第四章_电化学腐蚀动力学
- 格式:ppt
- 大小:2.36 MB
- 文档页数:53
腐蚀动力学模型
腐蚀动力学模型是指基于大量实验数据和理论分析建立的一套数学模型,用于解释,
预测和优化腐蚀过程中金属材料的失效行为。
腐蚀动力学模型包括电化学腐蚀模型,应力
腐蚀开裂模型,高温氧化腐蚀模型等多种形式,但它们的基本原理都是相似的。
电化学腐蚀模型是最常见的一种腐蚀动力学模型,它是基于诸如极化曲线,极化电阻,电化学阻抗谱等电化学测试数据建立的。
在电化学腐蚀模型中,腐蚀速率是由电流密度,
金属表面的电位和溶液组成的。
通过对模型参数的优化来拟合实验数据,可以准确地预测
腐蚀速率的变化和确定最优腐蚀防护措施。
应力腐蚀开裂模型是另一种常见的腐蚀动力学模型,它是基于金属材料的裂纹成长原
理建立的。
在应力腐蚀开裂模型中,金属材料在经历应力作用时,可能出现裂纹,然后裂
纹逐渐扩展到材料内部而导致失效。
应力抑制因子,应力浓度因子和应力强度因子是应力
腐蚀开裂模型中的重要参数,它们可以用来评估材料的抗应力腐蚀开裂性能,并且指导相
关腐蚀防护技术的研发。
高温氧化腐蚀模型是一种专门用于研究高温下金属材料的氧化失效行为的腐蚀动力学
模型。
该模型基于氧化层生长的规律和反应动力学原理,考虑到高温,压力,气氛成分,
表面能等因素,可以预测金属材料在高温环境下的氧化速率,氧化层厚度和质量损失等信息,为热工装备的长期运行提供保障。
总之,腐蚀动力学模型是充满挑战又具有广阔应用前景的一个研究领域。
随着新材料
和新工艺的不断涌现,腐蚀动力学模型也将不断更新和完善,为各种工业领域的腐蚀防护
和材料设计提供更加可靠和有效的支持。
第4章腐蚀动⼒学第四章电化学腐蚀动⼒学-1§4—1 电化学腐蚀速度与极化从热⼒学出发所建⽴起来的电位——pH图只能说明⾦属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。
⼀. 腐蚀速度。
腐蚀速度的表⽰⽅法有三种。
1. 重量法:⽤腐蚀前后重量变化(只⽤均匀腐蚀,⾦属密度相同)增重法:V+ =(W1-W0)/S0t (g/m2h)失重法:V-=(W0-W1)/S0t (g/m2h)式中:W0——式样原始重量。
W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表⾯积(m2) t——经受腐蚀的时间(⼩时)2. 腐蚀深度法(均匀腐蚀时,⾦属密度不同)可⽤此法表⽰。
D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为⾦属密度⼒学(或电阻)性能变化法。
(适⽤于晶间腐蚀,氢腐蚀等)Kσ=(σbo-σbˊ)/σbo×100% K R =(R1-R0)/R0×100%σbo,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. ⽤阳极电流密度表⽰V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m2h)F——法拉第常数96500KN——⾦属光当量=W/n =⾦属原⼦量/⾦属离⼦价数⼆. 极化上⼀章讨论了⾦属电化学腐蚀的热⼒学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等⼈们最为关⼼的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究⾦属的腐蚀与保护是很重要的。
⾦属受腐蚀的趋势⼤⼩是由其电极电位决定的,将两块不同⾦属置于电解质中,两个电极电位之差就是腐蚀原动⼒。
但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。
这种由于有电流流动⽽造成电极电位变化的现象称为电极的极化。
电极的极化是影响腐蚀速度的重要因素之⼀。
(⼀)极化现象。
化学实验中的电化学腐蚀化学实验中的电化学腐蚀是指金属在电解液中发生氧化还原反应而导致金属表面损坏的过程。
电化学腐蚀是一个复杂的过程,涉及到物质的传输与转化、电极反应以及化学平衡等多个方面。
本文将从电化学腐蚀的定义、机理以及预防等方面加以阐述。
1. 电化学腐蚀的定义与机理电化学腐蚀是指金属在特定环境中与电解液发生化学反应,导致金属表面损坏的过程。
主要包括阳极和阴极两个区域,其中阳极区是金属发生氧化反应的地方,阴极区则是金属重新得到电子的地方。
腐蚀反应可以分为两个半反应:氧化半反应和还原半反应。
在阳极区,金属发生氧化反应,失去电子成为离子;在阴极区,离子获得电子还原为金属。
这两个半反应必须同时进行,维持电荷平衡。
导致电化学腐蚀的主要原因是金属与电解液中的离子产生反应,形成氧化物或氢氧化物等产物,使金属表面发生溶解,产生腐蚀现象。
此外,温度、电位、流体速度等因素也会对电化学腐蚀的过程产生影响。
2. 电化学腐蚀的实验方法与技术为了研究电化学腐蚀的过程,科学家们开发了一系列的实验方法和技术。
2.1 极化曲线法极化曲线法是一种通过改变电位观察腐蚀过程的方法。
该方法利用电位扫描仪测量不同电位下的电流变化,从而得到电极电流与电极电位的关系曲线,进而分析腐蚀过程中的各种参数。
2.2 交流阻抗法交流阻抗法是一种通过施加交流电进行测试的方法。
利用交流阻抗仪测量电极的阻抗值,从而得到电化学腐蚀的相关信息,如腐蚀速率、电极界面性质等。
2.3 循环伏安法循环伏安法是一种通过改变电极电位来研究腐蚀反应的方法。
通过改变电位的范围和速率,观察电极电流的变化情况,可以得到电极表面的反应动力学参数。
以上是一些常见的电化学腐蚀实验方法和技术,科学家们利用这些方法和技术可以深入研究电化学腐蚀的机理和特性。
3. 电化学腐蚀的预防措施针对电化学腐蚀的特点和机理,制定相应的预防措施是必要的。
以下介绍几个常用的预防措施。
3.1 阳极保护阳极保护是一种通过在金属表面施加电流,使其成为电化学反应中的阴极而达到保护的方法。
电化学腐蚀1. 什么是电化学腐蚀?电化学腐蚀是金属与其环境中的电解质接触时所发生的一种自发氧化反应。
这种反应导致金属表面有损失,并最终导致金属的破坏。
电化学腐蚀是金属腐蚀的一种常见形式,特别是在湿润环境中。
它是金属腐蚀的主要机制之一,也是金属材料工程中需要考虑的重要问题之一。
2. 电化学腐蚀的机理电化学腐蚀涉及到三个基本组成部分:电极、电解质和外部电路。
在金属表面,由于各种反应产物、氧化物或水分解产物的影响,可能会形成一个电化学电池。
这样的电化学电池包括一个阳极和一个阴极,它们通过电子传导和离子传递来维持反应。
阳极是金属丧失而腐蚀的地方,阴极则是电子和离子的还原地点。
具体来说,金属表面处于不平衡的电位环境中,其电位处于阳极位或阴极位。
当金属处于阳极位时,它会发生氧化反应,如金属离子的溶解和氧气的反应。
而金属处于阴极位时,它会发生还原反应,如离子还原成金属或氧气还原成水。
3. 影响电化学腐蚀的因素3.1 电解质浓度电解质浓度是影响电化学腐蚀的重要因素之一。
较高浓度的电解质会导致电化学反应加速,加剧金属的腐蚀。
这是因为高浓度的电解质提供更多的离子来参与反应。
3.2 温度温度是影响金属腐蚀速率的因素之一。
在高温环境下,金属表面的反应速率会增加,从而加剧电化学腐蚀的过程。
3.3 金属特性不同的金属具有不同的抗腐蚀能力。
一些金属,如铝和不锈钢,具有较好的抗腐蚀性能,而其他金属,如铁和铅,容易受到电化学腐蚀的影响。
3.4 表面处理金属的表面处理可以改善其抗腐蚀性能。
例如,使用防锈涂层或电镀可以提供一个保护性的屏障,阻止电解质接触到金属表面。
4. 防止电化学腐蚀的措施4.1 选取适合的金属在特定的环境中,选择适当的金属可以减少电化学腐蚀的风险。
例如,在酸性环境中使用不锈钢可以有效地预防腐蚀。
4.2 使用防腐涂层对金属表面进行防腐涂层处理可以提供额外的保护层,阻止金属与电解质的直接接触。
一些常用的防腐涂层材料包括油漆、聚合物和金属涂层。
电化学腐蚀动⼒学电化学腐蚀动⼒学20世纪40年代末50年代初发展起来的电化学动⼒学是研究⾮平衡体系的电化学⾏为及动⼒学过程的⼀门科学,它的应⽤很⼴,涉及能量转换(从化学能、光能转化为电能)、⾦属的腐蚀与防护、电解以及电镀等领域,特别在探索具有特殊性能的新能源和新材料时更突出地显⽰出它的重要性,其理论研究对腐蚀电化学的发展也起着重要作⽤。
电化学动⼒学中的⼀些理论在⾦属腐蚀与防护领域中的应⽤就构成了电化学腐蚀动⼒学的研究内容,主要研究范围包括⾦属电化学腐蚀的电极⾏为与机理、⾦属电化学腐蚀速度及其影响因素等。
例如,就化学性质⽽论,铝是⼀种⾮常活泼的⾦属,它的标准电极电位为-1.662V。
从热⼒学上分析,铝和铝合⾦在潮湿的空⽓和许多电解质溶液中,本应迅速发⽣腐蚀,但在实际服役环境中铝合⾦变得相当的稳定。
这不是热⼒学原理在⾦属腐蚀与防护领域的局限,⽽是腐蚀过程中反应的阻⼒显著增⼤,使得腐蚀速度⼤幅度下降所致,这些都是腐蚀动⼒学因素在起作⽤。
除此之外,氢去极化腐蚀、氧去极化腐蚀、⾦属的钝化及电化学保护等有关内容也都是以电化学腐蚀动⼒学的理论为基础的。
电化学腐蚀动⼒学在⾦属腐蚀与防护的研究中具有重要的意义。
第⼀节腐蚀速度与极化作⽤电化学腐蚀通常是按原电池作⽤的历程进⾏的,腐蚀着的⾦属作为电池的阳极发⽣氧化(溶解)反应,因此电化学腐蚀速度可以⽤阳极电流密度表⽰。
例如,将⾯积各为10m2的⼀块铜⽚和⼀块锌⽚分别浸在盛有3%的氯化钠溶液的同⼀容器中,外电路⽤导线连接上电流表和电键,这样就构成⼀个腐蚀电池,如2-1。
图2-1 腐蚀电池及其电流变化⽰意图查表得知铜和锌在该溶液中的开路电位分别为+0.05伏和-0.83伏,并测得外电路电阻R 外=110欧姆,内电路电阻R 内=90欧姆。
让我们观察⼀下该腐蚀电池接通后其放电流随时间变化的情况。
外电路接通前,外电阻相当于⽆穷⼤,电流为零。
在外电路接通的瞬间,观察到⼀个很⼤的起始电流,根据欧姆定律其数值为o o 3k a -0.05(0.83)= 4.41011090I R ??---==?+始安培式中o k ?-——阴极(铜)的开路电位,伏;o a ?——阳极(锌)的开路电位,伏;R ——电池系统的总电阻,欧姆在达到最⼤值I 始后,电流⼜很快减⼩,经过数分钟后减⼩到⼀个稳定的电流值I 稳=1.5×10-4 安培,⽐I 始⼩约30倍。
第四章电化学腐蚀动力学-1§4—1 电化学腐蚀速度与极化从热力学出发所建立起来的电位——pH图只能说明金属被腐蚀的趋势,但是在实际中需要解决的问题是腐蚀速度。
一. 腐蚀速度。
腐蚀速度的表示方法有三种。
1. 重量法:用腐蚀前后重量变化(只用均匀腐蚀,金属密度相同)增重法:V+ =(W1-W0)/S0t (g/m²h)失重法:V=(W0-W1)/S0t (g/m²h)式中:W0——式样原始重量。
W1——腐蚀后的重量(g,mg)S0——经受腐蚀的表面积(m²) t——经受腐蚀的时间(小时)2. 腐蚀深度法(均匀腐蚀时,金属密度不同)可用此法表示。
D深=V±/d =(W1-W0)/S0td (mm/年) 式中d为金属密度力学(或电阻)性能变化法。
(适用于晶间腐蚀,氢腐蚀等)Kσ=(σbº-σbˊ)/σbº×100% K R =(R1-R0)/R0×100%σbº,R0——式样腐蚀前的强度和电阻σbˊ,R1——式样腐蚀后的强度和电阻3. 用阳极电流密度表示V¯=Icorr×N/F =3.73*10¯4 Icorr×N (g/m²h)F——法拉第常数96500KN——金属光当量=W/n =金属原子量/金属离子价数二. 极化上一章讨论了金属电化学腐蚀的热力学倾向,并未涉及腐蚀速度和影响腐蚀速度的因素等人们最为关心的问题。
电化学过程中的极化和去极化是影响腐蚀速度的最重要因素,研究极化和去极化规律对研究金属的腐蚀与保护是很重要的。
金属受腐蚀的趋势大小是由其电极电位决定的,将两块不同金属置于电解质中,两个电极电位之差就是腐蚀原动力。
但是这个电位差数值是不稳定的,当电极上有电流流过时,就会引起电极电位的变化。
这种由于有电流流动而造成电极电位变化的现象称为电极的极化。
电化学腐蚀动力学上一章从热力学观点阐述了金属腐蚀的根本原因,介绍了判断腐蚀倾向的方法。
但实际上,人们不但关心金属腐蚀倾向的大小,更关心金属腐蚀速度的快慢。
3.1 腐蚀电池的电极过程3.1.1 阳极过程(1)金属原子离开晶格转变为表面吸附原子:M晶格 → M吸附(2)表面吸附原子越过双电层进行放电转变为水化阳离子:M吸附+mH2O → M n+·mH2O+ne(3)水化金属阳离子M n+·mH2O从双电层溶液侧向溶液深处迁移。
3.1.2 阴极过程(1)氢离子还原反应或析氢反应: 2H++2e → H2 ↑(2)溶液中溶解氧的还原反应。
在中性或碱性溶液中,生成OH-离子: O2+2H2O+4e = 40H-在酸性溶液中,生成水: O2+4H++4e = 2H2O(3)溶液中高价离子的还原,例如铁锈中的三价铁离子的还原: Fe3++e → Fe2+Fe3O4+H2O+2e → 3FeO+2OH-Fe(OH)3+e → Fe(OH)2+OH-(4)溶液中贵金属离子的还原,例如二价铜离子还原为金属铜: Cu2++2e → Cu(5)氧化性酸(为HNO3)或某些阴离子的还原,如NO3-+2H++2e → NO2-+H2OCr2O72-+14H++6e → 2Cr3++7H2O(6)溶液中某些有机化合物的还原,如RO+4H++4e → RH2+H2OR+2H++2e → RH2式中R表示有机化合物基团或分子。
3.2 腐蚀速度与极化作用3.2.1 腐蚀电池的极化现象当电极上有净电流通过时,电极电位显著偏离了未通电时的开路电位(平衡电位或非平衡的稳态电位),这种现象叫做电极的极化。
3.2.2 阳极极化阳极上有电流通过时,其电位向正方向移动,称为阳极极化。
产生阳极极化有以下几个原因。
1.活化极化2.浓差极化3.电阻极化3.2.3 阴极极化阴极上有电流通过时,电位向负方向移动,这种现象叫阴极极化。
电化学腐蚀动力学例1-3. 活化极化控制腐蚀体系的参数如下:Eec – Eea = 0.5V ,i a 0 = 10-4A/m 2,i c 0 = 10-2A/m 2 b a = 0.06V ,b c = 0.12V(1) 忽略溶液电阻,计算腐蚀电流密度i cor(2) 设溶液电阻 R = 0.1Ω.m2计算腐蚀电流密度i cor解:(1) 因为R = 0,故阴极反应和阳极反应极化后达到混合电位,即 腐蚀电位E cor ,设在腐蚀电位E cor 附近,阴极反应和阳极反应都受到强极化,消去E cor ,得:代入数据,算出lg i cor = 0.111 i cor = 1.29 (A/m 2)前面假设了在腐蚀电位,阴极反应和阳极反应都受到了强极化,现用所得结果进行验证:所以,阴极反应与阳极反应都受到强极化的假定是正确的。
(2) 因为 R ≠ 0,故阴极反应与阳极反应极化后的电位不相同。
设它们 的极化电位分别为E c 和E a ,则有lgc corc ec c c i i b E E -=-=η )exp()exp(00ceccor c aeacor a cor E E i E E i i ββ--=-=0ea ec cor 0ea ec cor lg lg lg ln ln ln c ca c a c a a c a c c a c a c a a c a ib b b i b b b b b E E i i i E E i +++++-=+++++-=ββββββββ)(253.01029.1lg 12.0lg)(247.01029.1lg 06.0lg 2040V i i b V i i b c cor c c a cor a a -=⨯-===⨯==--ηηRi E E i i b E E cor a c a cor a ea a a ⋅=-=-=0lg η所以有:ca cor ea ec c c a c a c a a cor cor c cor c a cor a ea ecb b Ri E E i b b b i b b b i R i i i b i i b E E +⋅--++++=⋅++=-)(lg lg lg lg lg 000代入数据,得到lg i cor =0.111-0.556 i cor此方程可用图解法求解,其结果为 i cor ≈ 0.6 A/m 2用Newton 迭代公式(见附录1)求方程近似解为i cor = 0.598 A/m 2和上段一样,对阴极反应与阳极反应的极化情况进行验证:所以,阴极反应与阳极反应仍符合强极化条件。