第四章 电化学腐蚀动力学
- 格式:ppt
- 大小:1.05 MB
- 文档页数:54
第4章腐蚀动⼒学第四章电化学腐蚀动⼒学-1§4—1 电化学腐蚀速度与极化从热⼒学出发所建⽴起来的电位——pH图只能说明⾦属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。
⼀. 腐蚀速度。
腐蚀速度的表⽰⽅法有三种。
1. 重量法:⽤腐蚀前后重量变化(只⽤均匀腐蚀,⾦属密度相同)增重法:V+ =(W1-W0)/S0t (g/m2h)失重法:V-=(W0-W1)/S0t (g/m2h)式中:W0——式样原始重量。
W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表⾯积(m2) t——经受腐蚀的时间(⼩时)2. 腐蚀深度法(均匀腐蚀时,⾦属密度不同)可⽤此法表⽰。
D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为⾦属密度⼒学(或电阻)性能变化法。
(适⽤于晶间腐蚀,氢腐蚀等)Kσ=(σbo-σbˊ)/σbo×100% K R =(R1-R0)/R0×100%σbo,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. ⽤阳极电流密度表⽰V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m2h)F——法拉第常数96500KN——⾦属光当量=W/n =⾦属原⼦量/⾦属离⼦价数⼆. 极化上⼀章讨论了⾦属电化学腐蚀的热⼒学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等⼈们最为关⼼的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究⾦属的腐蚀与保护是很重要的。
⾦属受腐蚀的趋势⼤⼩是由其电极电位决定的,将两块不同⾦属置于电解质中,两个电极电位之差就是腐蚀原动⼒。
但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。
这种由于有电流流动⽽造成电极电位变化的现象称为电极的极化。
电极的极化是影响腐蚀速度的重要因素之⼀。
(⼀)极化现象。
电化学腐蚀动⼒学电化学腐蚀动⼒学20世纪40年代末50年代初发展起来的电化学动⼒学是研究⾮平衡体系的电化学⾏为及动⼒学过程的⼀门科学,它的应⽤很⼴,涉及能量转换(从化学能、光能转化为电能)、⾦属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显⽰出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作⽤。
电化学动⼒学中的⼀些理论在⾦属腐蚀与防护领域中的应⽤就构成了电化学腐蚀动⼒学的研究内容,主要研究范围包括⾦属电化学腐蚀的电极⾏为与机理、⾦属电化学腐蚀速度及其影响因素等。
例如,就化学性质⽽论,铝是⼀种⾮常活泼的⾦属,它的标准电极电位为-1.662V。
从热⼒学上分析,铝和铝合⾦在潮湿的空⽓和许多电解质溶液中,本应迅速发⽣腐蚀,但在实际服役环境中铝合⾦变得相当的稳定。
这不是热⼒学原理在⾦属腐蚀与防护领域的局限,⽽是腐蚀过程中反应的阻⼒显著增⼤,使得腐蚀速度⼤幅度下降所致,这些都是腐蚀动⼒学因素在起作⽤。
除此之外,氢去极化腐蚀、氧去极化腐蚀、⾦属的钝化及电化学保护等有关内容也都是以电化学腐蚀动⼒学的理论为基础的。
电化学腐蚀动⼒学在⾦属腐蚀与防护的研究中具有重要的意义。
第⼀节腐蚀速度与极化作⽤电化学腐蚀通常是按原电池作⽤的历程进⾏的,腐蚀着的⾦属作为电池的阳极发⽣氧化(溶解)反应,因此电化学腐蚀速度可以⽤阳极电流密度表⽰。
例如,将⾯积各为10m2的⼀块铜⽚和⼀块锌⽚分别浸在盛有3%的氯化钠溶液的同⼀容器中,外电路⽤导线连接上电流表和电键,这样就构成⼀个腐蚀电池,如2-1。
图2-1 腐蚀电池及其电流变化⽰意图查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。
让我们观察⼀下该腐蚀电池接通后其放电流随时间变化的情况。
外电路接通前,外电阻相当于⽆穷⼤,电流为零。
在外电路接通的瞬间,观察到⼀个很⼤的起始电流,根据欧姆定律其数值为o o 3k a -0.05(0.83)= 4.41011090I R ??---==?+始安培式中o k ?-——阴极(铜)的开路电位,伏;o a ?——阳极(锌)的开路电位,伏;R ——电池系统的总电阻,欧姆在达到最⼤值I 始后,电流⼜很快减⼩,经过数分钟后减⼩到⼀个稳定的电流值I 稳=1.5×10-4 安培,⽐I 始⼩约30倍。
第四章电化学腐蚀动力学-1§4—1 电化学腐蚀速度与极化从热力学出发所建立起来的电位——pH图只能说明金属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。
一. 腐蚀速度。
腐蚀速度的表示方法有三种。
1. 重量法:用腐蚀前后重量变化(只用均匀腐蚀,金属密度相同)增重法:V+ =(W1-W0)/S0t (g/m²h)失重法:V=(W0-W1)/S0t (g/m²h)式中:W0——式样原始重量。
W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表面积(m²) t——经受腐蚀的时间(小时)2. 腐蚀深度法(均匀腐蚀时,金属密度不同)可用此法表示。
D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为金属密度力学(或电阻)性能变化法。
(适用于晶间腐蚀,氢腐蚀等)Kσ=(σbº-σbˊ)/σbº×100% K R =(R1-R0)/R0×100%σbº,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. 用阳极电流密度表示V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m²h)F——法拉第常数96500KN——金属光当量=W/n =金属原子量/金属离子价数二. 极化上一章讨论了金属电化学腐蚀的热力学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等人们最为关心的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究金属的腐蚀与保护是很重要的。
金属受腐蚀的趋势大小是由其电极电位决定的,将两块不同金属置于电解质中,两个电极电位之差就是腐蚀原动力。
但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。
这种由于有电流流动而造成电极电位变化的现象称为电极的极化。
电化学腐蚀动力学例1-3. 活化极化控制腐蚀体系的参数如下:Eec – Eea = 0.5V ,i a 0 = 10-4A/m 2,i c 0 = 10-2A/m 2 b a = 0.06V ,b c = 0.12V(1) 忽略溶液电阻,计算腐蚀电流密度i cor(2) 设溶液电阻 R = 0.1Ω.m2计算腐蚀电流密度i cor解:(1) 因为R = 0,故阴极反应和阳极反应极化后达到混合电位,即 腐蚀电位E cor ,设在腐蚀电位E cor 附近,阴极反应和阳极反应都受到强极化,消去E cor ,得:代入数据,算出lg i cor = 0.111 i cor = 1.29 (A/m 2)前面假设了在腐蚀电位,阴极反应和阳极反应都受到了强极化,现用所得结果进行验证:所以,阴极反应与阳极反应都受到强极化的假定是正确的。
(2) 因为 R ≠ 0,故阴极反应与阳极反应极化后的电位不相同。
设它们 的极化电位分别为E c 和E a ,则有lgc corc ec c c i i b E E -=-=η )exp()exp(00ceccor c aeacor a cor E E i E E i i ββ--=-=0ea ec cor 0ea ec cor lg lg lg ln ln ln c ca c a c a a c a c c a c a c a a c a ib b b i b b b b b E E i i i E E i +++++-=+++++-=ββββββββ)(253.01029.1lg 12.0lg)(247.01029.1lg 06.0lg 2040V i i b V i i b c cor c c a cor a a -=⨯-===⨯==--ηηRi E E i i b E E cor a c a cor a ea a a ⋅=-=-=0lg η所以有:ca cor ea ec c c a c a c a a cor cor c cor c a cor a ea ecb b Ri E E i b b b i b b b i R i i i b i i b E E +⋅--++++=⋅++=-)(lg lg lg lg lg 000代入数据,得到lg i cor =0.111-0.556 i cor此方程可用图解法求解,其结果为 i cor ≈ 0.6 A/m 2用Newton 迭代公式(见附录1)求方程近似解为i cor = 0.598 A/m 2和上段一样,对阴极反应与阳极反应的极化情况进行验证:所以,阴极反应与阳极反应仍符合强极化条件。