) = √13d) 3² = 9答案:a) 正确。
√16 = 4,√9 = 3,4 + 3 = 7,√25 = 5,所以等式成立。
b) 错误。
(a + b)² = a² + 2ab + b²。
c) 错误。
√(2² + 3²) = √(4 + 9) = √13。
d) 正确。
3² = 9。
总结:本文对数的开方进行了测试题及答案的陈述和解析。
通过对给定的数进行开方运算,以及求解方程和计算已知条件下的开方,我们可以更好地理解和应用数的开方。
1、如果一个数的 等于a ,那么这个数叫做a 的平方根,正数的平方根有 个,它们的关系是 ,0的平方根是 ,负数 。
2、正数a 的 ,叫做a 的算术平方根。
3、如果一个数的 等于a ,那么这个数就叫做a 的立方根,正数有 的立方根,负数有 的立方根,0的立方根为4.平方根等于它本身的数 ,算术平方根等于它本身的数是 ,立方根等于它本身的数 。
5、下列叙述正确的是( )A 、0.4的平方根是±0.2B 、-(-2)3 的立方根不存在C 、±6是36的算术平方根D 、-27的立方根是-36、如果一个数的平方根与立方根相同,那么这个数是_____________7、若216a =,则a =________ 1.2=,则a =________8、3-2的相反数是________;3-2的绝对值是______9下列说法中错误的是( )A 、负数没有立方根B 、1的立方根是1C 、38的平方根是2± D 、立方根等于它本身的数有3个10、利用平方根、立方根来解下列方程(1)0169)12(2=--x ; (2) 024273=-x ;11、下列各数:23,-3π,3.1415926,25,191,38-,3.101001000……中无理数有( )A 、1 B 、2 C 、3 D 、49、9m ·27n 的计算结果是 ___________.12、若,则m = ;13、若a m =2,a n =5,则a m +n 等于 ;14、若3×9m ×27m =321,则m = ;15、若B 是一个单项式,且B ·(2x 2y -3xy 2)=-6x 3y 2+9x 2y 3,求B16、若,,求x -y17、32-的相反数是_______,绝对值是______.1、已知2a-1的平方根是±3,3a+b-1的平方根是4±,求a+2b 的平方根。
§16.1第一课时平方根[A组]一、填空:1、5的平方根记作______,5的算术平方根记作_____;5表示,-5表示,±5表示。
2、∵()2=36,∴36的平方根是:与;用符号表示为:.;3、∵()2=0,∴0的平方根是:;用符号表示为:.4、∵()2=-4,∴-4的平方根是:;小结:正数有个平方根,而且它们互为;0有个平方根,就是它;负数(“有”、“没有”)平方根。
5、100的算术平方根是;用符号表示为:.;6、25的算术平方根是;用符号表示为:.;7、0的算术平方根是;用符号表示为:.;二、判断题,错的改正。
(1)5的平方根是±5…………()(2)3的意义是:3的平方根…………()-…………()(3)-7的算术平方根是7(4)若a-有平方根,则a一定是负数…………()(5)0.09的平方根是0.3…………( ); (6)25=±5…………( );(7)2101⎪⎭⎫ ⎝⎛-的平方根是101±;(8)2)3(-=-3;(9)-(-32)是94的算术平方根;三、用计算器求下列各数的算术平方根:(1)529; (2)1.225; (3)44.81. [B 组] 1、下列各式中无意义的是( )A .3-B .3±C .23--D .2)3(-±E 310-.2、下列说法中,正确的是( )A .一个数的正的平方根是算术平方根;B .一个非负数的非负平方根是算术平方根C .一个正数的平方根是算术平方根D .一个不等于0的数的正的平方根是算术平方根3、如一个数的平方根与它的算术平方根相同,那么这个数是 。
4、若a 的一个平方根是b ,那么它的另一个平方根是 ,若b 是a 的一个平方根,则a 的平方根是 .5、81的算术平方根是 ,2)9(-的算术平方根是6、144=_______;-144=_______;±144=________100=_______; -400=_______;0=_______;±196=________;-25111=________;16.0=________。
数的开方提高练习题1.已知m≠n,按下列A,B,C,D的推理步骤,最后推出的结论是m=n,其中出错的推理步骤是()A ∵(m﹣n)2=(n﹣m)2B.∴=C.∴m﹣n=n﹣m D.∴m=n2.下列说法错误的是()A.B.C. 2的平方根是D.3.设a是9的平方根,B=()2,则a与B的关系是()A.a=±B B.a=B C.a=﹣B D.以上结论都不对4.下列说法正确的个数()①=|3﹣n|,②,③,④2+=,.A.0个B.1个C.2个D.3个5.实数的平方根为()A.a B.±a C.±D.±6.(2002•荆门)一个数的算术平方根为a,比这个数大2的数是()A.a+2 B.C.D.a2+27.(2009•黔东南州)方程|4x﹣8|+=0,当y>0时,m的取值范围是()A.0<m<1 B.m≥2 C.m<2 D.m≤28.如果(1﹣)2=3﹣2,那么3﹣2的算术平方根是()A.±(1﹣)B.1﹣C.﹣1 D.3+29.如果一个实数的平方根与它的立方根相等,则这个数是()A.0 B.正实数C.0和1 D.110.﹣的平方根是()A.±4 B.2C.±2 D.不存在11.下列各式中错误的是()A.B.C.D.12.如果x2=2,有;当x3=3时,有,想一想,从下列各式中,能得出的是()A.x2=±20 B.x20=2 C.x±20=20 D.x3=±2013.下列语句不正确的是()A .没有意义B.没有意义C﹣(a2+1)的立方根是D.﹣(a2+1)的立方根是一个负数14.使为最大的负整数,则a 的值为( )A . ±5B . 5C . ﹣5D . 不存在15.﹣a 的值必为( )A .正数 B . 负数C . 非正数D . 非负数16.在实数﹣,0。
21,,,,0。
20202中,无理数的个数为( )A .1 B . 2C . 3D . 417.下列说法正确的是( ) A . 带根号的数是无理数 B . 无理数就是开方开不尽而产生的数 C . 无理数是无限小数 D . 无限小数是无理数18.在中无理数有( )个.A .3个 B . 4个C . 5个D . 619.已知(﹣x )2=25,则x= _________ ;=7,则x= _________ .20.若a 的一个平方根是b ,那么它的另一个平方根是 _________ ,若a 的一个平方根是b ,则a 的平方根是 _________ . 21.如果的平方根等于±2,那么a= _________ . 22.已知:(x 2+y 2+1)2﹣4=0,则x 2+y 2= _________ . 23.已知a 是小于的整数,且|2﹣a |=a ﹣2,那么a 的所有可能值是 _________ .24.若5+的小数部分是a ,5﹣的小数部分是b ,则ab+5b= _________ .25.已知A=是m+2n 的立方根,B=是m+n+3的算术平方根、则m+11n 的立方根是26.若x 、y 都是实数,且y=++8,则x+3y 的立方根是 _________ .27、下列实数1907,3π-,0,49-,21,31-,1.1010010001…(每两个1之间的0的个数逐次加1)中,设有m 个有理数,n 个无理数,则n m =28、已知51m =+的小数部分为b , 29、已知,,a b c 实数在数轴上的对应点如图所示,求(1)(2)m b -+的值。
(华师大版)巩固复习-第十一章数的开方一、单选题1.下列计算中,正确的是()A. B. C. D.2.已知0<x<1,则x2、x、大小关系是()A. x2<x<B. x<x2<C. x<<x2D. <x<x23.一个数的立方等于它本身,这个数是().A. 0B. 1C. -1,1D. -1,1,04.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.下列说法中正确的有()①±2都是8的立方根,②,③的立方根是3,④=2.A. 1个B. 2个C. 3个D. 4个7.与4﹣最接近的整数是()A. 0B. 1C. 2D. 38.﹣8的立方根是()A. -2B. 2C. ±2D. 49.7-2的算术平方根是A. B. 7 C. D. 410.64的算术平方根是()A. ±8B. 8C. -8D.11.的算术平方根是()A. B. C. D.二、填空题12.若实数a、b满足|a+2|+3 =0,则的平方根________.13.﹣8的立方根是________,36的平方根是________.14.已知=2.493,=7.882,则=________.15.计算:|﹣3|+=________16.比较大小(填“>”或“<”):________1.4;________ .17.9的平方根是________,9的算术平方根是________.18.在下列语句中:①实数不是有理数就是无理数;②无限小数都是无理数;③无理数都是无限小数;④根号的数都是无理数;⑤两个无理数之和一定是无理数;⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数.正确的是________(填序号).19.比较实数的大小:3________ (填“>”、“<”或“=”).三、计算题20.计算:|﹣|﹣2﹣1+21.计算:.四、解答题22.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.求3a﹣b+2的值.23.2cos45°﹣(π+1)0++()﹣1.五、综合题24.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.25.已知x﹣2的平方根是±2,5y+32的立方根是﹣2.(1)求x3+y3的平方根.(2)计算:|2﹣|- 的值.答案解析部分一、单选题1.【答案】A【考点】算术平方根,立方根【解析】【分析】根据算术平方根、立方根的性质依次分析各选项即可作出判断。
数的开方测试卷姓名:__________ 测试日期:__________ 得分:_______一、填空:1、25的平方根是 ,-8的立方根是 .2、16的平方根是,()-122的算术平方根是. 3、平方根是它本身的数是;立方根是它本身的数是.4、已知1253531251118...==,,则12500=.5、若4-x 有意义,则x;若x -83有意义,则x .6、7是的平方根;8是的立方根.7、若y xx--8有意义,则x .8、一个正数的平方根是m ,那么这个数的另一个平方根是 ,这个数的算术平方根是______.9、当x =1000时,x 的立方根是.10、一个正数a 的算术平方根减去1等于3,则a = .11、已知()()a b a b +++-=118,则a b += . 12、如果213240x y x y -++-+=,则x = ,y =.13、()-26的平方根是,立方根是.二、判断题(正确√,错误×): 1、14的平方根是12.( )2、任何一个数的偶次方总是非负数.( )3、一个数的正的平方根是算术根.()4、一个正的有理数的平方根是算术根.( )5、一个数的平方总是正数.( )6、负数没有立方根.()7、一个数的立方根和这个数同号,零的立方根是零.( )8、如果一个数的立方根是这个数本身,那么这个数一定是零.( )三、求下列各式的值:1、±1441692、0000025.3、-⎛⎝ ⎫⎭⎪1824、()-+125225、()()[]312333-+-6、±-1067、119273- 8、1815343-9、036025..-10、 ⎛- ⎝ 11、⎛⎛- ⎝⎝12、21--- 13、34+-四、求下列各式中的x 的值: 1、x 21160-=2、()x -=-112533、()x -=2924、()3010752x -=..五、求值: 1、若x y -++=2210,求x y +的值.2、若a ab b a b 2222310++++-=,求23ab的值.3、求()a ab b a b 224400++<<,的算术平方根.4、已知实数a 满足2010a a -=,求22010a -的值.5、设a 、b 是有理数,且满足(21a +=,求ba 的值.【答案】: 一、1、±5,-2 2、±2,12 3、0, 0,±14、111.85、x ≤4,任意实数6、49,5127、x <88、-m m ,9、x =±10 10、1611、a b +=±3 12、x y ==25,13、±,84二、1、×2、√3、×4、×5、×6、×7、√8、×三、1、±12132、0.0053、184、135、-36、137、0.18、459、±11000 10、2311、-52四、1、x =±142、x =-43、x x ==-51或4、x x ==0604..或五、1、x y +=322、2323a b =- 3、--a b 2。
数的开方一、填空题1.一个正数的两个平方根的和是________.一个正数的两个平方根的商是________.2.81的平方根是_______,4的算术平方根是_________. 16的算术平方根是_______,平方根是_______;3.当______m 时,m -3有意义;当______m 时,33-m 有意义;4.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ________5.21++a 的最小值是________,此时a 的取值是________.6、37-的相反数是________ .7=,则x= ________ . ________ ,2的立方根的倒数的立方是 ________ 。
7、若=则m 的值是 ________ .9的平方根的绝对值的相反数是 ________8、3664-的平方根是 ________,算术平方根是 ________;9、10、把下列各数分别填入相应的集合里:2,3.0,10,1010010001.0,125,722,0,1223π---∙- 有理数集合:{ };无理数集合:{ };负实数集合:{ };11.当_______x 时,32-x 有意义;7.当_______x 时,x -11有意义;12.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;13.当10≤≤x 时,化简__________12=-+x x ;二、选择题14.2)3(-的值是( ).A .3-B .3C .9-D .915.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、516.计算3825-的结果是( ).A.3B.7C.-3D.-717.若a=23-,b=-∣-2∣,c=33)2(--,则a 、b 、c 的大小关系是( ).A.a >b >cB.c >a >bC.b >a >cD.c >b >a18.如果53-x 有意义,则x 可以取的最小整数为( ).A .0B .1C .2D .319.全体小数所在的集合是( ).A 、分数集合B 、有理数集合C 、无理数集合D 、实数集合20.等式1112-=+⋅-x x x 成立的条件是( ). A 、1≥x B 、1-≥x C 、11≤≤-x D 、11≥-≤或x21.下列语句:①无理数的相反数是无理数;②一个数的绝对值一定是非负数;③有理数比无理数小;④无限小数不一定是无理数,其中正确的是( )A .①②③B .②③④C .①②④D .②④22、在,4π,1.17320.3030030003227-无理数的个数有( )A.4个B.3个C. 2个D.1个三、解方程 23. 21(5)369x -+= 21(3)93x +=64611)23(3=-+x 21(3)753x -=271253+x =0 (2x-1)2=25四、解答题24.已知:2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.25、已知,,a b ca b c a-+-+26、已知2009a a -=20 ab-=,1111(1)(1)(2)(2)(1998)(1998)ab a b a b a b+++++++++求的值28、已知x是10 的整数部分,y是10 的小数部分,求1xy-(的平方根。
八年级数学《数的开方》综合练习一、选择题:1.下列说法中正确的是( ).(A )4是8的算术平方根 (B )16的平方根是4(C )6是6的算术平方根 (D )a -没有平方根2.下列各式中错误的是( ).(A )6.036.0±=± (B )6.036.0= (C )2.144.1-=- (D )2.144.1±=3.若()227.0-=x ,则=x ( ). (A )-0.7 (B )±0.7 (C )0.7 (D )0.494.实数中6,42,31π中,分数的个数是( ) (A )0个 (B )1个 (C )2个 (D )3个 5.数3.14,2,π,0.323232…,71,9,21+中,无理数的个数为( ). (A )2个 (B )3个 (C )4个 (D )5个6.下列等式:①81161=,②()2233-=-,③()222=-,④3388-=-⑤416±=,⑥24-=-;正确的有( )个.(A )4 (B )3 (C )2 (D )17、如图,以数轴的单位长为边作一个正方形,以数轴的原点为圆心,正方形的对角线长为半径画孤,交数轴于点A ,则点A 表示的数是 ( )A .1B .1.4C 8. 若a 2=(-5)2 , b 3=(-5)3, 则a +b 的值为( )A.0B.±10C.0或10D.0或-109.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、510、一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是 ( )C、 D、二、填空题:1、 的平方是36,所以36的平方根是 ;2、169的平方根是 ;27的立方根是 ;3.2-的相反数是 ,4的算术平方根是_________,81的平方根是_______;4、 的平方根是它本身, 的立方根是它本身; 算术平方根是它本身5、(3)2 = ;2)3(-= ;6、1-3的相反数是 ,绝对值是 ;7、当x 时,x 23-有意义。
数的开方常考题型汇总类型一、利用平方根与立方根的概念求值一、选择题(4分)9的平方根是( )A. ±3 B.﹣3 C.3 D.(4分)4的平方根是( )A. ﹣2 B.2 C.±2 D.4(4分)若x2=4,则x=( )A.±2 B.2 C.4 D.16(4分)下列说法正确的是( )A.1的立方根是±1 B.=±2C.0.09的平方根是±0.3 D.0没有平方根(4分)下列说法正确的是( )A.1的立方根是±1 B.=±4C.=4 D.0没有平方根(3分)下列命题中是真命题的是( )A.是无理数 B.相等的角是对顶角C.D.﹣27没有立方根(4分)化简的结果是( )A.8 B.4 C.﹣2 D.2二、填空题(4分)﹣27的立方根是 .(4分)﹣64的立方根是 .(4分)64的立方根为 .类型二、利用算术平方根的概念求值一、选择题(4分)的平方根是( )A.2 B.±2 C.D.±(3分)下列算式正确的是( )A.B.C.D.(4分)下列写法错误的是( )A.B.C.D.=﹣4(4分)计算﹣的结果是( )A.3 B.﹣7 C.﹣3 D.7二、填空题(4分)4是 的算术平方根(4分)16的算术平方根是 .(2分)的算术平方根是 .(4分)计算:= .(4分)计算:= .(6分)计算:(1)﹣= (2)=(3)﹣= (4)三、解答题(6分)计算:﹣﹣(π﹣1)0.(8分)计算:(﹣2)2﹣+(6分)计算:﹣﹣|﹣5| (6分)计算:+﹣.(﹣1)2016+×+(6分)计算:﹣﹣+.﹣++(6分)(1)﹣|﹣3|+3.(9分)计算:﹣+.(9分)计算:﹣+2(9分)(1)计算:(﹣1)2+﹣﹣|﹣5|类型三、无理数的判断(4分)下列实数中,属于无理数的是( )A.﹣2 B.0 C.D.(4分)下列实数中,是无理数的是( )A.B.﹣7 C.0.D.Π(4分)在下列实数中,无理数是( )A.﹣B.2π C.D.(4分)下列实数中属于无理数的是( )A.3.14 B.C.π D.(3分)在实数、、0、、3.1415、π、、、2.123122312233…(不循环)中,无理数的个数为( )A.2个 B.3个 C.4个 D.5个(4分)在实数0、3、、2.236、π、、3.14中无理数的个数是( )A.1 B.2 C.3 D.4(3分)下列几个数中,属于无理数的数是( )A.B.C.0.101001 D.(3分)下列实数中,是无理数的为( )A.﹣3 B.C.﹣D.0(4分)在实数,0,,,0.1010010001…,,中无理数有( )A.0个 B.1个 C.2个 D.3个(3分)下列实数中,无理数是( )A.﹣B.0.1414 C.D.类型四、实数间的比较大小一、选择题(4分)下列四个数中,最大的数是( )A.0 B.C.﹣1 D.﹣(3分)不用计算器,请估算最接近的两个数是多少?( )A.1和2 B.2和3 C.3和4 D.4和5(3分)我们知道圆周率π是一个无理数,如果π﹣a是一个有理数,那么a可以是( )A.1 B.C.3.14 D.Π(4分)估算+2的值是在( )A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间(4分)估计+1的值在( )A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间(4分)设=a,则下列结论正确的是( )A.4.5<a<5.0 B.5.0<a<5.5 C.5.5<a<6.0 D.6.0<a<6.5(4分)我们知道是一个无理数,那么在哪两个整数之间?( )A.1与2 B.2与3 C.3与4 D.4与5二、填空题(4分)比较大小: 4 (填“>”、“<”或“=”号).(4分)比较大小:2 (填“<”、“=”、“>”).(4分)比较大小: 3.(4分)比较大小:2 (填“>”、“<”或“=”).(4分)设整数m满足﹣<m<,则m的个数是 .(2分)已知:10+=x+y,其中x是整数,且0<y<1,则x﹣y= . 类型五、利用算术平方根的概念求取值范围与算术平方根的非负性化简和求值、使式子 有意义的x的取值范围是( )A.x>3 B,x<3 C.x≤3 D.x≤-3、如果有意义,则x可以取的最小整数为( ).A.0 B.1 C.2 D.3(4分)当x取 时,使得有意义.(4分)已知|=0,则化简:(a x)y= .若 +=0,则x+y=_________、已知b= ,则ab=__________类型六、利用平方根的概念和性质确定被开方数(4分)已知一个正数的两个平方根分别是2x+3和x﹣6,则这个正数的值为( )A.5 B.﹣5 C.±5 D.25(4分)若一个正数的两个平方根是3a﹣1和﹣2,则a= .、若一个非负数的两个平方根是2m-4与3m-1,则这个非负数是( )A.2 B.-2 C.±4 D.4、已知一个正数的平方根是m+3和2m-15,求这个正数是多少实数(4分)与数轴上的点一一对应的数是( )A.分数 B.有理数 C.无理数 D.实数(8分)将下列实数填在相应的集合中:﹣7,0.32,,,0,﹣,0.7171171117…,0.3,π,(1)整数集合{ …}(2)分数集合:{ …}(3)负实数集合:{ …}(4)无理数集合:{ …}.(4分)a、b为实数,在数轴上的位置如图所示,则的值是( )A.﹣b B.b C.b﹣2a D.2a﹣b。
数的开方能力综合测试姓名:一、填空题(每空1分,共21分)1、一个正数的正的平方根叫做这个数的 ,可以进行开平方运算的数是 。
2、在21,π,0,6.1、327-,2,713-,36.0 ,31-,0.1010010001……中,有理数是 ,无理数是 ,整数是 。
3、24的平方根是 ,34的立方根是 。
4、最大的负整数是 ,最小的正整数是 ,绝对值最小的实数是 。
5、等式x x =2成立的条件是 ,等式y y -=2成立的条件是 ,等式||2m m =成立的条件是 。
6、如果x 的平方根是3±,那么x= .7、若|x|=12-,则=x 。
8、若某数的平方等于它本身,这个数的平方根是 ,算术平方根是 。
9、实数a 、b 适合代数式23226-=+b a ,则=a ,=b 。
10、若|3|92-++-y x y x 与互为相反数,则=x ,=y 。
二、判断题(每题1分,共7分)11、因为2-的平方是4,所以4的平方根是2-……………………………………( )12、任何数的算术平方根都是正数……………………………………………………( )13、非负数的算术平方根是非负数……………………………………………………( )14、31-无意义,310-也无意义……………………………………………………( ) 15、9)9(2-=-……………………………………………………………………( )16、一个数先平方再开方得原数……………………………………………………( )17、若0>a ,则a 的平方根也大于0…………………………………………… ( )三、选择题(每题2分,共22分)18、210--的平方根是………………………………………………………………( )A 、0.1B 、1.0-C 、1.0±D 、不存在19、下列判断正确的是………………………………………………………………( )A 、一个数的相反数等于它本身,这个数是0B 、一个数的倒数等于它本身,这个数是1C 、一个数的绝对值等于它本身,它个数是正数。
数 的 开 方 练 习 题班级姓名:一、基础训练1. 9 的算术平方根是()A .-3B .3C .±3D .812.以下计算不正确的选项是()A . 4 =±2B . ( 9)2 81=9C . 3 0.064 =D . 3216 =-63.以下说法中不正确的选项是( )A .9 的算术平方根是 3B . 16 的平方根是± 2C .27 的立方根是± 3D .立方根等于 -1 的实数是 -14. 3 64 的平方根是()A .±8B .± 4C .± 2D .± 25.- 1的平方的立方根是()8.1.-1A .4 BC D .18 46.以下实数: 1,- , 8 ,19239 ,0 中无理数有( )A .4个B .3个C .2个D .1个7.以下说法中正确的选项是( )A .有限小数是有理数B .无穷小数是无理数C .数轴上的点与有理数一一对应D .无理数就是带根号的数8.以下各组数中,互为相反数的是( )A .-3 和 3B .│-3│与- 1 C .│-3│与133D .|- 3|与-39. 10 在哪两个相邻的整数之间( )A .2和3之间B .3和 4之间 C .4和5之间D .2和4之间10.一个自然数的算术平方根是x ,则它后边一个数的算术平方根是( )4A .x+1 B.x2+1C.x +1D.x2111.若 2m-4 与 3m-1 是同一个数的平方根,则 m的值是()A .-3 B.1C.-3或1 D .-112.已知 x,y 是实数,且3x 4 +(y-3 )2=0,则 xy 的值是()A.4B.-4C.9D.-9 44二、填空题13.81 的平方根是_______;9的立方根是 _______.14.写出一个 3 和 4 之间的无理数_________.15.数轴上表示 1- 3 的点到原点的距离是 _________.16.比较大小:( 1)25 ______5 2 ;(2)- 5______- 3 .317.若26 的整数部分为a,小数部分为 b,则 a=,b=_______.18、35的绝对值是,相反数是。
(华师大版)巩固复习-第十一章数的开方一、单选题1.下列计算中,正确的是()A. B. C. D.2.已知0<x<1,则x2、x、大小关系是()A. x2<x<B. x<x2<C. x<<x2D. <x<x23.一个数的立方等于它本身,这个数是().A. 0B. 1C. -1,1D. -1,1,04.估计的值在()A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.一个正方形的面积为21,它的边长为a,则a﹣1的边长大小为()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间6.下列说法中正确的有()①±2都是8的立方根,②,③的立方根是3,④=2.A. 1个B. 2个C. 3个D. 4个7.与4﹣最接近的整数是()A. 0B. 1C. 2D. 38.﹣8的立方根是()A. -2B. 2C. ±2D. 49.7-2的算术平方根是A. B. 7 C. D. 410.64的算术平方根是()A. ±8B. 8C. -8D.11.的算术平方根是()A. B. C. D.二、填空题12.若实数a、b满足|a+2|+3 =0,则的平方根________.13.﹣8的立方根是________,36的平方根是________.14.已知=2.493,=7.882,则=________.15.计算:|﹣3|+=________16.比较大小(填“>”或“<”):________1.4;________ .17.9的平方根是________,9的算术平方根是________.18.在下列语句中:①实数不是有理数就是无理数;②无限小数都是无理数;③无理数都是无限小数;④根号的数都是无理数;⑤两个无理数之和一定是无理数;⑥所有的有理数都可以在数轴上表示,反过来,数轴上所有的点都表示有理数.正确的是________(填序号).19.比较实数的大小:3________ (填“>”、“<”或“=”).三、计算题20.计算:|﹣|﹣2﹣1+21.计算:.四、解答题22.已知a+b﹣5的平方根是±3,a﹣b+4的立方根是2.求3a﹣b+2的值.23.2cos45°﹣(π+1)0++()﹣1.五、综合题24.求下列x的值.(1)(x﹣1)2=4(2)3x3=﹣81.25.已知x﹣2的平方根是±2,5y+32的立方根是﹣2.(1)求x3+y3的平方根.(2)计算:|2﹣|- 的值.答案解析部分一、单选题1.【答案】A【考点】算术平方根,立方根【解析】【分析】根据算术平方根、立方根的性质依次分析各选项即可作出判断。
数的开方一、填空题1.(3分)﹣125的立方根是,9的算术平方根是.的平方根是.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= .3.要使式子有意义,则x可以取的最小整数是.4.平方根等于本身的数是,立方根等于本身的数是.5.(3分)若a、b是实数,,则a2﹣2b= .6.(3分)的立方根是.计算:= .7.(3分)若和互为相反数,求的值为.8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.二、选择题9.下列为(﹣3)2的算术平方根的是() A. 3 B. 9 C.﹣3 D.±310.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣311.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 412.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5三、解答题16.直接写出答案①②③④⑤.17.解方程(1)9(x﹣3)2=64 (2)(2x﹣1)3=﹣8.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)数学单元测试卷(数的开方)参考答案与试题解析一、填空题1.(3分)﹣125的立方根是﹣5 ,9的算术平方根是 3 .的平方根是±2.考点:立方根;平方根;算术平方根.专题:计算题.分析:原式利用立方根,算术平方根,以及平方根定义计算即可得到结果.解答:解:﹣125的立方根为﹣5;9的算术平方根为3;=4的平方根为±2.故答案为:﹣5;3;±2.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.2.(3分)如果|x|=,那么x= ;如果x2=9,那么x= ±3.考点:实数的性质;平方根.分析:根据互为相反数的绝对值相等,可得答案;根据开方运算,可得一个数的平方根.解答:解:|x|=,那么x=;x2=9,那么x=±3;故答案为:,±3.点评:本题考查了实数的性质,利用了绝对值的性质,平方根的性质,注意一个正数有两个平方根,这两个平方根互为相反数.3.要使式子有意义,则x可以取的最小整数是 2 .考点:算术平方根.分析:由于式子是一个二次根式,所以被开方数是一个非负数,由此即可求出x的取值范围,然后可以求出x可以取的最小整数.解答:解:∵式子有意义,∴3x﹣5≥0,∴x≥,∴x可以取的最小整数是x=2.点评:此题主要考查了二次根式的定义,首先利用二次根式的定义求出字母的取值范围,然后利用x 取整数的要求即可解决问题.4.平方根等于本身的数是0 ,立方根等于本身的数是0,±1.考点:立方根;平方根.分析:分别利用平方根和立方根的特殊性质即可求解.解答:解:∵平方根等于它本身的数是0,立方根都等于它本身的数是0,1,﹣1.故填0;0,±1.点评:此题主要考查了平方根和立方根的运用,要掌握一些特殊的数字的特殊性质,如:±1,0.牢记这些数的特性可以快捷的解决这类问题.5.(3分)若a、b是实数,,则a2﹣2b= 2 .考点:非负数的性质:算术平方根;非负数的性质:绝对值.分析:两项非负数之和等于0,分别求出a和b的值.解答:解:∵,∴a﹣1=0且2b+1=0解得a=1 b=﹣∴a2﹣2b=1﹣(﹣1)=2,故答案为2点评:此题属于低难度题型,求出a和b的值是关键.6.(3分)的立方根是﹣2 .计算:= .考点:立方根;算术平方根.专题:计算题.分析:原式利用立方根及算术平方根的定义计算即可得到结果.解答:解:﹣=﹣8的立方根为﹣2;=.故答案为:﹣2;点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.7.(3分)若和互为相反数,求的值为.考点:立方根.分析:根据相反数定义得出2a﹣1=﹣(1﹣3b),推出2a=3b,即可得出答案.解答:解:∵和互为相反数,∴2a﹣1=﹣(1﹣3b),2a=3b,和互为相反∴=,故答案为:.点评:本题考查了立方根和相反数的应用,关键是得出方程2a﹣1=﹣(1﹣3b).8.(3分)已知正数a和b,有下列命题:(1)若a+b=2,则≤1(2)若a+b=3,则≤(3)若a+b=6,则≤3,根据以上的规律猜想:若a+b=n,则≤.考点:算术平方根.专题:规律型.分析:观察已知三等式得到一般性规律,写出即可.解答:解:根据以上的规律猜想:若a+b=n,则≤=,故答案为:点评:此题考查了算术平方根,弄清题中的规律是解本题的关键.二、选择题9.下列为(﹣3)2的算术平方根的是()A. 3 B. 9 C.﹣3 D.±3考点:算术平方根.分析:先求出(﹣3)2=9,再根据算术平方根的定义解答即可.解答:解:∵(﹣3)2=9,∴(﹣3)2的算术平方根是3.故选A.点评:本题考查了算术平方根的定义,是基础题,要注意正数的算术平方根都是正数.10.下列叙述正确的是()A. 0.4的平方根是±0.2 B.﹣(﹣2)3的立方根不存在C.±6是36的算术平方根 D.﹣27的立方根是﹣3考点:立方根;平方根;算术平方根.专题:常规题型.分析:根据平方根的定义,立方根的定义,算术平方根的定义,对各选项分析判断后利用排除法.解答:解:A、应为0.04的平方根是±0.2,故本选项错误;B、﹣(﹣2)3=8,立方根是2,存在,故本选项错误;C、应为6是36的算术平方根,故本选项错误;D、﹣27的立方根是﹣3,正确.故选D.点评:本题考查了平方根的定义,算术平方根的定义,立方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根,任何实数都有立方根.11.在实数0、3、、2.236、π、、3.14中无理数的个数是()A. 1 B. 2 C. 3 D. 4考点:无理数.专题:计算题.分析:根据无理数的定义得到无理数有﹣,π共两个.解答:解:无理数有:﹣,π.故选:B.点评:本题考查了无理数的定义:无限不循环小数叫无理数,常见形式有:①开方开不尽的数,如等;②无限不循环小数,如0.101001000…等;③字母,如π等.12.一个自然数的算术平方根是a,则与这个自然数相邻的后续自然数的平方根是()A. B. C. D.考点:算术平方根;平方根.分析:根据算术平方根的定义得这个自然数为a2,则与这个自然数相邻的后续自然数a2+1,由此即可得到其平方根.解答:解:∵一个自然数的算术平方根是a,∴这个自然数为a2,∴与这个自然数相邻的后续自然数a2+1,∴其平方根为±.故选D.点评:本题考查了求一个数的算术平方根,平方根,比较简单.13.对于实数a、b,若=b﹣a,则()A. a>b B. a<b C.a≥b D.a≤b考点:二次根式的性质与化简.分析:已知等式左边为a﹣b的算术平方根,结果为非负数,即a﹣b≥0.解答:解:我们知道一个数的算术平方根为非负数,又因为=|a﹣b|=b﹣a,可以知道a﹣b≤0,则a≤b.故选D.点评:注意:不可忽略a=b,因为a=b时,a﹣b=b﹣a.14.(3分)估算的值()A.在5和6之间 B.在6和7之间 C.在7和8之间 D.在8和9之间考点:估算无理数的大小.分析:先求出4的范围,再两边都减去2,即可得出答案.解答:解:∵8<4<9,∴6<4﹣2<7,即的值在6和7之间.故选:B.点评:本题考查了估算无理数的大小的应用,解此题的关键是求出4的范围.15.设x、y为实数,且,则|x﹣y|的值是()A. 1 B. 9 C. 4 D. 5考点:算术平方根.分析:首先根据二次根式的定义即可确定x的值,进而求出y的值,代入原式即可得出|x﹣y|的值.解答:解:根据题意,有意义,而x﹣5与5﹣x互为相反数,则x=5,故y=4;所以|x﹣y|=1;故选A.点评:本题考查的是根号下的数为非负数,去绝对值后为非负数.三、解答题16.直接写出答案①②③④⑤.考点:立方根;算术平方根.专题:计算题.分析:①原式利用算术平方根定义计算即可得到结果;②原式利用二次根式性质化简即可得到结果;③原式利用立方根定义计算即可得到结果;④原式利用立方根定义计算即可得到结果;⑤原式利用算术平方根定义计算即可得到结果.解答:解:①原式=12;②原式=±;③原式=﹣0.4;④原式=5;⑤原式=.点评:此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.17.解方程(1)9(x﹣3)2=64(2)(2x﹣1)3=﹣8.考点:立方根;平方根.专题:计算题.分析:(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根定义开立方即可求出解.解答:解:(1)方程整理得:(x﹣3)2=,开方得:x﹣3=±,解得:x1=,x2=;(2)开立方得:2x﹣1=﹣2,解得:x=﹣.点评:此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.18.(2011秋•阳谷县期末)已知x、y满足,求的平方根.考点:非负数的性质:算术平方根;非负数的性质:绝对值;平方根;解二元一次方程组.专题:计算题.分析:根据非负数的性质列出方程组,然后解方程组求出x、y的值,再代入代数式求值,然后根据平方根的定义求解即可.解答:解:由可得,解得,∴2x﹣y=2×8﹣×5=12,∵(±2)2=12,∴的平方根是±2.故答案为:±2.注:因为还未学到二次根式的化简,结果为也为正确答案.点评:本题主要考查了非负数的性质,解二元一次方程组,根据几个非负数的和等于0,则每一算式都等于0列出方程组是解题的关键.19.(6分)已知一个正方形边长为3cm,另一个正方形的面积是它的面积的4倍,求第二个正方形的边长.(精确到0.1cm)考点:算术平方根.专题:计算题.分析:根据题意列出算式,利用算术平方根定义计算即可得到结果.解答:解:根据题意得:=2≈3.5(cm),则第二个正方形的边长为3.5cm.点评:此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.。
数的开方(一)判断题1.两个正数,大数的平方根较大 ( )2.5.050050005是有理数 ( )3.算术平方根最小的实数是0 ( )4.因为-5的绝对值是5,所以绝对值等于5的数一定是-5 ( )5.有理数与无理数的积是无理数 ( )6.实数中既无最大的数又无最小的数 ( )7.两个无理数的和不一定仍是无理数 ( )8.两个有理数之间的无理数有无数个 ( )(二)填空题9.91的平方根是__ _,算术平方根的相反数是_ __,算术平方根的倒数的平方根是__ _.10.平方根等于本身的数是________;算术平方根等于本身的数是______;立方根等于本身的数是___________.11.如果|x|=5,那么x =_______;如果|x|=2-1,那么x =_______.12.如果0≤a ≤1,化简|a|+|a -1|=__________.13.当x =______时,12+x =0,当x =______时,式子2+x +2--x 有意义.________的算术平方根是_________;15.从1到100之间所有自然数的平方根的和为________.16+│y-1│+(z+2)2=0,则xyz=________.17、当x = _________________.18,则a 的取值范围是___________.19.在36,2π,-⋅⋅71.5,-39,38-,0.315311531115…,0中,无理数有__________ ____________________;负实数有______________________;整数有________________.(三)选择题20.下列说法:①一个正数的算术平方根总比这个数小;②任何一个实数都有一个立方根,但不一定有平方根;③无限小数是无理数;④无理数与有理数的和是无理数.其中正确的是( )(A )①② (B )③④ (C )①③ (D )②④21.a ,b 为实数,则代数式(a -b )2+ab +|a|的值( )m n (A )大于0 (B )大于或等于0 (C )小于0 (D )等于022、已知,a b 是实数,则下列命题正确的是 ( )A、若22a b ≠,则a b ≠ B、若22a b >,则a b > C、若a b >,则a b > D、若a b >,则22a b >23.一个正数的正的平方根是m ,那么比这个正数大1的数的平方根是( )(A )m2+1 B.±1+m (C )12+m (D )±12+m 24、如果m m m m -=-33成立,则实数m 的取值范围是( ) A 、3≥m B 、0≤m C 、30≤<m D 、30≤≤m25、若0<x ,则x x x 2-的结果为( )A 、2B 、0C 、0或–2D 、–226、下列各式比较大小正确的是( )A 、32-<-B 、6655->-C 、14.3-<-πD 、310->-27、如果-b 是a 的立方根(ab ≠0),那么下列结论正确的是( )A 、-b 也是-a 的立方根B 、b 也是a 的立方根C 、b 也是-a 的立方根D 、以上结论都不对28.下列四种说法:正确的有几个()①负数有一个负的立方根;②1的平方根与立方根都是1;③4•的平方根的立方根是;④互为相反数的两个数的立方根仍为相反数.A .1B .2C .3D .429.实数m 、n 在数轴上的位置如图所示,•则下列不等关系正确的是( )A .n<mB .n2<m2 C.n>m D .│n │<│m │30 ( ) A、24(1)a + B、22(1)a +C、2(1)a + (四)计算31、(1)分别求出下列各数平方根①324 ②22349 ③(-16)2 ④-(-4)3(2)分别求出下列各的立方根①-21027 ②±0.125③ -0.0064 ④-729(3)求下列各式中的x 的值()27222049x +-= 3x = ()310.110271000x +=-64.0-412+44.1 31)(六)求值32.将下列各数由小到大重新排成一列,并用“<”号连接起来)2(--,0,23,π-3,|2|--,133、已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根34.已知A =342--+b a a 是a +2的算术平方根,B =9232-+-b a b 是2-b 的立方根. 求3A -2B 的立方根.35.已知y =12-x +x 21-—2.求y x +10的值.36、已知,,a b c a b c a -+-+、37、已知ABC ∆的三边为c b a 、、.化简:38()33,438x y +=-,求()2nx y +的值(n 为正整数)39、已知,a b 为有理数,且22()3a a +=+-b 的值.40、已知实数,,a b c 满足211()022a b c --=,求()a b c +的值.。
小学数学开方练习题假设我们正在进行小学四年级的数学练习,主题是开方。
练习题1:1. 将以下数字填入方框内,使得算式成立。
√ 9 + √ 16 = √ [ ]选项:25,8,4,02. 计算下列算式。
a. √ 36 = ?b. √ 25 + √ 16 = ?3. 填写空格,使等式成立。
√ 49 = √ [ ² ] + √ [ ² ]选项:1,6,7,94. 请填入方框内的正确数字。
√ 16 + √ 16 = √ [ ]5. 将下列数字填入方框内,使得算式成立。
√ 49 + √ 25 = √ [ ² ]练习题2:1. 将以下数字填入方框内,使得算式成立。
√ 25 - √ 9 = √ [ ]选项:19,16,5,32. 计算下列算式。
a. √ 64 = ?b. √ 49 - √ 36 = ?3. 填写空格,使等式成立。
√ 100 = √ [ ² ] - √ [ ² ]选项:6,10,20,504. 请填入方框内的正确数字。
√ 25 - √ 9 = √ [ ]5. 将下列数字填入方框内,使得算式成立。
√ 16 - √ 4 = √ [ ² ]练习题3:1. 将以下数字填入方框内,使得算式成立。
√ 144 + √ 64 = √ [ ]选项:8,200,11,162. 计算下列算式。
a. √ 81 = ?b. √ 121 + √ 100 = ?3. 填写空格,使等式成立。
√ 169 = √ [ ² ] + √ [ ² ]选项:2,13,15,174. 请填入方框内的正确数字。
√ 144 + √ 36 = √ [ ]5. 将下列数字填入方框内,使得算式成立。
√ 36 + √ 16 = √ [ ² ]以上是关于小学数学开方的练习题。
希望对学生们有所帮助,能够加深他们对开方的理解和运用能力。
数的开方一,基础训练1.错误!-错误!的倒数是 ;错误!-错误!的绝对值是 ; 2.错误!的有理化因式是 ,错误!的有理化因式是 ; 3.错误!与错误!的关系是 ;4.三角形三边a =7错误!,b =4错误!,c =2错误!,则周长是 ;5.直接写出答案:1错误!·错误!÷错误!= ,2错误!= ,3错误!-28错误!+28= ; 6. 计算:12÷—22 —2 -1+131-7.计算:-22 + 错误!0 + 2sin30º8. 计算:sin 28121+-+45°.9. 计算:.)23()2(13202-+-++ 10. 计算:3213+- 11.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④17-是17的平方根;其中正确的有 A0个 B1个 C2个 D3个12.,,乙的解法是:,以下判断正确的是A. 甲的解法正确,乙的解法不正确B. 甲的解法不正确,乙的解法正确C. 甲、乙的解法都正确D. 甲、乙的解法都不正确13.化简:错误!错误!2b>a14.计算:错误!+错误!-2错误!-错误!-错误!错误!15.已知a =错误!,b =错误!,求a 2-5ab +b 2的值;16.计算:9错误!÷3错误!×错误!错误! 10.化简:错误!17.设错误!的整数部分为a,小数部分为b,求a2+错误!ab+b2的值; 二,能力提高1.下列命题:1任何数的平方根都有两个2如果一个数有立方根,那么它一定有平方根3算术平方根一定是正数4非负数的立方根不一定是非负数,错误的个数为A1 B2 C3 D42.已知错误!=0.794,错误!=1.710,错误!=3.684,则错误!等于A7.94 B17.10 C36.84 D79.43.当1<x<2时,化简∣1-x∣+错误!的结果是A-1 B2x-1 C1 D3-2x4.错误!+错误!2的值一定是A0 B4-2x C2x-4 D45.比较大小:(1) 3错误!错误! 2错误!-错误! 2错误!-13错误!-错误!错误!-错误!6.如果错误!-错误!的相反数与错误!+错误!互为倒数,那么Aa、b中必有一个为0 B∣a∣=∣b∣Ca=b+1 Db=a+17.如果错误!+错误!=x-2+3-x,那么x的取值范围是Ax≥3 Bx≤2 Cx>3 D2≤x≤38.把a-b错误!化成最简二次根式,正确的结果是A错误! B错误! C-错误! D-错误!9.化简-3x错误!-错误!+错误!的结果必为A正数 B负数 C零 D不能确定10.计算及化简:15错误!·错误!·3错误! 2错误!+错误!-4错误!-2错误!+103错误!错误!-错误!错误!+错误!错误!÷错误!错误! 4 错误!错误!a>b11.已知错误!=错误!,求错误!÷错误!-的值x-2;12.先化简,再求值: 错误!+ 错误!+ 错误!其中x=2 - 错误!,y=2 + 错误!13.设错误!的整数部分为m,小数部分为n,求代数式m+n+错误!的值;14.试求函数t=2-错误!的最大值和最小值;15.如果a+b+|错误!-1|=4错误!+2错误!-4,那么a+2b-3c的值。
数的开方练习题集数的开方小测试题(1)追求卓越 肩负天下1.计算: ()()2332481------ 2.计算: ()91645232--+⨯- 3.计算: 313221---+- 4.计算:(1)04.0103632972+-; (2)()323832164---⨯⎪⎭⎫ ⎝⎛-+-.5.计算: 4128253+-- 6.已知y x ,为实数,且499+---=x x y ,求y x +的值. 7.已知0276433=-++b a ,求()b b a -的立方根.8.计算:(1)()()()11122++--x x x x ;(2)()()[]y x y x x y y x x 232223÷--.数的开方小测试题(2)追求卓越 肩负天下1.计算:(1)()572243+-⨯-÷-;(2)()328235---+-.2.解下列方程:(1)()64122=-x ; (2)()6412273-=--x . 3.求下列代数式的值:(1)若b a ,42=的算术平方根为3,求b a +的值;(2)已知x 是25的平方根,y 是16的算术平方根,且y x <,求y x -的值.4.已知12-a 的平方根是3±,124++b a 的平方根是5±,求b a 2-得平方根.5.已知b a ,互为倒数,d c ,互为相反数,求13+++d c ab 的值.6.计算: 22341312764949⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+--.数的开方小测试题(3)追求卓越 肩负天下1.若322=+-+-y x x ,求y x 的值2.一个正数a 的两个平方根分别是2+x 和82-x ,求a 的值.3.若321x -与353-x 互为相反数,求x -1的值.4.已知43=x ,且()03122=-++-z z y ,求333z y x ++的值.5.计算:()41218131623÷⎪⎭⎫ ⎝⎛---+追求卓越 肩负天下1.计算: ()323243212-+--+⎪⎭⎫ ⎝⎛-.2.解方程:()5432413=+x .3.计算:π---+185.04132.追求卓越 肩负天下1. 81的平方根是_________.2.81的平方根是_________.3. 16的平方根是4±用数学式子表示为____________.4.计算=--3825_________.5.计算:33125276416--+.6.算术平方根等于它本身的数是_________.7.一个正数的两个平方根分别是12-m 和m 34-,则这个正数是_________. 8.38的算术平方根是_________.9.计算:=+-41_________.10.在61,2,0,2-中,无理数是_________. 11.在 01020304.0,23,314.0,27,31,3π-中,无理数的个数是_________. 12.23-的相反数是_________,绝对值是_________.13.若334373+-n m 与互为相反数,则=+n m _________.14.已知b a ,是两个连续的整数,且b a <<15,则=+b a _________.15.估计16+的值在整数_________之间. 16.17+的整数部分是_________,小数部分是_________.17.若011=-++b a ,则()2017ab 的值是_________. 18.若322--+-=x x y ,则=x y _________.追求卓越 肩负天下1.下列各数中,没有平方根的是 【 】(A )1-- (B )0 (C )()23- (D )1 2.如果92=x ,那么=x _________.3.()23-的平方根是_________. 4.已知()0822=-+-b a ,则b a 的平方根是_________. 5.方程()8112=+x 的平方根是_________. 6.81的平方根是_________,算术平方根是_________.7.下列各式成立的是 【 】(A )39±= (B )525-=-(C )()662-=- (D )()10102=--8.若⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则n m -2的算术平方根为____. 9.4的算术平方根为_________.10.=64.0_________; =-1613_________; ()=-±23_________.11.若n 20的算术平方根为10,则正整数n 的值为_________.12.估计19的值在两个连续的整数_________之间.13. 25的算术平方根是_________. 14.已知021=-++y x ,求y x 5+的算术平方根.15.已知12-a 的平方根是13,3-+±b a 的算术平方根是4,求b a 2+的值.追求卓越 肩负天下1. 8-的立方根是_________.2.一个数的立方根是它本身,则这个数是_________.3.4的立方根等于_________.4.364的平方根是_________.5.方程()128123=-x 的解为____________.6.若163+x 的立方根是4,则42+x 的平方根为_________.7.8-的立方根与16的平方根之和为_________. 8.412的平方根是_________,算术平方根是_________.9.若x 的平方根是它本身,y 的立方根是它本身,则=-y x _________. 10.=-327_________; ()=-333_________; =327102_________.11.下列实数中,是无理数的为 【】(A )4- (B )0. 101001 (C )722(D )212.32-的相反数是_________,23-的绝对值是_________.13.21+的整数部分是_________,小数部分是_________.14.化简=--ππ3_________. 15.估计17+的值在_________之间. 16.若312-a 和331b -互为相反数,求b a的值.17.若()0125272=-++b a ,求a b的立方根. 18.设32+的整数部分是x ,小数部分是y ,求x y -的值.追求卓越 肩负天下1.下列关于3的判断:①3是无理数; ②3是实数; ③3是3的算术平方根; ④231<<,其中正确的是 【 】(A )①④ (B )①②④(C )①③④ (D )①②③④ 2.5的整数部分是_________,小数部分是_________.3.下列四个数中,最大的一个数是 【 】(A )2 (B )3 (C )0 (D )2-4.若3,,3-=-=-=c b a π,则c b a ,,的大小关系为__________.5.33-的相反数是_________,=-33_________.6.点M 在数轴上与原点相距6个单位,则点M 表示的实数为_________.7.在实数51,4,,1415926.3,8-π中,无理数是__________. 8.计算: (1)()2196----; (2)()3227225--+---.9.若b a ,互为相反数,d c ,互为倒数,4=m ,求()m b cd a 3222017-+-的值.10.先阅读理解,再回答问题: 因为2112=+,且221<<,所以112+的整数部分是1; 因为362,6222<<=+且,所以222+的整数部分是2; 因为12332=+,且4123<<,所以332+的整数部分是3.依次类推,我们会发现n n +2)(为正整数n 的整数部分是_________,请说明理由.追求卓越 肩负天下1.下列等式一定成立的是 【 】(A )549=- (B )22-=-ππ(C )39±= (D )()992=--2.若9,422==b a ,且0<ab ,则b a -的值为_________.3.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④1717是±的平方根.其中正确的结论是_________.4.下列实数中,有理数是 【 】(A )8 (B )34 (C )2π (D )0. 101001 5.对于实数b a ,,定义运算“*”:⎩⎨⎧<-≥-=*)()(2b a b a b a ab a b a ,例如:因为24>,所以8244242=⨯-=*,则()()=-*-23_________. 6.若052=-+-m n ,则=n m _________. 7.()29-的平方根是_________. 8.在实数 001001001001.3,16,,6,5π-中,有理数是__________________. 9.=+⎪⎭⎫ ⎝⎛---4312723_________. 10.已知8263+---=x x y ,求13-+y x 的平方根.11.有以下实数:()9,3,12,2,25,53332---. (1)请你计算其中有理数的和;(2)若2-x 是(1)中的和的平方,求2x 的值.。
《数的开方》练习试题1一、填空题1.若一个实数的算术平方根等于它的立方根,则这个数是_________; 2.数轴上表示5-的点与原点的距离是________; 3.2-的相反数是 ,3的倒数是 ,13-的相反数是 ;4.81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;5.计算:_______10_________,112561363=-=--,2224145-= ; 6.若一个数的平方根是8±,则这个数的立方根是 ;7.当______m 时,m -3有意义;当______m 时,33-m 有意义;8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ; 9.22)(a a =成立的条件是___________; 10.若1122a a a a --=--,则a 满足条件________; 11.已知0)3(122=++-b a ,则=332ab; 12.若最简二次根式5231-+-+-y x y x y x 与与是同类根式,则=x ,=y ________; 二、选择题13 14 15 16 17 18 19 2013.下列运算正确的是( ) A 、7272+=+ B 、3232=+ C 、428=⋅ D 、228= 14.在实数0、3、6-、236.2、π、23、14.3中无理数的个数是( )A 、1B 、2C 、3D 、415.下列二次根式中与26-是同类二次根式的是( ) A 、18 B 、30 C 、48 D 、54 16.下列说法错误的是( )A 、1)1(2=-B 、()1133-=-C 、2的平方根是2±D 、()232)3(-⨯-=-⨯-17.下列说法中正确的有( )①带根号的数都是无理数;②无理数一定是无限不循环小数; ③不带根号的数都是有理数;④无限小数不一定是无理数; A 、1个B 、2个C 、3个D 、4个18.一个等腰三角形的两边长分别为25和32,则这个三角形的周长是( ) A 、32210+ B 、3425+ C 、32210+或3425+ D 、无法确定 19.如果321,32-=+=b a ,则有( )A 、b a >B 、b a =C 、b a <D 、ba 1= 20.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )A 、1B 、9C 、4D 、5 三、计算题1.)32)(32(-+ 2.86127728⨯-+3.()()()62261322+-+- 4.22)2332()2332(--+5.61422164323+⨯- 6.321)37(4732+--÷--四、解方程1.()64392=-x 2.8)12(3-=-x五、解答题3.已知2323,2323-+=+-=y x ,求下列各式的值。
数的开方精选练习题(总2页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2数的开方单元试题(华东师大版)考试总分:120分 考试时间:90分钟姓名: 得分:一、选择题(共8题24分,每题3分) 1、4的算术平方根是( )A 、4-B 、4C 、2-D 、22、“9的平方根是3±”的表达式正确的是( ) A 、39±=± B 、39= C 、39±= D 、39=-3、若式子5+x 在实数范围内有意义,则x 的取值范围是( ) A 、5->x B 、5-<x C 、5-≠x D 、5-≥x4、在2-,0,711,23,44.1中,有平方根的数有( )A 、1个B 、2个C 、3个D 、4个 5、下列说法正确的是( )A 、1-的倒数是1B 、1-的相反数是1-C 、1的算术平方根是1D 、1的立方根是1± 6、对于实数a 、b ,若=b ﹣a ,则( ) A 、a >b B 、a <b C 、a≥b D 、a≤b7、一个自然数的算术平方根是a ,则与这个自然数相邻的后续自然数的平方根是( ) A .B .C .D . 8、化简6236---的结果为( ) A 、1- B 、5 C 、625- D 、162- 二、填空题(共8题24分,每题3分)9、25的平方根是 ,216-的立方根是 10、=81 ,=±2516,=-31 11、若2(1)0a b -+=则a=_________b=__________12、若一个正数的平方根是2a ﹣1和﹣a+2,则a= _______,这个正数是 ______ . 13、若一个数的平方根为±8,则这个数的立方根为 _________ . 14、已知a 、b 为两个连续整数,且b a <<17,则=+b a 15、如果23-x 和65+x 是一个数的平方根,那么这个数是 16、若252=a ,3=b ,则b a +的值是三、计算(共2题8分,每题4分) (1)、3801.041--+ (2)、33331804.01044.1----+四、解方程(本题共2个小题8分,每题3分) (1)、049162=-x (2)、25)1(2=-x五、解答题(本题共6个小题48分,每题8分)(1)、已知12-a 的立方根是3,13--b a 的平方根是4±,求b a 2+的平方根(2)、已知x 是的整数部分,y 是的小数部分,求的平方根.3(3)、)已知x ,y 为实数,且,求的值.(4)、表示a 、b 两个实数的点在数轴上的位置如图所示,化简2)(b a b a++-(5)、已知a 、b 为实数,且022=-++b b a ,解关于x 的方程:1)2(2-=++a b x a(6)、将下列各数填入相应的集合3,-3,0,21,35-,3,5-,16,73+,π,π5,752-有理数集合( )无理数集合( )正整数集合( )分数集合( )六、文字题(本题8分)小华家买了一套新房,客厅的面积为32平方米,准备用50块正方形地砖,请你帮她计算一下,她应购买边长为多少米的地砖七、附加题(本题共2题10分,每题5分,本题得分可记入总分,但总分不超过120分)(1)、已知一个正方形ABCD 的面积是4a 2 cm 2,点E 、F 、G 、H 分别为正方形ABCD 各边的中点,依次连结E 、F 、G 、H 得一个正方形. ①求这个正方形的边长;②求当a=2 cm 时,正方形EFGH 的边长大约是多少厘米(精确到)(2)、若a 、b 、c 是△ABC 的三边,化简:2222()()()()a b c a b c b c a c a b ++---+-----。
数的开方练习题The document was prepared on January 2, 2021
《数的开方》
练习一
1.若一个实数的算术平方根等于它的立方根,则这个数是_________;
2.数轴上表示5-的点与原点的距离是________;
3.2-的相反数是 ,3的倒数是 ,13-的相反数是 ;
4. -27的立方根是;
94的平方根是____。
169的算术平方根是 。
81的平方根是_______,4的算术平方根是_________,210-的算术平方根是 ;
5.计算:_______10_________,1125
61363=-=--,2224145-= ;
6.若一个数的平方根是8±,则这个数的立方根是 ;
7.当______m 时,m -3有意义;当______m 时,33-m 有意义;
8.若一个正数的平方根是12-a 和2+-a ,则____=a ,这个正数是 ;
9.22)(a a =成立的条件是___________;
10.下列各数:①、②……、③75-、④π、⑤252.±、⑥3
2-、⑦……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。
(填序号)
11、若x 有意义,x ;若5-x 有意义,x 。
三、选择题
1、 有五个数:…,…,-π,4,32其中无理数有 ( )个
A 2
B 3
C 4
D 5
2. 下列各式中无意义的是( )
A 3-
B 3±
C 23-
D ()23-±
3、下列各数是无理数的是( )
A 723
B 1
C 38
D -π 4、 把64开平方得( )
A 8
B –8
C ±8
D 32
5、 下列说法正确的是( )
A 4的平方根是2
B -16的平方根是±4
C 实数a 的平方根是±a
D 实数a 的立方根是3a
6、有理数中,算术平方根最小的是( )
A 、1
B 、0
C 、
D 、不存在
7.下列二次根式中与- )
A D 8.下列说法错误的是( ) A 、1)1(2=-
B 、()1133
-=- C 、2的平方根是2± D 、()232)3(-⨯-=-⨯-
9.下列说法中正确的有( )
①带根号的数都是无理数;②无理数一定是无限不循环小数;
③不带根号的数都是有理数;④无限小数不一定是无理数;
A 、1个
B 、2个
C 、3个 ?
D 、4个
10.设x 、y 为实数,且554-+-+=x x y ,则y x -的值是( )
A 、1
B 、9
C 、4
D 、5
练习二
一、 填空题:
1. 的平方根是 ;92的算术平方根是 , 16 的平方根是 。
2. =81 ,25
16±= ,2)3(-= 。
3. 若某数只有一个平方根,那么这个数等于 。
4. 若-a 有平方根,那么a 一定是 数。
5、 负数 平方根,有 个立方根
6、 要切一块面积为25m 2的正方形钢板,它的边长是 。
7、当0≥a ,(a )2= , 2a = ,
8、当x 时, 12-x 有意义。
;当x 时, x 2有意义。
9、 49+196= ,225= 、25.0144•=
10、(1)2)3(=______; 23= ;
(2)当0≥a ,(a )2= , 2a = 。
11、(a+2)2+|b -1|+c -3=0,则a +b +c =
二.选择题
1、a ,b 在数轴上的位置如图所示,则下列各式有意义的是( )
A 、b a -
B 、ab
C 、b a +
D 、a b -
2、如图,以数轴的单位长为边作一个正方形,以数轴的原点为圆
心,正方形的对角线长为半径画孤,交数轴于点A ,则点A
表示的数是 ( )
A .1
B .1.4
C .3
D .2
3、下列各式正确的是( )
A 、981±=
B 、14.314.3-=-ππ
C 、3927-=-
D 、235=-
4、和数轴上的点是一一对应的数为 ( )
(A)整数 (B)有理数 (C)无理数 (D)实数
三、 解答题
1、计算:(结果精确到)
(1)2332- (2)233--π
2、解下列方程(12分)
1) x 2=4 2)x 3-27=0
3)5=x 4) 64(x-1)2=49
5)8)12(3-=-x。