步步高《单元滚动检测卷》高考数学(理)(北师大,全国)精练:10统计与统计案例(含答案解析)
- 格式:docx
- 大小:176.25 KB
- 文档页数:14
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
单元检测一集合与常用逻辑用语第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·重庆)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A2.已知集合A={x|x2-2x-3≥0},B={x|-2≤x<2},则A∩B等于()A.[-2,-1]B.[-1,1]C.[-1,2) D.[1,2)3.(2015·长春外国语学校高三期中)已知集合A={-1,0,1,2},B={x|1≤2x<4},则A∩B等于()A.{-1,0,1} B.{0,1,2}C.{0,1} D.{1,2}4.(2015·宜昌调研)下列说法中,正确的是()A.命题“若am2<bm2,则a<b”的逆命题是真命题B.命题“存在x0∈R,x20-x0>0”的否定是“对任意的x∈R,x2-x≤0”C.命题“p或q”为真命题,则命题p和命题q均为真命题D.已知x∈R,则“x>1”是“x>2”的充分不必要条件5.(2015·吉林三模)已知p:x>1或x<-3,q:x>a,若q是p的充分不必要条件,则a的取值范围是()A.[1,+∞) B.(-∞,1]C.[-3,+∞) D.(-∞,-3]6.已知命题p:存在x0∈(-∞,0),2x0<3x0,命题q:任意x∈(0,1),log2x<0,则下列命题为真命题的是()A .p 且qB .p 或(綈q )C .(綈p )且qD .p 且(綈q )7.(2015·赣州市十二县市期中)已知p :x ≥k ,q :3x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞)B .(2,+∞)C .[1,+∞)D .(-∞,-1]8.已知两个集合A ={x |y =ln(-x 2+x +2)},B ={x |2x +1e -x≤0},则A ∩B 等于( ) A .[12,2) B .(-1,-12] C .(-1,e) D .(2,e)9.(2015·大连二模)已知集合A ={(x ,y )|x (x -1)+y (y -1)≤r },集合B ={(x ,y )|x 2+y 2≤r 2},若A ⊆B ,则实数r 可以取的一个值是( ) A.2+1 B. 3 C .2 D .1+2210.(2016·黄冈中学月考)下列四种说法中,①命题“存在x ∈R ,x 2-x >0”的否定是“对于任意x ∈R ,x 2-x <0”;②命题“p 且q 为真”是“p 或q 为真”的必要不充分条件;③已知幂函数f (x )=x α的图像经过点(2,22),则f (4)的值等于12; ④已知向量a =(3,-4),b =(2,1),则向量a 在向量b 方向上的射影是25. 说法正确的个数是( )A .1B .2C .3D .411.(2015·宜春模拟)设P ,Q 为两个非空实数集合,定义集合P *Q ={z |z =a ÷b ,a ∈P ,b ∈Q },若P ={-1,0,1},Q ={-2,2},则集合P *Q 中元素的个数是( )A .2B .3C .4D .512.若p :a ∈R ,|a |<1,q :关于x 的二次方程x 2+(a +1)x +a -2=0的一个根大于零,另一个根小于零,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设集合A ={5,log 2(a +3)},B ={a ,b },若A ∩B ={2},则A ∪B =________________.14.给定两个命题,命题p :对任意实数x 都有ax 2>-ax -1恒成立,命题q :关于x 的方程x 2-x +a =0有实数根.若“p 或q ”为真命题,“p 且q ”为假命题,则实数a 的取值范围是________________.15.(2015·石家庄二模)已知命题p :x 2-3x -4≤0;命题q :x 2-6x +9-m 2≤0,若綈q 是綈 p 的充分不必要条件,则实数m 的取值范围是__________________.16.(2015·河南顶级名校入学定位考试)已知有限集A ={a 1,a 2,a 3,…,a n }(n ≥2,n ∈N ).如果A 中元素a i (i =1,2,3,…,n )满足a 1a 2…a n =a 1+a 2+…+a n ,就称A 为“复活集”,给出下列结论:①集合⎩⎨⎧⎭⎬⎫-1+52,-1-52是“复活集”;②若a 1,a 2∈R ,且{a 1,a 2}是“复活集”,则a 1a 2>4;③若a 1,a 2∈N +,则{a 1,a 2}不可能是“复活集”;④若a i ∈N ,则“复活集”A 有且只有一个,且n =3.其中正确的结论有________.(填上你认为正确的所有结论的序号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知集合A ={x |x 2-5x +6=0},B ={x |mx +1=0},且A ∪B =A ,求实数m 的值组成的集合.18.(12分)已知集合A ={y |y =x 2-32x +1,x ∈[34,2]},B ={x |x +m 2≥1}.若A ⊆B ,求实数m 的取值范围.19.(12分)(2015·宿迁剑桥国际学校上学期期中)已知集合A ={x |y =1-2x +1x +1},B ={x |[x -(a +1)][x -(a +4)]<0}.(1)若A ∩B =A ,求a 的取值范围;(2)若A ∩B ≠∅,求a 的取值范围.20.(12分)设函数f (x )=lg(x 2-x -2)的定义域为集合A ,函数g (x )=3-|x |的定义域为集合B .(1)求A ∩B ;(2)若C ={x |m -1<x <2m +1},C ⊆B ,求实数m 的取值范围.21.(12分)(2015·潍坊高三质检)已知集合A ={x |x 2-3x +2≤0},集合B ={y |y =x 2-2x +a },集合C ={x |x 2-ax -4≤0}.命题p :A ∩B ≠∅,命题q :A ⊆C .(1)若命题p 为假命题,求实数a 的取值范围;(2)若命题p 且q 为真命题,求实数a 的取值范围.22.(12分)(2015·湖北省教学合作联考)已知集合U =R ,集合A ={x |(x -2)(x -3)<0},函数y=lg x -(a 2+2)a -x的定义域为集合B . (1)若a =12,求集合A ∩(∁U B ); (2)命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数a 的取值范围.答案解析1.D [由于2∈A,2∈B,3∈A,3∈B,1∈A,1∉B ,故A ,B ,C 均错,D 是正确的,选D.]2.A [A ={x |x ≤-1或x ≥3},故A ∩B =[-2,-1],选A.]3.C [B ={x |1≤2x <4}={x |0≤x <2},则A ∩B ={0,1},故选C.]4.B [对于A ,当m =0时,逆命题不正确;对于B ,由特称命题与全称命题的关系知显然正确;命题“p 或q ”为真命题,则命题p 和命题q 中至少有一个是真命题,不一定全为真命题,故C 不正确;“x >1”是“x >2”的必要不充分条件,D 不正确.选B.]5.A [设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1,故选A.]6.C [命题p :存在x 0∈(-∞,0),2x 0<3x 0为假命题,命题q :任意x ∈(0,1),log 2x <0为真命题,所以(綈p )且q 为真命题.]7.B [∵3x +1<1,∴3x +1-1=2-x x +1<0, 即(x -2)(x +1)>0,∴x >2或x <-1,∵p 是q 的充分不必要条件,∴k >2,故选B.]8.B [由A 中的函数y =ln(-x 2+x +2),得到-x 2+x +2>0,即x 2-x -2<0, 整理得:(x -2)(x +1)<0,即-1<x <2,∴A =(-1,2),由B 中的不等式变形得:(2x +1)(e -x )≤0,且e -x ≠0,即(2x +1)(x -e)≥0,且x ≠e ,解得:x ≤-12或x >e , 即B =(-∞,-12]∪(e ,+∞), 则A ∩B =(-1,-12].故选B.] 9.A [A ={(x ,y )|(x -12)2+(y -12)2≤r +12},B ={(x ,y )|x 2+y 2≤r 2},由于A ,B 都表示圆上及圆内的点的坐标,要满足A ⊆B ,则两圆内切或内含.故圆心距满足22≤|r |-r +12,将四个选项中的数分别代入,可知只有A 选项满足,故选A.]10.A [①命题“存在x ∈R ,x 2-x >0”的否定是“对于任意x ∈R ,x 2-x ≤0”,故①不正确;②命题“p 且q 为真”,则命题p 、q 均为真,所以“p 或q 为真”.反之“p 或q 为真”,则p 、q 不见得都真,所以不一定有“p 且q 为真”,所以命题“p 且q 为真”是“p 或q 为真”的充分不必要条件,故命题②不正确;③由幂函数f (x )=x α的图像经过点(2,22),所以2α=22,所以α=-12,所以幂函数为f (x )=x -12, 所以f (4)=4-12=12,所以命题③正确; ④向量a 在向量b 方向上的射影是|a |cos θ=a ·b |b |=25=255,θ是a 和b 的夹角,故④错误.故选A.]11.B [当a =0时,无论b 取何值,z =a ÷b =0;当a =-1,b =-2时,z =(-1)÷(-2)=12; 当a =-1,b =2时,z =(-1)÷2=-12; 当a =1,b =-2时,z =1÷(-2)=-12; 当a =1,b =2时,z =1÷2=12. 故P *Q ={0,-12,12},该集合中共有3个元素.] 12.A [p :a ∈R ,|a |<1⇔-1<a <1⇒a -2<0,可知满足q 的方程有两根,且两根异号,条件充分;条件不必要,如a =1时,方程的一个根大于零,另一个根小于零.也可以把命题q 中所有满足条件的a 的范围求出来,再进行分析判断,实际上一元二次方程两根异号的充要条件是两根之积小于0,对于本题就是a -2<0,即a <2.]13.{1,2,5}解析 由A ∩B ={2}可得:log 2(a +3)=2,∴a =1,∴b =2,∴A ∪B ={1,2,5}.14.(-∞,0)∪(14,4) 解析 若p 为真命题,则a =0或⎩⎪⎨⎪⎧a >0,a 2-4a <0,即0≤a <4;若q 为真命题,则(-1)2-4a ≥0,即a ≤14. 因为“p 或q ”为真命题,“p 且q ”为假命题,所以p ,q 中有且仅有一个为真命题.若p 真q 假,则14<a <4;若p 假q 真,则a <0. 综上,实数a 的取值范围为(-∞,0)∪(14,4). 15.(-∞,-4]∪[4,+∞)解析 綈q 是綈p 的充分不必要条件,等价于p 是q 的充分不必要条件.由题意可得p : -1≤x ≤4,q :(x -3+m )(x -3-m )≤0.当m =0时,显然不符合题意;当m >0时,有⎩⎪⎨⎪⎧ 3-m <-1,3+m ≥4或⎩⎪⎨⎪⎧ 3-m ≤-1,3+m >4⇒m ≥4; 当m <0时,有⎩⎪⎨⎪⎧ 3+m <-1,3-m ≥4或⎩⎪⎨⎪⎧3+m ≤-1,3-m >4 ⇒m ≤-4.综上,m 的取值范围是(-∞,-4]∪[4,+∞).16.①③④解析 ∵-1+52×-1-52=-1+52+-1-52=-1,故①是正确的.②不妨设a 1+a 2=a 1a 2=t ,则由一元二次方程根与系数的关系,知a 1,a 2是一元二次方程x 2-tx +t =0的两个根,由Δ>0,可得t <0或t >4,故②错.③不妨设A 中a 1<a 2<a 3<…<a n ,由a 1a 2…a n =a 1+a 2+…+a n <na n ,得a 1a 2…a n -1<n ,当n =2时,即有a 1<2,∴a 1=1,于是1+a 2=a 2,无解,即不存在满足条件的“复活集”A ,故③正确.当n =3时,a 1a 2<3,故只能a 1=1,a 2=2,解得a 3=3,于是“复活集”A 只有一个,为{1,2,3}.当n ≥4时,由a 1a 2…a n -1≥1×2×3×…×(n -1),得n >1×2×3×…×(n -1),也就是说“复活集”A 存在的必要条件是n >1×2×3×…×(n -1),事实上,1×2×3×…×(n -1)≥(n -1)(n -2)=n 2-3n +2=(n -2)2-2+n >n ,矛盾,∴当n ≥4时不存在“复活集”A ,故④正确.17.解 A ={x |x 2-5x +6=0}={2,3},∵A ∪B =A ,∴B ⊆A .①当m =0时,B =∅,B ⊆A ,故m =0;②当m ≠0时,由mx +1=0,得x =-1m. ∵B ⊆A ,∴-1m =2或-1m =3,得m =-12或m =-13. ∴实数m 的值组成的集合为{0,-12,-13}. 18.解 因为y =(x -34)2+716,x ∈[34,2],所以y ∈[716,2].又因为A ⊆B ,所以1-m 2≤716.解得m ≥34或m ≤-34. 19.解 若x ∈A ,则1-2x +1x +1≥0,即-x x +1≥0,所以⎩⎪⎨⎪⎧x (x +1)≤0,x +1≠0,解得-1<x ≤0,所以A ={x |-1<x ≤0};若x ∈B ,则[x -(a +1)]·[x -(a +4)]<0,解得a +1<x <a +4,所以B ={x |a +1<x <a +4}.(1)若A ∩B =A ,则A ⊆B ,所以⎩⎪⎨⎪⎧a +1≤-1,a +4>0,解得-4<a ≤-2. (2)若A ∩B =∅,则a +4≤-1或a +1≥0,即a ≤-5或a ≥-1,所以若A ∩B ≠∅,则a 的取值范围是(-5,-1).20.解 (1)要使函数f (x )有意义,则x 2-x -2>0,解得x >2或x <-1,即A ={x |x >2或x <-1}.要使g (x )有意义,则3-|x |≥0,解得-3≤x ≤3,即B ={x |-3≤x ≤3},∴A ∩B ={x |x >2或x <-1}∩{x |-3≤x ≤3}={x |-3≤x <-1或2<x ≤3}.(2)若C =∅,则m ≤-2,C ⊆B 恒成立;若m >-2,要使C ⊆B 成立,则⎩⎪⎨⎪⎧ m >-2,m -1≥-3,2m +1≤3,解得-2<m ≤1. 综上,m ≤1.即实数m 的取值范围是(-∞,1].21.解 ∵A ={x |x 2-3x +2≤0}={x |1≤x ≤2},y =x 2-2x +a =(x -1)2+a -1≥a -1,∴B ={y |y ≥a -1},C ={x |x 2-ax -4≤0},(1)由命题p 为假命题可得A ∩B =∅,∴a -1>2,∴a >3.(2)∵命题p 且q 为真命题,∴p ,q 都为真命题,即A ∩B ≠∅且A ⊆C .∴⎩⎪⎨⎪⎧ a -1≤2,1-a -4≤0,4-2a -4≤0,解得0≤a ≤3.22.解 (1)因为集合A ={x |2<x <3},又a =12, 所以函数y =lg x -(a 2+2)a -x =lg x -9412-x , 由x -9412-x >0,可得集合B ={x |12<x <94}, ∁U B ={x |x ≤12或x ≥94}, 故A ∩(∁U B )={x |94≤x <3}. (2)因为q 是p 的必要条件等价于p 是q 的充分条件,即A ⊆B , 由A ={x |2<x <3},而集合B 应满足x -(a 2+2)a -x>0, 因为a 2+2-a =(a -12)2+74>0, 故B ={x |a <x <a 2+2},依题意就有⎩⎪⎨⎪⎧a ≤2,a 2+2≥3,即a ≤-1或1≤a ≤2, 所以实数a 的取值范围是(-∞,-1]∪[1,2].。
第十章 章末检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7 2.(2011·威海模拟)下图为甲、乙两名篮球运动员每场比赛得分情况的茎叶图,则甲和乙得分的中位数的和是( )A .56分B .57分C .58分D .59分 3.(2010·广州一模)商场在国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )A .6万元B .8万元C .10万元D .12万元 4.(2011·烟台模拟)从2 010名学生中选取50名学生参加数学竞赛,若采用下面的方法选取:先用简单随机抽样从2010人中剔除10人,剩下的2 000人再按系统抽样的方法抽取50人,则在2 010人中,每人入选的概率( )A .不全相等B .均不相等C .都相等,且为5201D .都相等,且为1405.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x ,成绩大于等于15秒且小于17秒的学生人数为y ,则从频率分布直方图中可分析出x 和y 分别为( )A .0.9,35B .0.9,45C .0.1,35D .0.1,45 6.(2011·广东)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.34 7.如图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( )A .304.6B .303.6C .302.6D .301.6 8.(2011·广州联考)为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如图),已知从左到右各长方形高的比为2∶3∶5∶6∶3∶1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .339.某人5次上班途中所花的时间(单位:分钟)分别为x ,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1B .2C .3D .410.袋中有红、黄、绿色球各一个,每次任取一个,有放回的抽取三次,球的颜色全相同的概率是( )A.227B.19C.29D.12711.掷一枚硬币,若出现正面记1分,出现反面记2分,则恰好得3分的概率为( ) A.58 B.18 C.14 D.12 12.(2010·安徽)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.418C.518D.618二、填空题(本大题共4小题,每小题5分,共20分) 13.(2010·北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).由图中数据可知a =________.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为________.14.如图所示,墙上挂有一长为2π,宽为2的矩形木板ABCD,它的阴影部分是由函数y=cos x,x∈[0,2π]的图象和直线y=1围成的图形.某人向此木板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则他击中阴影部分的概率是________.15.(2011·广东五校联考)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算得K2≈3.918,经查对临界值表知P(K2≥3.841)≈0.05.对此,四名同学作出了以下的判断:p:有95%的把握认为“这种血清能起到预防感冒的作用”;q:若某人未使用该血清,那么他在一年中有95%的可能性得感冒;r:这种血清预防感冒的有效率为95%;s:这种血清预防感冒的有效率为5%.则下列结论中,正确结论的序号是________.(把你认为正确的命题序号都填上)①p∧綈q②綈p∧q③(綈p∧綈q)∧(r∨s)④(p∨綈r)∧(綈q∨s)16.(2011·江苏通州调研)将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为________.三、解答题(本大题共6小题,共70分)17.(10分)(2011·福建龙岩一中模拟)将一颗骰子先后抛掷2次,观察向上的点数,求:(1)两数之和为5的概率;(2)两数中至少有一个为奇数的概率;(3)以第一次向上的点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=15的内部的概率.18.(12分)为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题:(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)若成绩在80.5~90.5分的学生可以获得二等奖,问获得二等奖的学生约为多少人?19.(12分)(2011·安庆模拟)对某班学生是爱好体育还是爱好文娱进行调查,根据调查得到的数据,所绘制的二维条形图如下图.(1)根据图中数据,制作2×2列联表;(2)若要从更爱好文娱和从更爱好体育的学生中各选一人分别做文体活动协调人,求选出的两人恰好是一男一女的概率;(3)是否可以认为性别与是否爱好体育有关系?参考数据:20.(12分)(2010·天津)有编号为A 1,A 2,…,A 10的10个零件,测量其直径(单位:cm),(1)从上述10个零件中,随机抽取1个,求这个零件为一等品的概率. (2)从一等品零件中,随机抽取2个:①用零件的编号列出所有可能的抽取结果; ②求这2个零件直径相等的概率.21.(12分)(2011·苍山期末)已知关于x 的一元二次函数,f (x )=ax 2-4bx +1.(1)设集合P ={1,2,3}和Q ={-1,1,2,3,4},分别从集合P 和Q 中随机取一个数作为a 和b ,求函数y =f (x )在区间[1,+∞)上是增函数的概率;(2)设点(a ,b )是区域⎩⎪⎨⎪⎧x +y -8≤0,x >0,y >0内的随机点,求函数y =f (x )在区间[1,+∞)上是增函数的概率.22.(12分)从某学校高三年级共800名男生中随机抽取50名测量身高,测量发现被测学生身高全部介于155 cm 和195 cm 之间,将测量结果按如下方式分成八组:第一组[155,160);第二组[160,165);…;第八组[190,195],上图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组、第七组、第八组人数依次构成等差数列.(1)估计这所学校高三年级全体男生身高180 cm 以上(含180 cm)的人数; (2)求第六组、第七组的频率并补充完整频率分布直方图;(3)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为x 、y ,求满足|x -y |≤5的事件概率.第十章 章末检测1.C [抽样比k =2040+10+30+20=20100=15,∴抽取植物油类与果蔬类食品种数之和是10×15+20×15=2+4=6.]2.B [由图可知甲的中位数为32,乙的中位数为25,故和为57.]3.C [由0.40.1=x2.5,得x =10(万元).]4.C [从2 010名学生中选取50名学生,不论采用何种抽样方法,每名学生被抽到的可能性均相同,谁被剔除或被选中都是机会均等的.所以每人入选的概率都相等,且为502 010=5201.] 5.A [x =0.02+0.18+0.34+0.36=0.9; y =(0.36+0.34)×50=35.]6.D [甲队若要获得冠军,有两种情况,可以直接胜一局,获得冠军,概率为12,也可以乙队先胜一局,甲队再胜一局,概率为12×12=14.故甲队获得冠军的概率为14+12=34.]7.B [x =291×2+295+298+302+306+310+312+314+31710=303.6.]8.D [80~100间两个长方形高占总体的比例:5+62+3+5+6+3+1=1120即为频数之比.∴x 60=1120.∴x =33.] 9.D [∵x +y +10+11+95=10,∴x +y =20.∵(x -10)2+(y -10)2+0+1+15=2,∴(x -10)2+(y -10)2=8, ∴x 2+y 2-20(x +y)+200=8, ∴x 2+y 2-200=8,∴x 2+y 2=208.由x +y =20知(x +y)2=x 2+y 2+2xy =400, ∴2xy =192,∴|x -y|2=x 2+y 2-2xy =208-192=16,∴|x -y|=4.]10.B [有放回地取球三次,假设第一次取红球共有如下所示9种取法.同理,第一次取黄球、绿球分别也有9种情况,共计27种.而三次颜色全相同,共有3种情况,故颜色全相同的概率为327=19.]11.A [有三种可能的情况:①连续3次都掷得正面,其概率为⎝⎛⎭⎫123;②第1次掷得正面,第2次掷得反面,其概率为⎝⎛⎭⎫122;③第1次掷得反面,第2次掷得正面,其概率为⎝⎛⎭⎫122, 因此恰好得3分的概率为 ⎝⎛⎭⎫123+⎝⎛⎭⎫122+⎝⎛⎭⎫122=58.] 12.C [甲共得6条,乙共得6条,共有6×6=36(对),其中垂直的有10对,∴P =1036=518.] 13.0.030 3解析 ∵小矩形的面积等于频率,∴除[120,130)外的频率和为0.700,∴a =1-0.70010=0.030.由题意知,身高在[120,130),[130,140),[140,150]的学生分别为30人,20人,10人,∴由分层抽样可知抽样比为1860=310,∴在[140,150]中选取的学生应为3人. 14.12解析 方法一 由余弦函数图象的对称性知,阴影部分的面积为矩形ABCD 的面积的一半,故所求概率为12.方法二 也可用积分求阴影部分的面积: ∫2π0(1-cos x)d x =(x -sin x)|2π0=2π.∴P =2π4π=12.15.①④解析 本题考查了独立性检验的基本思想及常用逻辑用语.由题意,得K 2≈3.918,P(K 2≥3.841)≈0.05,所以,只有第一位同学的判断正确,即有95%的把握认为“这种血清能起到预防感冒的作用”.由真值表知①④为真命题.16.112解析 基本事件有6×6×6=216(个),点数依次成等差数列的有: (1)当公差d =0时,1,1,1及2,2,2,…,共6个.(2)当公差d =±1时,1,2,3及2,3,4;3,4,5;4,5,6,共4×2个.(3)当公差d =±2时,1,3,5;2,4,6,共2×2个.∴P =6+4×2+2×26×6×6=112.17.解 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件.(1)记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P(A)=436=19.答 两数之和为5的概率为19.(3分)(2)记“两数中至少有一个为奇数”为事件B ,则事件B 与“两数均为偶数”为对立事件,所以P(B)=1-936=34.答 两数中至少有一个为奇数的概率为34.(6分)(3)基本事件总数为36,点(x ,y)在圆x 2+y 2=15的内部记为事件C ,则C 包含8个事件,所以P(C)=836=29.答 点(x ,y)在圆x 2+y 2=15的内部的概率为29.(10分)18.解 (1)(4分)(2)频率分布直方图如图所示:(8分)(3)因为成绩在80.5~90.5分的学生的频率为0.32且有900名学生参加了这次竞赛,所以该校获得二等奖的学生约为0.32×900=288(人).(12分)19.解 (1)(3分)(2)恰好是一男一女的概率是: 15×10+5×1020×20=12.(6分) (3)K 2=n (ac -bd )2(a +b )(c +d )(a +c )(b +d )=40×(15×10-5×10)220×20×25×15=83≈2.666 7…<2.706,(9分) ∴我们没有足够的把握认为性别与是否更喜欢体育有关系.(12分)20.解 (1)由所给数据可知,一等品零件共有6个.设“从10个零件中,随机抽取1个为一等品”为事件A ,则P(A)=610=35.(4分)(2)①一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,A 5),(A 1,A 6),(A 2,A 3),(A 2,A 4),(A 2,A 5),(A 2,A 6),(A 3,A 4),(A 3,A 5),(A 3,A 6),(A 4,A 5),(A 4,A 6),(A 5,A 6),共有15种.(8分) ②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:(A 1,A 4),(A 1,A 6),(A 4,A 6),(A 2,A 3),(A 2,A 5),(A 3,A 5),共有6种,所以P(B)=615=25.(12分) 21.解 (1)∵函数f(x)=ax 2-4bx +1的图象的对称轴为x =2ba,∴要使f(x)=ax 2-4bx+1在区间[1,+∞)上为增函数,则a>0且2ba≤1,即2b ≤a.(3分)若a =1,则b =-1;若a =2,则b =-1,1; 若a =3,则b =-1,1.∴事件包含基本事件的个数是1+2+2=5.(5分) 又∵总事件数为15,∴所求事件的概率为515=13.(6分)(2)由(1)知当且仅当2b ≤a 且a>0时,函数f(x)=ax 2-4bx +1在区间[1,+∞)上为增函数, 依条件可知试验的全部结果所构成的区域为⎩⎨⎧⎭⎬⎫(a ,b )|⎩⎪⎨⎪⎧a +b -8≤0a>0b>0.如图所示.构成所求事件的区域为阴影部分.(8分)由⎩⎪⎨⎪⎧a +b -8=0,b =a 2,得交点坐标为⎝⎛⎭⎫163,83.(10分) ∴所求事件的概率为P =12×8×8312×8×8=13.(12分)22.解 (1)由频率分布直方图知,前五组频率为 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 后三组频率为1-0.82=0.18, 人数为0.18×50=9(人),(2分)这所学校高三男生身高在180 cm 以上(含180 cm )的人数为800×0.18=144(人).(4分) (2)由频率分布直方图得第八组频率为0.008×5=0.04,人数为0.04×50=2(人), 设第六组人数为m ,则第七组人数为9-2-m =7-m ,又m +2=2(7-m),所以m =4, 即第六组人数为4人,第七组人数为3人,频率分别为0.08,0.06.(6分) 频率除以组距分别等于0.016,0.012,见图.(9分)(3)由(2)知身高在[180,185)内的人数为4人,设为a ,b ,c ,d.身高在[190,195]的人数为2人,设为A ,B.若x ,y ∈[180,185)时,有ab ,ac ,ad ,bc ,bd ,cd 共6种情况. 若x ,y ∈[190,195]时,有AB 共1种情况.若x ,y 分别在[180,185),[190,195]内时,有aA ,bA ,cA ,dA ,aB ,bB ,cB ,dB 共8种情况.所以基本事件的总数为6+8+1=15(种).(11分) 事件|x -y|≤5所包含的基本事件个数有6+1=7(种),故P(|x -y|≤5)=715.(12分)。
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
滚动检测四第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·九江模拟)如图所示的Venn 图中,A ,B 是非空集合,定义A*B 表示阴影部分的集合.若x ,y ∈R ,A ={x|y =2x -x 2},B ={y|y =3x ,x>0},则A*B 等于( )A .(2,+∞)B .[0,1)∪(2,+∞)C .[0,1]∪(2,+∞)D .[0,1]∪(2,+∞)2.若“0<x<1”是“(x -a)[x -(a +2)]≤0”的充分不必要条件,则实数a 的取值范围是( ) A .(-∞,0]∪[1,+∞) B .(-1,0)C .[-1,0]D .(-∞,-1)∪(0,+∞)3.(2015·课标全国Ⅰ)已知函数f(x)=⎩⎪⎨⎪⎧2x -1-2,x≤1,-log 2(x +1),x>1, 且f(a)=-3,则f(6-a)等于( )A .-74B .-54C .-34D .-144.已知偶函数f(x)在区间[0,+∞)单调增加,则满足f(2x -1)<f(13)的x 的取值范围是( )A .(13,23)B .[13,23)C .(12,23)D .[12,23)5.已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC.若AE →·AF →=1,CE →·CF →=-23,则λ+μ等于( )A.12B.23C.56D.7126.(2015·荆州中学模拟)已知等差数列{a n }的前n 项和为S n ,且a 4-a 2=4,S 3=9,则数列{a n }的通项公式为( ) A .a n =n B .a n =n +2 C .a n =2n -1D .a n =2n +17.(2015·上饶一模)已知△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c 若A =π3,b =2acos B ,c =1,则△ABC 的面积等于( ) A.32 B.34 C.36 D.388.(2015·河南中原名校高三期中)已知数列{a n }为等差数列,{b n }为等比数列,且满足:a 1 003+a 1 013=π,b 6·b 9=2,则tan a 1+a 2 0151+b 7b 8等于( )A .1B .-1 C.33D. 3 9.关于函数f(x)=sin ⎝⎛⎭⎫2x +π4与函数g(x)=cos ⎝⎛⎭⎫2x -3π4,下列说法正确的是( ) A .函数f(x)和g(x)的图像有一个交点在y 轴上 B .函数f(x)和g(x)的图像在区间(0,π)内有3个交点 C .函数f(x)和g(x)的图像关于直线x =π2对称D .函数f(x)和g(x)的图像关于原点(0,0)对称10.已知{a n }为等差数列,0<d<1,a 5≠kπ2,sin 2a 3+2sin a 5·cos a 5=sin 2a 7,S n 为数列{a n }的前n 项和,若S n ≥S 10对一切n ∈N +都成立,则首项a 1的取值范围是( ) A .[-98π,-π)B .[-98π,-π]C .(-54π,-98π]D .[-54π,-98π]11.设f(x)是定义在R 上的周期为2的函数,当x ∈[-1,1)时,f(x)=⎩⎪⎨⎪⎧-4x 2+2,-1≤x<0,x ,0≤x<1,则f(32)等于( )A.32 B .1 C .2 D.1212.已知数列{a n }的通项公式为a n =lg ⎝⎛⎭⎫1+2n 2+3n ,n =1,2,…,S n 是数列{a n }的前n 项和,则S n 等于( )A .0B .lg n +1n +3+lg 3C .lg nn +2+lg 2 D .lgn -1n +1+lg 3第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.函数f(x)=Asin(ωx +φ)(A ,ω,φ为常数,A>0,ω>0,|φ|<π2)的部分图像如图所示,则f(0)的值是________________________________________________________________________.14.(2015·河南十校联考)设数列{a n }是等差数列,数列{b n }是等比数列,记数列{a n },{b n }的前n 项和分别为S n ,T n .若a 5=b 5,a 6=b 6,且S 7-S 5=4(T 6-T 4),则a 7+a 5b 7+b 5=________. 15.(2015·南阳质检)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.若b a +ab =6cos C ,则tan C tan A +tan C tan B的值是________. 16.已知f(x)是定义在R 上且周期为3的函数,当x ∈[0,3)时,f(x)=|x 2-2x +12|.若函数y =f(x)-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.18.(12分)设f(x)=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f(x)的值域;(2)若f(x)在区间⎣⎡⎦⎤-3π2,π2上为增函数,求ω的最大值.19.(12分)已知二次函数f(x)的最小值为-4,且关于x 的不等式f(x)≤0的解集为{x|-1≤x≤3,x ∈R}.(1)求函数f(x)的解析式;(2)求函数g(x)=f(x)x -4ln x 的零点个数.20.(12分)已知函数f(x)=cos x(sin x -3cos x)(x ∈R). (1)求函数f(x)的最大值以及取最大值时x 的取值集合;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且f(A 2)=-32,a =3,b +c =23,求△ABC 的面积.21.(12分)(2015·安徽八校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,向量q =(2a,1),p =(2b -c ,cos C),且p ∥q. (1)求sin A 的值;(2)求三角函数式-2cos 2C 1+tan C +1的取值范围.22.(12分)(2015·课标全国Ⅰ)已知函数f(x)=x 3+ax +14,g(x)=-ln x.(1)当a 为何值时,x 轴为曲线y =f(x)的切线;(2)用min{m ,n}表示m ,n 中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.答案解析1.C 2.C 3.A 4.A 5.C 6.C 设数列的公差为d ,依题意可得⎩⎪⎨⎪⎧a 1+3d -a 1-d =4,3a 1+3d =9,解得d =2,a 1=1,∴a n =1+(n -1)×2=2n -1. 故选C.7.B [由正弦定理得sin B =2sin Acos B , 故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =π3,所以△ABC 是正三角形,所以S △ABC =12bcsin A =12×1×1×32=34.] 8.D [因为数列{a n }为等差数列,{b n }为等比数列,且满足:a 1 003+a 1 013=π,b 6·b 9=2,所以a 1+a 2 015=a 1 003+a 1 013=π,b 7·b 8=b 6·b 9=2, 所以tan a 1+a 2 0151+b 7b 8=tan π3= 3.故选D.]9.D [g(x)=cos ⎝⎛⎭⎫2x -3π4=cos ⎝⎛⎭⎫2x -π4-π2=cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫2x -π4=sin ⎝⎛⎭⎫2x -π4,与f(x)=sin ⎝⎛⎭⎫2x +π4的图像关于原点对称,故选D.] 10.D [由sin 2a 3+2sin a 5cos a 5=sin 2a 7, 得1-cos 2a 32+sin 2a 5=1-cos 2a 72⇒2sin 2a 5=cos 2a 3-cos 2a 7 =cos 2(a 5-2d)-cos 2(a 5+2d) =2sin 2a 5sin 4d.因为a 5≠k π2,所以sin 4d =1,所以4d =2k π+π2⇒d =k π2+π8,k ∈Z ,又因为0<d<1,所以d =π8.因为S n ≥S 10对一切n ∈N +都成立,所以⎩⎨⎧a 10≤0a 11≥0⇒⎩⎨⎧a 1+9d =a 1+9π8≤0a 1+10d =a 1+10π8≥0⇒⎩⎨⎧a 1≤-9π8a 1≥-5π4,即首项a 1的取值范围是[-54π,-98π].故选D.] 11.B [∵f(x)是周期为2的函数,∴f(32)=f(-12+2)=f(-12)=-4×(-12)2+2=1.]12.B [a n =lg n 2+3n +2n(n +3)=lg(n 2+3n +2)-lg[n(n +3)]=[lg(n +1)-lg n]-[lg(n +3)-lg(n +2)],所以S n =a 1+a 2+…+a n =[lg(n +1)-lg n]+[lg n -lg(n -1)]+…+(lg 2-lg 1)-{[lg(n +3)-lg(n +2)]+[lg(n +2)-lg(n +1)]+…+(lg 4-lg 3)}=[lg(n +1)-lg 1]-[lg(n +3)-lg 3] =lg n +1n +3+lg 3.] 13.62解析 由题图可知A =2,T 4=7π12-π3=π4,∴T =π.又2πω=T ,∴ω=2ππ=2. 根据函数图像可得2×π3+φ=kπ(k ∈Z),∴φ=kπ-23π(k ∈Z).∵|φ|<π2,∴φ=π3,则f(x)=2sin(2x +π3),∴f(0)=2sin π3=62.14.-513解析 由S 7-S 5=4(T 6-T 4)得,a 6+a 7 =4(b 5+b 6),又a 5=b 5,a 6=b 6,所以a 6+a 7=4(a 5+a 6),所以6a 1+25d =0,所以a 1=-256d ,又q =b 6b 5=a 6a 5=-256d +5d -25d6+4d =-5,所以a 7+a 5b 7+b 5=2a 6b 5(q 2+1)=2b 6b 5(q 2+1)=2q q 2+1=-513.15.4 16.(0,12)17.(1)解 由a n +1=3a n +1 得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)证明 由(1)知1a n =23n -1.因为当n≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.即1a n =23n -1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32. 所以1a 1+1a 2+…+1a n <32.18.解 (1)f(x)=4⎝⎛⎭⎫32cos ωx +12sin ωx sin ωx +cos 2ωx=23sin ωxcos ωx +2sin 2ωx +cos 2ωx -sin 2ωx =3sin 2ωx +1. 因为-1≤sin 2ωx≤1,所以函数y =f(x)的值域为[1-3,1+ 3 ].(2)因为y =sin x 在每个闭区间⎣⎡⎦⎤2kπ-π2,2kπ+π2(k ∈Z)上为增函数,故f(x)=3sin 2ωx +1(ω>0)在每个闭区间⎣⎡⎦⎤kπω-π4ω,kπω+π4ω(k ∈Z)上为增函数. 依题意知⎣⎡⎦⎤-3π2,π2⊆⎣⎡⎦⎤kπω-π4ω,kπω+π4ω对某个k ∈Z 成立, 由ω>0知,此时必有k =0,于是⎩⎪⎨⎪⎧-3π2≥-π4ω,π2≤π4ω,ω>0,解得0<ω≤16,故ω的最大值为16.19.解 (1)∵f(x)是二次函数,且关于x 的不等式f(x)≤0的解集为{x|-1≤x≤3,x ∈R}, ∴设f(x)=a(x +1)(x -3)=ax 2-2ax -3a ,且a>0. 又∵a>0,f(x)=a[(x -1)2-4]≥-4, 且f(1)=-4a ,∴f(x)min =-4a =-4,a =1.故函数f(x)的解析式为f(x)=x 2-2x -3. (2)∵g(x)=x 2-2x -3x -4ln x=x -3x -4ln x -2 (x>0),∴g′(x)=1+3x 2-4x =(x -1)(x -3)x 2.x ,g′(x),g(x)的取值变化情况如下表:当g(x)在(3,+∞)上单调递增 g(3)=-4 ln 3<0,取x =e 5>3,又g(e 5)=e 5-3e 5-20-2>25-1-22=9>0.故函数g(x)只有1个零点,且零点x 0∈(3,e 5). 20.解 (1)f(x)=cos x(sin x -3cos x) =sin xcos x -3cos 2x=sin 2x 2-3cos 2x 2-32=sin(2x -π3)-32.当2x -π3=2kπ+π2(k ∈Z),即x =kπ+5π12,k ∈Z ,即x ∈{x|x =kπ+5π12,k ∈Z}时,f(x)取最大值1-32. (2)由f(A 2)=-32,可得sin(A -π3)=0,因为A 为△ABC 的内角,所以A =π3,则a 2=b 2+c 2-2bccos A =b 2+c 2-bc , 由a =3,b +c =23,解得bc =1, 所以S △ABC =12bcsin A =34.21.解 (1)∵p =(2b -c ,cos C),q =(2a,1),且p ∥q , ∴2b -c =2acos C ,由正弦定理得2sin Acos C =2sin B -sin C , 又∵sin B =sin(A +C)=sin Acos C +cos Asin C , ∴12sin C =cos Asin C. ∵sin C≠0,∴cos A =12,又∵0<A<π,∴A =π3,∴sin A =32. (2)-2cos 2C 1+tan C+1=1-2(cos 2C -sin 2C)1+sin C cos C =1-2cos 2C +2sin Ccos C =sin 2C -cos 2C=2sin(2C -π4),∵0<C<23π,∴-π4<2C -π4<1312π,∴-22<sin(2C -π4)≤1, ∴-1<2sin(2C -π4)≤ 2,即三角函数式-2cos 2C1+tan C +1的取值范围为(-1,2].22.解 (1)设曲线y =f(x)与x 轴相切于点(x 0,0), 则f(x 0)=0,f′(x 0)=0.即⎩⎪⎨⎪⎧x 30+ax 0+14=0,3x 20+a =0,解得x 0=12,a =-34. 因此,当a =-34时,x 轴为曲线y =f(x)的切线. (2)当x ∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+∞)内无零点.当x =1时,若a≥-54,则f(1)=a +54≥0,h(1)=min{f(1),g(1)}=g(1)=0,故x =1是h(x)的零点;若a<-54,则f(1)<0,h(1)=min{f(1),g(1)} =f(1)<0,故x =1不是h(x)的零点.当x ∈(0,1)时,g(x)=-ln x>0.所以只需考虑f(x)在(0,1)内的零点个数.(ⅰ)若a≤-3或a≥0,则f′(x)=3x 2+a 在(0,1)内无零点,故f(x)在(0,1)单调.而f(0)=14,f(1)=a +54,所以当a≤-3时,f(x)在(0,1)内有一个零点;当a≥0时,f(x)在(0,1)没有零点. (ⅱ)若-3<a<0,则f(x)在⎝⎛⎭⎫0, -a 3内单调递减,在⎝⎛⎭⎫ -a 3,1内单调递增,故在(0,1)内,当x =-a 3时,f(x)取得最小值,最小值为 f ⎝⎛⎭⎫ -a 3=2a 3 -a 3+14. ①若f ⎝⎛⎭⎫ -a 3>0,即-34<a<0,f(x)在(0,1)内无零点; ②若f ⎝⎛⎭⎫ -a 3=0,即a =-34,则f(x)在(0,1)内有唯一零点; ③若 f ⎝⎛⎭⎫ -a 3<0,即-3<a<-34,由于f(0)=14,f(1)=a +54,所以当-54<a<-34时,f(x)在(0,1)内有两个零点;当-3<a≤-54时,f(x)在(0,1)内有一个零点. 综上,当a>-34或a<-54时,h(x)有一个零点;当a =-34或a =-54时,h(x)有两个零点;当-54<a<-34时,h(x)有三个零点.。
第十编计数原理§10.1 分类加法计数原理与分步乘法计数原理基础自测1.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数()A.7B.64C.12D.81答案C2.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为()A.6B.5C.3D.2答案B3.一个乒乓球队里有男队员5人,女队员4人,从中选出男、女队员各一名组成混合双打,共有不同的选法种数为()A.9B.20C.54D.45答案B4.将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有()A.34种B.43种C.18种D.36种答案D5.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师,男同学,女同学各一人参加,有多少种不同的选法?解(1)“完成这件事”只需从老师、学生中选1人即可,共有3+8+5=16种.(2)“完成这件事”需选2人,老师、学生各1人,分两步进行:选老师有3种方法,选学生有8+5=13种方法,共有3×13=39种方法.(3)“完成这件事”需选3人,老师、男同学、女同学各一人,可分三步进行,选老师有3种方法,选男同学有8种方法,选女同学有5种方法,共有3×8×5=120种方法.例1在所有的两位数中,个位数字大于十位数字的两位数共有多少个?解方法一按十位数上的数字分别是1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题目条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知,符合题意的两位数的个数共有:8+7+6+5+4+3+2+1=36(个).方法二按个位数字是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个,所以按分类计数原理共有:1+2+3+4+5+6+7+8=36(个).例2已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种确定方法;第二步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x 上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.例3(12分)现有高一四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种). 3分(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种). 6分(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法,10分所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种). 12分1.从1到20这20个整数中,任取两个相加,使其和大于20,共有几种取法?解当一个加数是1时,另一个加数只能是20,1种取法.当一个加数是2时,另一个加数可以是19,20,2种取法.当一个加数是3时,另一个加数可以是18,19,20,3种取法.……当一个加数是10时,另一个加数可以是11,12,…,20,10种取法.当一个加数是11时,另一个加数可以是12,13,…,20,9种取法.……当一个加数是19时,另一个加数是20,1种取法.由分类加法计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法.2.某体育彩票规定:从01到36共36个号中抽出7个号为一注,每注2元.某人想先选定吉利号18,然后从01至17中选3个连续的号,从19至29中选2个连续的号,从30至36中选1个号组成一注.若这个人要把这种要求的号全买下,至少要花多少元钱?解先分三步选号,再计算总钱数.按号段选号,分成三步.第一步从01至17中选3个连续号,有15种选法;第二步从19至29中选2个连续号,有10种选法;第三步从30至36中选1个号,有7种选法.由分步乘法计数原理可知,满足要求的号共有15×10×7=1 050(注),故至少要花1 050×2=2 100(元).3.某校高中部,高一有6个班,高二有7个班,高三有8个班,学校利用星期六组织学生到某厂进行社会实践活动.(1)任选1个班的学生参加社会实践,有多少种不同的选法?(2)三个年级各选一个班的学生参加社会实践,有多少种不同的选法?(3)选2个班的学生参加社会实践,要求这2个班不同年级,有多少种不同的选法?解(1)分三类:第一类从高一年级选1个班,有6种不同方法;第二类从高二年级选一个班,有7种不同方法;第三类从高三年级选1个班,有8种不同方法.由分类计数原理,共有6+7+8=21种不同的选法.(2)每种选法分三步:第一步从高一年级选一个班,有6种不同方法;第二步从高二年级选1个班,有7种不同方法;第三步从高三年级选1个班,有8种不同方法.由分步计数原理,共有6×7×8=336种不同的选法.(3)分三类,每类又分两步.第一类从高一、高二两个年级各选一个班,有6×7种不同方法;第二类从高一、高三两个年级各选1个班,有6×8种不同方法;第三类从高二、高三年级各选一个班,有7×8种不同的方法,故共有6×7+6×8+7×8=146种不同选法.一、选择题1.5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种答案D2.某通讯公司推出一组手机卡号码,卡号的前七位数字固定,从“×××××××0000”到“×××××××9999”共10 000个号码,公司规定:凡卡号的后四位中带有数字“4”或“7”的一律作为优惠卡,则这组号码中“优惠卡”个数为()A.2 000B.4 096C.5 904D.8 320答案C3.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8答案D4.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有()A.180种B.120种C.96种D.60种答案A5.一植物园参观路径如图所示,若要全部参观并且路线不重复,则不同的参观路线种数共有()A.6种B.8种C.36种D.48种答案D6.(2020·全国Ⅰ文,12)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种答案B二、填空题7.在2020年奥运选手选拔赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1、2、3、4、5、6、7、8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有种.答案 2 8808.若一个m,n均为非负整数的有序数对(m,n),在做m+n的加法时各位均不会进位,则称(m,n)为“简单的”有序数对,m+n称为有序数对(m,n)的值,那么值为1 942的“简单的”有序数对的个数是 .答案300三、解答题9.(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,四个都报完才算完成,于是按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有:3×3×3×3=81种报名方法.(2)完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,于是应以“确定三项冠军得主”为线索进行分步.而每项冠军是四人中的某一人,有4种可能的情况,于是共有:4×4×4=43=64种可能的情况.10.用5种不同的颜色给图中所给出的四个区域涂色,每个区域涂一种颜色,若要求相邻(有公共边)的区域不同色,那么共有多少种不同的涂色方法?解完成该件事可分步进行.涂区域1,有5种颜色可选.涂区域2,有4种颜色可选.涂区域3,可先分类:若区域3的颜色与2相同,则区域4有4种颜色可选.若区域3的颜色与2不同,则区域3有3种颜色可选,此时区域4有3种颜色可选.所以共有5×4×(1×4+3×3)=260种涂色方法.11.在平面直角坐标系内,点P(a,b)的坐标满足a≠b,且a,b都是集合{1,2,3,4,5,6}的元素,又点P到原点的距离|OP|≥5.求这样的点P的个数.解按点P的坐标a将其分为6类:(1)若a=1,则b=5或6,有2个点;(2)若a=2,则b=5或6,有2个点;(3)若a=3,则b=5或6或4,有3个点;(4)若a=4,则b=3或5或6,有3个点;(5)若a=5,则b=1,2,3,4,6,有5个点;(6)若a=6,则b=1,2,3,4,5,有5个点;∴共有2+2+3+3+5+5=20(个)点.12.将3种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植同一种作物,不同的种植方法共有多少种?解设由左到右五块田中要种a,b,c三种作物,不妨先设第一块种a,则第二块可种b,c,有两种选法.同理,如果第二块种b,则第三块可种a和c,也有两种选法,由分步乘法计数原理共有1×2×2×2×2=16.其中要去掉ababa和acaca两种方法.故a种作物种在第一块田中时的种法数有16-2=14(种).同理b种或c种作物种在第一块田中时的种法数也都为14种.所以符合要求的种植方法共有3×(2×2×2×2-2)=3×(16-2)=42(种).§10.2 排列与组合1.从1,2,3,4,5,6六个数字中,选出一个偶数和两个奇数,组成一个没有重复数字的三位数,这样的三位数共有( )A .9个B .24个C .36个D.54个答案 D2.(2020·福建理,7)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D.48答案 A3.停车场每排恰有10个停车位.当有7辆不同型号的车已停放在同一排后,恰有3个空车位连在一起的排法有 ( )A .A 77B .A 37C .C 18A 77D.C 18A 37答案 C4.在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法种数是( )A .C 16C 294B .C 16C 299C .C 3100-C 394D.A 3100-A 394答案 C5.(2020·上海理,12)组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( )A .11++n r C 11--r nB .(n +1)(r +1)C 11--r nC .nr C 11--r nD.rn C 11--r n 答案 D例1 六人按下列要求站一横排,分别有多少种不同的站法? (1)甲不站两端; (2)甲、乙必须相邻; (3)甲、乙不相邻; (4)甲、乙之间间隔两人; (5)甲、乙站在两端; (6)甲不站左端,乙不站右端.解 (1)方法一 要使甲不站在两端,可先让甲在中间4个位置上任选1个,有A 14种站法,然后其余5人在另外5个位置上作全排列有A 55种站法,根据分步乘法计数原理,共有站法:A 14·A 55=480(种).方法二 由于甲不站两端,这两个位置只能从其余5个人中选2个人站,有A 25种站法,然后中间4人有A 44种站法,根据分步乘法计数原理,共有站法:A 25·A 44=480(种).方法三 若对甲没有限制条件共有A 66种站法,甲在两端共有2A 55种站法,从总数中减去这两种情况的排列数,即共有站法:A 66-2A 55=480(种).基础自测(2)方法一先把甲、乙作为一个“整体”,看作一个人,和其余4人进行全排列有A55种站法,再把甲、乙进行全排列,有A22种站法,根据分步乘法计数原理,共有A55·A22=240(种)站法.方法二先把甲、乙以外的4个人作全排列,有A44种站法,再在5个空档中选出一个供甲、乙放入,有A15种方法,最后让甲、乙全排列,有A22种方法,共有A44·A15·A22=240(种).(3)因为甲、乙不相邻,中间有隔档,可用“插空法”,第一步先让甲、乙以外的4个人站队,有A44种站法;第二步再将甲、乙排在4人形成的5个空档(含两端)中,有A25种站法,故共有站法为A44·A25=480(种).也可用“间接法”,6个人全排列有A66种站法,由(2)知甲、乙相邻有A55·A22=240种站法,所以不相邻的站法有A66-A55·A22=720-240=480(种).(4)方法一先将甲、乙以外的4个人作全排列,有A44种,然后将甲、乙按条件插入站队,有3A22种,故共有A44·(3A22)=144(种)站法.方法二先从甲、乙以外的4个人中任选2人排在甲、乙之间的两个位置上,有A24种,然后把甲、乙及中间2人看作一个“大”元素与余下2人作全排列有A33种方法,最后对甲、乙进行排列,有A22种方法,故共有A24·A33·A22=144(种)站法.(5)方法一首先考虑特殊元素,甲、乙先站两端,有A22种,再让其他4人在中间位置作全排列,有A44种,根据分步乘法计数原理,共有A22·A44=48(种)站法.方法二首先考虑两端两个特殊位置,甲、乙去站有A22种站法,然后考虑中间4个位置,由剩下的4人去站,有A44种站法,由分步乘法计数原理共有A22·A44=48(种)站法.(6)方法一甲在左端的站法有A55种,乙在右端的站法有A55种,且甲在左端而乙在右端的站法有A44种,共有A66-2A55+A44=504(种)站法.方法二以元素甲分类可分为两类:①甲站右端有A55种站法,②甲在中间4个位置之一,而乙不在右端有A14·A14·A44种,故共有A55+A14·A14·A44=504(种)站法.例2(12分)男运动员6名,女运动员4名,其中男女队长各1人.选派5人外出比赛.在下列情形中各有多少种选派方法?(1)男运动员3名,女运动员2名;(2)至少有1名女运动员;(3)队长中至少有1人参加;(4)既要有队长,又要有女运动员.解(1)第一步:选3名男运动员,有C36种选法.第二步:选2名女运动员,有C24种选法.共有C36·C24=120种选法. 3分(2)方法一至少1名女运动员包括以下几种情况:1女4男,2女3男,3女2男,4女1男.由分类加法计数原理可得总选法数为C14C46+C24C36+C34C26+C44C16=246种. 6分方法二“至少1名女运动员”的反面为“全是男运动员”可用间接法求解.从10人中任选5人有C510种选法,其中全是男运动员的选法有C56种.所以“至少有1名女运动员”的选法为C510-C56=246种. 6分(3)方法一可分类求解:“只有男队长”的选法为C48;“只有女队长”的选法为C48;“男、女队长都入选”的选法为C38;所以共有2C48+C38=196种选法. 9分方法二间接法:从10人中任选5人有C510种选法.其中不选队长的方法有C58种.所以“至少1名队长”的选法为C510-C58=196种. 9分(4)当有女队长时,其他人任意选,共有C49种选法.不选女队长时,必选男队长,共有C48种选法.其中不含女运动员的选法有C45种,所以不选女队长时的选法共有C48-C45种选法.所以既有队长又有女运动员的选法共有C49+C48-C45=191种. 12分例3 4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?解(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C14C24C13×A22=144种.(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.(3)确定2个空盒有C24种方法.4个球放进2个盒子可分成(3,1)、(2,2)两类,第一类有序不均匀分组有C34C11A22种方法;第二类有序均匀分组有222 22 4 A CC·A22种方法.故共有C24( C34C11A22+222 22 4 A CC·A22)=84种.1.用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:(1)奇数;(2)偶数;(3)大于3 125的数.解 (1)先排个位,再排首位,共有A13·A14·A24=144(个).(2)以0结尾的四位偶数有A35个,以2或4结尾的四位偶数有A12·A14·A24个,则共有A35+ A12·A14·A24=156(个).(3)要比3 125大,4、5作千位时有2A35个,3作千位,2、4、5作百位时有3A24个,3作千位,1作百位时有2A13个,所以共有2A35+3A24+2A13=162(个).2.某医院有内科医生12名,外科医生8名,现选派5名参加赈灾医疗队,其中(1)某内科医生甲与某外科医生乙必须参加,共有多少种不同选法?(2)甲、乙均不能参加,有多少种选法?(3)甲、乙两人至少有一人参加,有多少种选法?(4)队中至少有一名内科医生和一名外科医生,有几种选法?解(1)只需从其他18人中选3人即可,共有C318=816(种).(2)只需从其他18人中选5人即可,共有C518=8 568(种).(3)分两类:甲、乙中有一人参加,甲、乙都参加,共有C12C418+C318=6 936(种).(4)方法一(直接法)至少一名内科医生一名外科医生的选法可分四类:一内四外;二内三外;三内二外;四内一外,所以共有C112C48+C212C38+C312C28+C412C18=14 656(种).方法二(间接法)由总数中减去五名都是内科医生和五名都是外科医生的选法种数,得C520-(C58+C512)=14 656(种).3.有6本不同的书按下列分配方式分配,问共有多少种不同的分配方式?(1)分成1本、2本、3本三组;(2)分给甲、乙、丙三人,其中一人1本,一人2本,一人3本;(3)分成每组都是2本的三组;(4)分给甲、乙、丙三人,每人2本.解(1)分三步:先选一本有C16种选法;再从余下的5本中选2本有C25种选法;对于余下的三本全选有C33种选法,由分步乘法计数原理知有C16C25C33=60种选法.(2)由于甲、乙、丙是不同的三人,在(1)的基础上,还应考虑再分配的问题,因此共有C 16C 25C 33A 33=360种选法.(3)先分三步,则应是C 26C 24C 22种选法,但是这里面出现了重复,不妨记六本书为A 、B 、C 、D 、E 、F ,若第一步取了AB ,第二步取了CD ,第三步取了EF ,记该种分法为(AB ,CD ,EF ),则C 26C 24C 22种分法中还有(AB 、EF 、CD ),(CD 、AB 、EF )、(CD 、EF 、AB )、(EF 、CD 、AB )、(EF 、AB 、CD )共有A 33种情况,而且这A 33种情况仅是AB 、CD 、 EF 的顺序不同,因此,只算作一种情况,故分法有33222426A C C C =15种.(4)在问题(3)的工作基础上再分配,故分配方式有33222426A C C C ·A 33= C 26C 24C 22=90种.一、选择题1.用数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A .60个B .48个C .36个D .24个答案 C2.将编号为1,2,3,4,5的五个球放入编号为1,2,3,4,5的五个盒子里,每个盒子内放一个球,若恰好有三个球的编号与盒子编号相同,则不同投放方法的种数为( )A .6B .10C .20D .30答案 B3.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( )A .1 440种B .960种C .720种D .480种答案 B4.在图中,“构建和谐社会,创美好未来”,从上往下读(不能跳读),共有不同的读法种数是( )A .250B .240C .252D .300答案 C5.(2020·天津理,10)有8张卡片分别标有数字1,2,3,4,5,6,7,8,从中取出6张卡片排成3行2列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有 ( )A .1 344种B .1 248种C .1 056种D .960种答案 B6.(2020·安徽理,12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66C .C 28A 26D .C 28A 25答案C二、填空题7.(2020·海滨模拟)平面α内有四个点,平面β内有五个点,从这九个点中任取三个,最多可确定个平面,任取四点,最多可确定个四面体.(用数字作答).答案72 1208.(2020·浙江理,16)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻.这样的六位数的个数是 .(用数字作答)答案40三、解答题9.某外商计划在4个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,求该外商不同的投资方案有多少种?解可先分组再分配,据题意分两类,一类:先将3个项目分成两组,一组有1个项目,另一组有2个项目,然后再分配给4个城市中的2个,共有C23A24种方案;另一类1个城市1个项目,即把3个元素排在4个不同位置中的3个,共有A34种方案.由分类加法计数原理可知共有C23A24+A34=60种方案.10.课外活动小组共13人,其中男生8人,女生5人,并且男、女各指定一名队长,现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.解(1)一名女生,四名男生,故共有C15·C48=350(种).(2)将两队长作为一类,其他11人作为一类,故共有C22·C311=165(种).(3)至少有一名队长含有两类:有一名队长和两名队长.故共有:C12·C411+C22·C311=825(种).或采用间接法:C513-C511=825(种).(4)至多有两名女生含有三类:有两名女生、只有一名女生、没有女生.故选法为C25·C38+C15·C48+C58=966(种).11.已知平面α∥β,在α内有4个点,在β内有6个点.(1)过这10个点中的3点作一平面,最多可作多少个不同平面?(2)以这些点为顶点,最多可作多少个三棱锥?(3)上述三棱锥中最多可以有多少个不同的体积?解(1)所作出的平面有三类:①α内1点,β内2点确定的平面,有C14·C26个;②α内2点,β内1点确定的平面,有C24·C16个;③α,β本身.∴所作的平面最多有C14·C26+C24·C16+2=98(个).(2)所作的三棱锥有三类:①α内1点,β内3点确定的三棱锥,有C14·C36个;②α内2点,β内2点确定的三棱锥,有C 24·C 26个;α内3点,β内1点确定的三棱锥,有C 34·C 16个.∴最多可作出的三棱锥有:C 14·C 36+C 24·C 26+C 34·C 16=194(个).(3)∵当等底面积、等高的情况下三棱锥的体积相等, 且平面α∥β,∴体积不相同的三棱锥最多有C 36+C 34+C 26·C 24=114(个).12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,共有多少种不同排法? 解 ∵前排中间3个座位不能坐, ∴实际可坐的位置前排8个,后排12个.(1)两人一个前排,一个后排,方法数为C 18·C 112·A 22种;(2)两人均在后排左右不相邻,共A 212-A 22·A 111=A 211种;(3)两人均在前排,又分两类:①两人一左一右,共C 14·C 14·A 22种;②两人同左同右,有2(A 24-A 13·A 22)种.综上可知,不同排法种数为C 18·C 112·A 22+A 211+C 14·C 14·A 22+2(A 24-A 13·A 22)=346种.§10.3 二项式定理1.在(1+x )n (n ∈N *)的二项展开式中,若只有x 5的系数最大,则n 等于( )A .8B .9C .10D .11答案 C2.在(a 2-2a 31)n 的展开式中,( )A .没有常数项B .当且仅当n =2时,展开式中有常数项 C.当且仅当n =5时,展开式中有常数项 D.当n =5k (k ∈N +)时,展开式中有常数项 答案 A3.若多项式0C n (x +1 n )-C 1n (x +1)n -1+…+(-1)r C r n (x +1)n -r +…+(-1)n C n n =a 0x n +a 1x n -1+…+a n -1x +a n ,则a 0+a 1+…+a n -1+a n 等于( )A .2nB .0C .-1D .1答案 D4.(2020·山东理,9)(x -31x)12展开式中的常数项为( )基础自测A .-1 320B .1 320C .-220D .220答案 C5.(2020·福建理,13)若(x -2)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则a 1+a 2+a 3+a 4+a 5= .(用数字作答) 答案 31例1 在二项式(x +421x)n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.解 ∵二项展开式的前三项的系数分别是1,2n ,81n (n -1), ∴2·2n =1+81n (n -1), 解得n =8或n =1(不合题意,舍去), ∴T k +1=C k 8x28k -k ⎪⎪⎭⎫ ⎝⎛421x =C k 82-k x 4-43k , 当4-43k ∈Z 时,T k +1为有理项, ∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求. 故有理项有3项,分别是 T 1=x 4,T 5=835x ,T 9=2561x -2.∵n =8,∴展开式中共9项,中间一项即第5项的二项式系数最大.T 5=835x . 例2 已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7. 求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7; (3)a 0+a 2+a 4+a 6;(4)|a 0|+|a 1|+|a 2|+…+|a 7|.解 令x =1,则a 0+a 1+a 2+a 3+a 4+a 5+a 6+a 7=-1 ①令x =-1,则a 0-a 1+a 2-a 3+a 4-a 5+a 6-a 7=37②(1)∵a 0=C 07=1,∴a 1+a 2+a 3+…+a 7=-2. (2)(①-②)÷2,得a 1+a 3+a 5+a 7=2317--=-1 094.(3)(①+②)÷2, 得a 0+a 2+a 4+a 6=2317+-=1 093. (4)∵(1-2x )7展开式中,a 0,a 2,a 4,a 6都大于零, 而a 1,a 3,a 5,a 7都小于零, ∴|a 0|+|a 1|+|a 2|+…+|a 7| =(a 0+a 2+a 4+a 6)-(a 1+a 3+a 5+a 7),∴由(2)、(3)即可得其值为2 187.例3(12分)(1)已知n∈N+,求证:1+2+22+23+…+25n-1能被31整除;(2)求0.9986的近似值,使误差小于0.001.(1)证明 1+2+22+23+…+25n-1=21215--n=25n-1=32n-1 3分=(31+1)n-1=31n+C1n·31n-1+C2n·31n-2+…+C1-n n·31+1-1=31(31n-1+C1n·31n-2+…+C1-n n)5分显然括号内的数为正整数,故原式能被31整除. 6分(2)解∵0.9986=(1-0.002)6=1-C16(0.002)+C26(0.002)2-C36(0.002)3+…8分第三项T3=15×(0.002)2=0.000 06<0.001,以后各项更小,∴0.9986≈1-0.012=0.988. 12分1.在(3x-2y)20的展开式中,求:(1)二项式系数最大的项;(2)系数绝对值最大的项;(3)系数最大的项.解(1)二项式系数最大的项是第11项,T11=C1020310(-2)10x10y10=C1020610x10y10.(2)设系数绝对值最大的项是第r+1项,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----+-+-1211202020119120202023C23C23C23Crrrrrrrrrrrr,化简得⎩⎨⎧≥--≥+rrrr3)21(2)20(2)1(3,解得752≤r≤852.所以r=8,即T9=C820312·28·x12y8是系数绝对值最大的项.(3)由于系数为正的项为奇数项,故可设第2r-1项系数最大,于是⎪⎩⎪⎨⎧⋅⋅≥⋅⋅⋅⋅≥⋅⋅----------rrrrrrrrrrrr222022022222222042224422022222222023C23C23C23C,化简得⎪⎩⎪⎨⎧≥-+≤-+9241631007711431022rrrr.解之得r=5,即2×5-1=9项系数最大.T9=C820·312·28·x12y8.2.求x (1-x )4+x 2(1+2x )5+x 3(1-3x )7展开式中各项系数的和. 解 设x (1-x )4+x 2(1+2x )5+x 3(1-3x )7=a 0+a 1x +a 2x 2+…+a n x n在原式中,令x =1,则1×(1-1)4+12×(1+2)5+13×(1-3)7=115, ∴展开式中各项系数的和为115. 3.求证:3n >(n +2)·2n -1(n ∈N +,n >2).证明 利用二项式定理3n =(2+1)n 展开证明.因为n ∈N +,且n >2,所以3n =(2+1)n 展开后至少有4项.(2+1)n =2n +C 1n ·2n -1+…+C 1-n n ·2+1≥2n +n ·2n -1+2n +1>2n +n ·2n -1=(n +2)·2n -1,故3n >(n +2)·2n -1.一、选择题1.(1-2x )6=a 0+a 1x +a 2x 2+…+a 6x 6,则|a 0|+|a 1|+|a 2|+…+|a 6|的值为( )A .1B .64C .243D .729答案 D2.(2020·安徽理,6)设(1+x )8=a 0+a 1x +…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为( ) A .2 B .3 C .4 D .5答案 A3.(2020·全国Ⅱ理,7)(1-x )6(1+x )4的展开式中x 的系数是( )A .-4B .-3C .3D .4答案 B 4.已知(x -xa )8展开式中常数项为1 120,其中实数a 为常数,则展开式中各项系数的和为 ( )A .28B .38C .1或38D .1或28答案 C5.若(1+5x 2)n 的展开式中各项系数之和是a n ,(2x 3+5)n 的展开式中各项的二项式系数之和为b n ,则nn n b a 13+的值为( ) A .31B .21 C .1 D .3答案 A6.设m ∈N +,n ∈N +,若f (x )=(1+2x )m +(1+3x )n 的展开式中x 的系数为13,则x 2的系数为( )A .31B .40C .31或40D .不确定答案 C 二、填空题7.(1+x )6(1-x )4展开式中x 3的系数是 . 答案 -88.(2020·天津理,11)52⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中x 2的系数是 .(用数字作答) 答案 40 三、解答题 9.已知(x +22x)n (n ∈N +)的展开式中第5项的系数与第3项的系数之比为10∶1.求展开式中系数最大的是第几项?解 依题意,第5项的系数为C 4n ·24,第三项的系数为C 2n ·22,则有2244C 2C 2nn ⋅⋅=110,解得n =8. 设展开式中第r +1项的系数最大,则⎪⎩⎪⎨⎧⋅≥⋅⋅≥⋅++--118811882C 2C ,2C 2C r r rr r r r r 解得5≤r ≤6. ∴第6项和第7项的系数相等且最大, 即最大为56×25=7×28=1 792.10.已知(32x +3x 2)n 展开式中各项的系数和比各项的二项式系数和大992.求展开式中系数最大的项.解 令x =1,得各项的系数和为(1+3)n =4n ,而各项的二项式系数和为:C 0n +C 1n +…+C n n =2n ,∴4n =2n +992. ∴(2n -32)(2n +31)=0∴2n =32或2n =-31(舍去),∴n =5 设第r +1项的系数最大,则⎪⎩⎪⎨⎧≥≥++--;3C 3C ,3C 3C 11551155r r rr r r r r 即⎪⎪⎩⎪⎪⎨⎧+≥--≥;1351,613r r r r ∴27≤r ≤29,又r ∈Z ,∴r =4, ∴系数最大的项是T 5=C 45x 32(3x 2)4=405x326.11.(1)求(x 2-x21)9的展开式中的常数项; (2)已知(x a -2x )9的展开式中x 3的系数为49,求常数a 的值;(3)求(x 2+3x +2)5的展开式中含x 的项. 解 (1)设第r +1项为常数项,则T r +1=C r9(x 2)9-r ·(-x 21)r =(-21)r C r 9x r318- 令18-3r =0,得r =6,即第7项为常数项.。
第十章检测试题一、选择题(本大题共12小题,每小题5分,共60分.)1、某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。
现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为( )A. 6B. 7C. 8D.92 .甲、乙两名运动员在某项测试中的6次成绩的茎叶图如图所示,1x ,2x 分别表示甲、乙两名运动员这项测试成绩的平均数,12,s s 分别表示甲、乙两名运动员这项测试成绩的标准差,则有A .1212,x x s s ><B .1212,x x s s ==C .1212,x x s s =<D .1212,x x s s =>3、某校为了研究学生的性别和对待某一活动的态度(支持与不支持)的关系,运用2⨯2列联表进行独立性检验,经计算K 2=7.069,则所得到的统计学结论为:有多大把握认为“学生性别与支持该活动有关系”. P(K≥k 0) 0.100 0.050 0.025 0.010 0.001 k 02.7063.841 5.024 6.635 10.828(A)0.1% (B)1% (C)99% (D)99.9%4、集合A={2,3},B={1,2,3},从A,B 中各取任意一个数,则这两数之和等于4的概率是( )A .23B .13C .12D .165.四名同学根据各自的样本数据研究变量,x y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且 2.347 6.423y x =-; ②y 与x 负相关且 3.476 5.648y x =-+; ③y 与x 正相关且 5.4378.493y x =+; ④y 与x 正相关且 4.326 4.578y x =--. 其中一定不正确...的结论的序号是 A .①②B .②③C .③④D . ①④6、对一批产品的长度(单位: mm )进行抽样检测, 图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上的为一等品, 在区间[15,20)和区间[25,30)上的为二等品, 在区间[10,15)和[30,35)上的为三等品. 用频率估计概率, 现从该批产品中随机抽取一件, 则其为二等品的概率为( )A .0.09B .0.20C .0.25D .0.457、如图面积为4的矩形ABCD 中有一个阴影部分,若往矩形ABCD 投掷1000个点,落在矩形ABCD 的非阴影部分中的点数为400个,试估计阴影部分的面积为 A.2.2 B.2.4 C.2.6 D.2.88、从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )A .12B .13C .14 D .169、记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 10.在2013年3月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:价格x 9 9.5 10 10.5 11 销售量y 11 10 8 6 5由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,其线性回归直线方程是:y ^=-3.2 x +a (参考公式:回归方程y ^=bx +a ,a =y -b x ),则a =( )A .-24B .35.6C .40.5D .4011、总体编号为01,02,…19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A .08B .07C .02D .0112、气象意义上从春季进入夏季的标志为:“连续5天的日平均温度均不低于22 (0C)”.现有甲、乙、丙三地连续5天的日平均温度的记录数据(记录数据都是正整数):① 甲地:5个数据的中位数为24,众数为22;② 乙地:5个数据的中位数为27,总体均值为24;③ 丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8;则肯定进入夏季的地区有()A.0个B.1个C.2个D.3个二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13 .某学校高一年级男生人数占该年级学生人数的40%.在一次考试中,男、女生平均分数分别为75、80,则这次考试该年级学生平均分数为________.14 .某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,…,第十组46—50号,若在第三组中抽得为12的学生,则在第八组中抽得为___的学生.15平行四边形ABCD中,E为CD的中点.若在平行四边形ABCD内部随机取一点M,则点M 取自△ABE内部的概率为______.16、若在区域340x yxy+-≤⎧⎪≥⎨⎪≥⎩内任取一点P,则点P落在单位圆221x y+=内的概率为.三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(2013某某文17)为调查甲、乙两校高三年级学生某次联考数学成绩情况,用简单随机抽样,从这两校中各抽取30名高三年级学生,以他们的数学成绩(百分制)作为样本,样本数据的茎叶图如下:(1)若甲校高三年级每位学生被抽取的概率为0.05,求甲校高三年级学生总人数,并估计甲校高三年级这次联考数学成绩的及格率(60分及60分以上为及格);(2)设甲、乙两校高三年级学生这次联考数学平均成绩分别为12,x x ,估计12x x -的值.18.(本小题满分12分)某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(2)在(1)的条件下,该县决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.19.(本小题满分12分)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.20.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,算得10180ii x==∑,10120i i y ==∑,101184i i i x y ==∑,1021720i i x ==∑.(Ⅰ)求家庭的月储蓄y 对月收入x 的线性回归方程y bx a =+; (Ⅱ)判断变量x 与y 之间是正相关还是负相关;(Ⅲ)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程ˆˆˆybx a =+中,1221ˆni ii ni i x y nx yb x nx==-=-∑∑,ˆˆay bx =-, 其中x ,y 为样本平均值,线性回归方程也可写为y bx a =+.21.(本小题满分12分)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[]90,100分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2名,求至少抽到一名“25周岁以下组”工人的频率.(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成22⨯列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?附表:K2=2()()()()()n ad bca b c d a c b d-++++P(K2≥k) 0.100 0.050 0.010 0.001 K 2.706 3.841 6.635 10.82822.(本小题满分12分) 某汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取这两种车型各50辆,分别统计了每辆车在某个星期内的出租天数,统计数据如下表:A型车出租天数 3 4 5 6 7B 型车(1) 试根据上面的统计数据,判断这两种车型在本星期内出租天数的方差的大小关系(只需写出结果);(2)现从出租天数为3天的汽车(仅限A ,B 两种车型)中随机抽取一辆,试估计这辆汽车是A 型车的概率;(3)如果两种车型每辆车每天出租获得的利润相同,该公司需要购买一辆汽车,请你根据 所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.参考答案一、选择题 1、【答案】C【解析】设从高二应抽取x 人,则有30:406:x =,解得8x =,选C.2、【答案】C【解析】由样本中数据可知115x =,215x =,由茎叶图得12s s <,所以选C. 3、4、【答案】B【解析】从A,B 中各取任意一个数,共有6种。
单元质检卷十 算法初步、统计与统计案例(时间:60分钟满分:81分)一、选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的为29,则抽到的32人中,编号落入区间[200,480]的人数为()A.7B.9C.10D.122.(2020全国3,理3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i=14p i =1,则下面四种情形中,对应样本的标准差最大的一组是()A.p 1=p 4=0.1,p 2=p 3=0.4B.p 1=p 4=0.4,p 2=p 3=0.1C.p 1=p 4=0.2,p 2=p 3=0.3D.p 1=p 4=0.3,p 2=p 3=0.23.我们可以用随机模拟的方法估计π的值,如下算法框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为527,则由此可估计π的近似值是()A.126B.3.132C.3.151D.3.1624.(2020某某某某高三检测)已知一组数据点(x 1,y 1),(x 2,y 2),(x 3,y 3),…,(x 7,y 7),用最小二乘法得到其经验回归方程为y ^=-2x+4.若数据x 1,x 2,x 3,…,x 7的平均数为1,则∑i=17y i =()A.2B.11C.12D.145.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中数据用该组区间中点作代表,则下列说法中错误的是()A.成绩在[70,80]分的考生人数最多B.不及格的考生人数为1 000人C .考生竞赛成绩的平均分约70.5分D.考生竞赛成绩的中位数为756.节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:预测第8年该国企的生产利润约为()。
高三单元滚动检测卷·数学考生注意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
单元检测十二 推理与证明、算法、复数第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2015·桂林模拟)已知数列{a n }的前n 项和为S n ,则a 1=1,S n =n 2a n ,试归纳猜想出S n 的表达式为( ) A .S n =2n n +1B .S n =2n -1n +1C .S n =2n +1n +1D .S n =2nn +22.如图所示,阅读算法框图,如果输出的函数值在区间[1,3]上,则输入的实数x 的取值范围是( ) A .{x ∈R|0≤x≤log 23} B .{x ∈R|-2≤x≤2}C .{x ∈R|0≤x≤log 23或x =2}D .{x ∈R|-2≤x≤log 23或x =2}3.(2015·渭南模拟)关于复数z =(1+i)21-i ,下列说法中正确的是( )A .在复平面内复数z 对应的点在第一象限B .复数z 的共轭复数z =1-iC .若复数z 1=z +b (b ∈R)为纯虚数,则b =1D .设a ,b 为复数z 的实部和虚部,则点(a ,b)在以原点为圆心,半径为1的圆上 4.四个小动物换座位,开始是鼠、猴、兔、猫分别坐1,2,3,4号位子上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…,这样交替进行下去,那么第2 009次互换座位后,小兔的座位对应的是( )A.C .编号3D .编号45.如图所示,椭圆中心在坐标原点,F 为左焦点,当F B →⊥A B →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e 等于( ) A.5+12B.5-12C.5-1D.5+16.(2015·宜春模拟)设a>0,不等式-c<ax +b<c 的解集是{x|-2<x<1},则a ∶b ∶c 等于( ) A .1∶2∶3 B .2∶1∶3 C .3∶1∶2D .3∶2∶17.设整数n≥4,集合X ={1,2,3,…,n},令集合S ={(x ,y ,z)|x ,y ,z ∈X ,且三条件x<y<z ,y<z<x ,z<x<y 恰有一个成立}.若(x ,y ,z)和(z ,w ,x)都在S 中,则下列选项正确的是( ) A .(y ,z ,w)∈S ,(x ,y ,w)∉S B .(y ,z ,w)∈S ,(x ,y ,w)∈S C .(y ,z ,w)∉S ,(x ,y ,w)∈S D .(y ,z ,w)∉S ,(x ,y ,w)∉S8.某班有24名男生和26名女生,数据a 1,a 2,…,a 50是该班50名学生在一次数学学业水平模拟考试中的成绩(成绩不为0),如图所示的算法用来同时统计全班成绩的平均数:A ,男生平均分:M ,女生平均分:W.为了便于区别性别,输入时,男生的成绩用正数,女生的成绩用其成绩的相反数,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )A .T >0,A =M +W 50B .T <0,A =M +W50C .T <0,A =M -W 50D .T >0,A =M -W509.观察下列事实:|x|+|y|=1的不同整数解(x ,y)的个数为4,|x|+|y|=2的不同整数解(x ,y)的个数为8,|x|+|y|=3的不同整数解(x ,y)的个数为12……,则|x|+|y|=20的不同整数解(x ,y)的个数为( ) A .76 B .80 C .86 D .9210.已知数列{a n }:11,21,12,31,22,13,41,32,23,14,…,依它的前10项的规律,则a 99+a 100的值为( ) A.3724 B.76 C.1115D.71511.(2015·亚安模拟)设f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)单调递减,若x 1+x 2>0,则f(x 1)+f(x 2)的值( ) A .恒为负值 B .恒等于零 C .恒为正值D .无法确定正负12.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n +k|n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4];②-2∈[2];③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”. 其中正确结论的个数为( ) A .1 B .2 C .3D .4第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,….依此,若m 3的“分裂数”中有一个是2 015,则m =________.14.执行如图所示的算法框图,若输出的结果是8,则输入的数是________.15.如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行;依此类推,则第63行从左至右的第2个数应是________.16.执行下面的算法框图,若输入的ε的值为0.25,则输出的n 的值为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)已知复数z =(m 2+m -1)+(4m 2-8m +3)i(m ∈R)的共扼复数z 对应的点在第一象限,求实数m 的集合.18.(12分)有一种密英文的明文(真实文)按字母分解,其中英文的a ,b ,c ,…,z 的26个字母(不分大小写),依次对应1,2,3,…,26这26个自然数,见如下表格:X′=⎩⎨⎧x +12(x ∈N ,1≤x≤26,x 不能被2整除)x2+13(x ∈N ,1≤x≤26,x 能被2整除)将明文转换成密文,如8→82+13=17,即h 变成q ;如5→5+12=3,即e 变成c.(1)按上述规定,将明文good 译成的密文是什么?(2)按上述规定,若将某明文译成的英文是shxc ,那么原来的明文是什么?19.(12分)已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0.(1)求证:1a 2+4b 2≥9a 2+b 2;(2)求证:m≥72.20.(12分)如图的算法可产生一系列随机数,其工作原理如下:①从集合D 中随机抽取1个数作为自变量x 输入;②从函数f(x)与g(x)中随机选择一个作为H(x)进行计算;③输出函数值y.若D ={1,2,3,4,5},f(x)=3x +1,g(x)=x 2. (1)求y =4的概率;(2)将算法运行一次,求输出的结果是奇数的概率.21.(12分)一企业生产的某产品在不做电视广告的前提下,每天销售量为b件.经市场调查后得到如下规律:若对产品进行电视广告的宣传,每天的销售量S(件)与电视广告每天的播放量n(次)的关系可用如图所示的算法框图来体现.(1)试写出该产品每天的销售量S(件)关于电视广告每天的播放量n(次)的函数关系式;(2)要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需多少次?22.(12分)(2015·安庆模拟)已知数列{a n }满足a 1=a >2,a n =a n -1+2(n≥2,n ∈N +). (1)求证:对任意n ∈N +,a n >2;(2)判断数列{a n }的单调性,并说明你的理由;(3)设S n 为数列{a n }的前n 项和,求证:当a =3时,S n <2n +43.答案解析1.A [S n =n 2a n =n 2(S n -S n -1), ∴S n =n 2n 2-1S n -1,S 1=a 1=1,则S 2=43,S 3=32=64,S 4=85.∴猜想得S n =2nn +1,故选A.]2.C [依题意及框图可得,⎩⎪⎨⎪⎧ -2<x <2,1≤2x ≤3或⎩⎪⎨⎪⎧|x|≥2,1≤x +1≤3,解得0≤x≤log 23或x =2.]3.C [z =(1+i)21-i =2i1-i=-1+i ,若复数z 1=z +b(b ∈R)为纯虚数,则b =1.]4.A [由图,经过四次交换后,每个小动物又回到了原来的位置,故此变换的规律是周期为4,∵2 009=4×502+1, ∴第2 009次互换座位后, 小兔的座位对应的是编号1.]5.A [根据“黄金椭圆”的性质是F B →⊥A B →,可以得到“黄金双曲线”也满足这个性质,设“黄金双曲线”方程为x 2a 2-y 2b 2=1,则B(0,b),F(-c,0),A(a,0), 在“黄金双曲线”中,∵F B →⊥A B →,∴F B →·A B →=0, 又F B →=(c ,b),A B →=(-a ,b), ∴b 2=ac ,而b 2=c 2-a 2, ∴c 2-a 2=ac ,在等号两边同除以a 2得e =5+12, 故选A.]6.B [∵-c<ax +b<c ,又a>0,∴-b +c a <x<c -ba .∵不等式的解集为{x|-2<x<1},∴⎩⎨⎧-b +ca=-2,c -ba =1,∴⎩⎨⎧b =a2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a2=2∶1∶3.]7.B [方法一 因为(x ,y ,z)∈S ,则x ,y ,z 的大小关系有3种情况,同理,(z ,w ,x)∈S ,则z ,w ,x 的大小关系也有3种情况,如图所示,由图可知,x ,y ,w ,z 的大小关系有4种可能,均符合(y ,z ,w)∈S ,(x ,y ,w)∈S.故选B.方法二 (特殊值法)因为(x ,y ,z)和(z ,w ,x)都在S 中,不妨令x =2,y =3,z =4,w =1,则(y ,z ,w)=(3,4,1)∈S ,(x ,y ,w)=(2,3,1)∈S ,故(y ,z ,w)∉S ,(x ,y ,w)∉S 的说法均错误,可以排除选项A 、C 、D ,故选B.]8.D [依题意得,全班成绩的平均数应等于班级中所有的学生的成绩总和除以总人数,注意到当T >0时,输入的成绩表示的是某男生的成绩;当T <0时,输入的成绩表示的是某女生的成绩的相反数,因此结合题意得,选D.]9.B [由已知条件知|x|+|y|=n 的不同整数解(x ,y)的个数为4n , ∴|x|+|y|=20的不同整数解(x ,y)的个数为4×20=80.]10.A [通过将数列的前10项分组得到第一组有一个数:11,分子、分母之和为2;第二组有两个数:21,12,分子、分母之和为3;第三组有三个数:31,22,13,分子、分母之和为4;第四组有四个数,依次类推,a 99,a 100分别是第十四组的第8个数和第9个数,分子、分母之和为15,所以a 99=78,a 100=69.故a 99+a 100=3724.故选A.]11.A [由f(x)是定义在R 上的奇函数, 且当x≥0时,f(x)单调递减, 可知f(x)是R 上的单调递减函数, 由x 1+x 2>0,可知x 1>-x 2, f(x 1)<f(-x 2)=-f(x 2), 则f(x 1)+f(x 2)<0,故选A.]12.C [因为2 014=402×5+4,所以2 014∈[4],①正确;-2=-1×5+3,-2∈[3],所以②不正确;因为整数集中被5除的数可以且只可以分成五类,所以③正确;整数a ,b 属于同一“类”,因为整数a ,b 被5除的余数相同,从而a -b 被5除的余数为0,反之也成立,故整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”,故④正确.所以正确的结论有3个,故选C.] 13.45解析 由题意不难找出规律,23=3+5,33=7+9+11,43=13+15+17+19,…,m 增加1,累加的奇数个数便多1,我们不难计算2 015是第1 008个奇数,若它是m 的分解,则1至m -1的分解中,累加的奇数一定不能超过1 008个.∴1+2+3+…+(m -1)<1 008,1+2+3+…+(m -1)+m≥1 008,即m(m -1)2<1 008,m(m +1)2≥1 008,解得m =45. 14.2或-2 2解析 由 a≥b ,得x 2≥x 3, 解得x≤1,所以当x≤1时,输出a =x 2, 当x >1时,输出b =x 3, 当x≤1时, 由a =x 2=8, 解得x =-8=-2 2. 当x >1时,由b =x 3=8,得x =2, 所以输入的数为2或-2 2. 15.2 015解析 由题意可知:每行的行号数和这一行的数字的个数相同, 奇数行的数字从左向右依次减小, 偶数行的数字从左向右依次增大, 第63行的数字从左向右依次减小, 可求出第63行最左边的一个数是63×(63+1)2=2 016,从左至右的第2个数应是2 016-1=2 015. 16.3解析 输入ε=0.25后,程序执行如下:①⎩⎪⎨⎪⎧ε=0.25,F 0=1,F 1=2,n =1,②⎩⎪⎨⎪⎧F 1=F 0+F 1=3,F 0=F 1-F 0=2,n =2,1F 1=13>0.25,③⎩⎪⎨⎪⎧F 1=F 0+F 1=5,F 0=F 1-F 0=3,n =3,1F 1=15≤0.25.此时满足条件,结束循环,故输出的n 的值为3. 17.解 由题意得z =(m 2+m -1)-(4m 2-8m +3)i. 因为z 对应的点位于第一象限,所以⎩⎪⎨⎪⎧ m 2+m -1>0,-(4m 2-8m +3)>0,即⎩⎪⎨⎪⎧m 2+m -1>0,4m 2-8m +3<0, 解得⎩⎨⎧m <-5-12或m >5-12,12<m <32.所以5-12<m <32,所以m 的集合为{m|5-12<m <32}. 18.解 (1)g→7→7+12=4→d ;o→15→15+12=8→h ;d→4→42+13=15→o ;则明文good 的密文为dhho. (2)逆变换公式为x =⎩⎪⎨⎪⎧2x′-1,(x′∈N ,1≤x′≤13)2x′-26,(x′∈N ,14≤x′≤26) 则有s→19→2×19-26=12→l ; h→8→2×8-1=15→o ; x→24→2×24-26=22→v ; c→3→2×3-1=5→e. 故密文shxc 的明文为love.19.证明 (1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立,只需证(1a 2+4b 2)(a 2+b 2)≥9.即证1+4+b 2a 2+4a 2b2≥9,即证b 2a 2+4a 2b 2≥4. 根据基本不等式有b 2a 2+4a 2b 2≥2b 2a 2·4a 2b 2=4成立. 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1. 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m≤-1或m≥72. 因为a 2+b 2=m -2>0,1a 2+4b2=2m -1>0, 所以m≥72. 20.解 (1)∵D ={1,2,3,4,5},f(x)=3x +1,g(x)=x 2.∴第一步:从集合D 中随机抽取1个数作为自变量x 输入,共有5种方法,第二步:从函数f(x)与g(x)中随机选择一个作为H(x)进行计算,共有2种方法,∴该运算共有f(1),f(2),f(3),f(4),f(5),g(1),g(2),g(3),g(4),g(5),10种方法, 而满足y =4的有f(1),g(2)两种情况,∴由古典概型概率公式得y =4的概率P =210=15. (2)输出结果是奇数有以下几种情况:f(2),f(4),g(1),g(3),g(5)共5种,∴由古典概型概率公式得输出的结果是奇数的概率P =510=12. 21.解 (1)设电视广告播放量为每天i 次时,该产品的销售量为S i (0≤i≤n ,i ∈N +).由题意得,S i =⎩⎪⎨⎪⎧b ,i =0,S i -1+b 2i,1≤i≤n ,i ∈N +, 于是当i =n 时,S n =b +(b 2+b 22+…+b 2n )=b(2-12n )(n ∈N +). 所以,该产品每天销售量S(件)与电视广告每天播放量n(次)的函数关系式为S =b(2-12n ),n ∈N +. (2)由题意,有b(2-12n )≥1.9b ⇒2n ≥10⇒n≥4(n ∈N +). 所以,要使该产品每天的销售量比不做电视广告时的销售量至少增加90%,则每天电视广告的播放量至少需4次.22.(1)证明 用数学归纳法证明a n >2(n ∈N +);①当n =1,a 1=a >2,结论成立;②假设n =k(k≥1)时结论成立,即a k >2, 则n =k +1时,a k +1=a k +2>2+2=2, 所以n =k +1时,结论成立.故由①②及数学归纳法原理知,对一切的n ∈N +,都有a n >2成立.(2)解 {a n }是递减的数列.因为a 2n +1-a 2n =a n +2-a 2n =-(a n -2)(a n +1),又a n >2,所以a 2n +1-a 2n <0,所以a n +1<a n .这说明{a n }是递减的数列.(3)证明 由a n +1=a n +2,得a 2n +1=a n +2,所以a 2n +1-4=a n -2.根据(1)知 a n >2(n ∈N +),所以a n +1-2a n -2=1a n +1+2<14, 所以a n +1-2<14(a n -2)<(14)2·(a n -1-2)<…<(14)n (a 1-2). 所以,当a =3时,a n +1-2<(14)n , 即a n +1<(14)n +2, 当n =1时,S 1=3<2+43,当n≥2时, S n =3+a 2+a 3+…+a n <3+(14+2)+[(14)2+2]+…+[(14)n -1+2] =3+2(n -1)+141-14[1-(14)n -1] =2n +1+13[1-(14)n -1]<2n +43. 综上,当a =3时,S n <2n +43(n ∈N +).。
§11.3 变量间的相关关系、统计案例1. 相关性(1)通常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图.(2)从散点图上,如果变量之间存在某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这样的近似过程称为曲线拟合.(3)若两个变量x 和y 的散点图中,所有点看上去都在一条直线附近波动,则称变量间是线性相关,若所有点看上去都在某条曲线(不是一条直线)附近波动,称此相关是非线性相关.如果所有的点在散点图中没有显示任何关系,则称变量间是不相关的. 2. 回归方程(1)最小二乘法如果有n 个点(x 1,y 1),(x 2,y 2),…,(x n ,y n ),可以用[y 1-(a +bx 1)]2+[y 2-(a +bx 2)]2+…+[y n -(a +bx n )]2来刻画这些点与直线y =a +bx 的接近程度,使得上式达到最小值的直线y =a +bx 就是所要求的直线,这种方法称为最小二乘法. (2)回归方程方程y =bx +a 是两个具有线性相关关系的变量的一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )的回归方程,其中a ,b 是待定参数. ⎩⎪⎨⎪⎧b =∑ni =1(x i-x )(y i-y )∑ni =1(x i-x )2=∑ni =1x i y i-n x y∑n i =1x 2i-n x 2a =y -b x.3. 回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法. (2)样本点的中心对于一组具有线性相关关系的数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )中(x ,y )称为样本点的中心. (3)相关系数①r=∑ni=1(x i-x)(y i-y)∑ni=1(x i-x)2∑ni=1(y i-y)2=∑ni=1x i y i-n x y(∑ni=1x2i-n x2)(∑ni=1y2i-n y2);②当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.4.独立性检验设A,B为两个变量,每一个变量都可以取两个值,变量A:A1,A2=A1;变量B:B1,B2=B1;2×2列联表:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).利用随机变量χ2来判断“两个分类变量有关系”的方法称为独立性检验.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.(×)(2)“名师出高徒”可以解释为教师的教学水平与学生的水平成正相关关系.(√)(3)只有两个变量有相关关系,所得到的回归模型才有预测价值.(√)(4)某同学研究卖出的热饮杯数y与气温x(℃)之间的关系,得回归方程y=-2.352x+147.767,则气温为2℃时,一定可卖出143杯热饮.(×)(5)事件X,Y关系越密切,则由观测数据计算得到的χ2越大.(√)(6)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.(×)2. 下面哪些变量是相关关系( )A .出租车车费与行驶的里程B .房屋面积与房屋价格C .身高与体重D .铁块的大小与质量 答案 C3. 为了评价某个电视栏目的改革效果,在改革前后分别从居民点抽取了100位居民进行调查,经过计算χ2≈0.99,根据这一数据分析,下列说法正确的是 ( )A .有99%的人认为该电视栏目优秀B .有99%的人认为该电视栏目是否优秀与改革有关系C .有99%的把握认为该电视栏目是否优秀与改革有关系D .没有理由认为该电视栏目是否优秀与改革有关系 答案 D解析 只有χ2≥6.635才能有99%的把握认为该电视栏目是否优秀与改革有关系,而既使χ2≥6.635也只是对“该电视栏目是否优秀与改革有关系”这个论断成立的可能性大小的结论,与是否有99%的人等无关.故只有D 正确.4. 在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算χ2=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的(填“有关”或“无关”). 答案 有关5. 下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^= -0.7x +a ,则a 等于( )A .10.5B .5.15C .5.2D .5.25答案 D解析 x =2.5,y =3.5,∵回归直线过定点(x ,y ), ∴3.5=-0.7×2.5+a .∴a =5.25,故选D.题型一 相关关系的判断例1 5个学生的数学和物理成绩如下表:思维启迪 将每个学生的数学成绩和物理成绩分别作为点的横坐标和纵坐标,作散点图,然后根据散点图判断两个变量是否存在相关关系.解 以x 轴表示数学成绩,y 轴表示物理成绩,可得到相应的散点图如图所示.由散点图可知,各组数据对应点大致在一条直线附近,所以两者之间具有相关关系,且为正相关.思维升华 判断变量之间有无相关关系,一种简便可行的方法就是绘制散点图,根据散点图很容易看出两个变量之间是否具有相关性,是不是存在线性相关关系,是正相关还是负相关,相关关系是强还是弱.(1)对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图①;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图②,由这两个散点图可以判断 ( )A .变量x 与y 正相关,u 与v 正相关B .变量x 与y 正相关,u 与v 负相关C .变量x 与y 负相关,u 与v 正相关D .变量x 与y 负相关,u 与v 负相关 答案 C(2)(2012·课标全国)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系数为( )A .-1B .0C.12D .1答案 D解析 样本点都在直线上时,其数据的估计值与真实值是相等的,即y i =y i ^,代入相关系数公式r =1-∑i =1n(y i -y i ^)2∑i =1n (y i -y )2=1.题型二 线性回归分析例2 某车间为了制定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下:(1)(2)求出y 关于x 的线性回归方程y =bx +a ,并在坐标系中画出回归直线; (3)试预测加工10个零件需要多少小时?思维启迪 求线性回归方程的系数b ^时,为防止出错,应分别求出公式中的几个量,再代入公式.解 (1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54,∴b =0.7,∴a =1.05,∴y =0.7x +1.05,回归直线如图所示.(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05,故预测加工10个零件约需要8.05小时.思维升华(1)线性回归方程y=bx+a必过样本点的中心(x,y).(2)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x(单位:小时)与当天投篮命中率y之间的关系:小李这56号打6小时篮球的投篮命中率为________.答案0.50.53解析小李这5天的平均投篮命中率y=0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x=3.根据表中数据可求得b=0.01,a=0.47,故线性回归方程为y=0.47+0.01x,将x=6代入得6号打6小时篮球的投篮命中率约为0.53.题型三独立性检验例3为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)(2)能否有99.5%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.思维启迪直接计算χ2的值,然后利用表格下结论.解(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要志愿者提供帮助的老年人的比例的估计值为70500×100%=14%.(2)χ2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.思维升华 (1)根据样本估计总体是抽样分析的一个重要内容.要使估计的结论更加准确,抽样取得的样本很关键.(2)根据独立性检验知,需要提供服务的老人与性别有关,因此在调查时,采取男、女分层抽样的方法更好,从而看出独立性检验的作用.某中学对“学生性别和是否喜欢看NBA 比赛”作了一次调查,其中男生人数是女生人数的2倍,男生喜欢看NBA 的人数占男生人数的56,女生喜欢看NBA 的人数占女生人数的13.(1)若被调查的男生人数为n ,根据题意建立一个2×2列联表;(2)若有95%的把握认为是否喜欢看NBA 和性别有关,求男生至少有多少人? 解 (1)由已知得:(2)χ2=3n 2(5n 6·n 3-n 6·n 6)2n ·n 2·n 2·n =38n .若有95%的把握认为是否喜欢看NBA 和性别有关, 则χ2>3.841,即38n >3.841,n >10.24.∵n 2,n6为整数,∴n 最小值为12. 即:男生至少12人.统计中的数形结合思想典例:(12分)某地10户家庭的年收入和年饮食支出的统计资料如表所示:(2)如果某家庭年收入为9万元,预测其年饮食支出.思维启迪 可以画出散点图,根据图中点的分布判断家庭年收入和年饮食支出的线性相关性. 规范解答解 (1)由题意,知年收入x 为解释变量,年饮食支出y 为预报变量,作散点图如图所示.[3分]从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.[4分]因为x =6,y =1.83,∑i =110x 2i =406,∑i =110y 2i =35.13,∑i =110x i y i =117.7,所以b =∑i =110x i y i -10x y∑i =110x 2i -10x2≈0.172,a =y -b x ≈1.83-0.172×6=0.798. 从而得到线性回归方程为y =0.172x +0.798.[8分](2)y =0.172×9+0.798=2.346(万元).所以家庭年收入为9万元时,可以预测年饮食支出为2.346万元.[12分]温馨提醒(1)在统计中,用样本的频率分布表、频率分布直方图、统计图表中的茎叶图、折线图、条形图,去估计总体的相关问题,以及用散点图判断相关变量的相关性等都体现了数与形的完美结合.借助于形的直观,去统计数据,分析数据,无不体现了数形结合的思想.(2)本题利用散点图分析两变量间的相关关系,充分体现了数形结合思想的应用.(3)本题易错点为散点图画的不准确,导致判断错误.方法与技巧1.求回归方程,关键在于正确求出系数a,b,由于a,b的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为b,常数项为a,这与一次函数的习惯表示不同.)2.回归分析是处理变量相关关系的一种数学方法.主要解决:(1)确定特定量之间是否有相关关系,如果有就找出它们之间贴近的数学表达式;(2)根据一组观察值,预测变量的取值及判断变量取值的变化趋势;(3)求出线性回归方程.3.根据χ2的值可以判断两个分类变量有关的可信程度.失误与防范1.相关关系与函数关系的区别:相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S与边长x之间的关系S=x2就是函数关系.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如商品的销售额与广告费是相关关系.两个变量具有相关关系是回归分析的前提.2.回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.A组专项基础训练(时间:40分钟)一、选择题1.某地区调查了2~9岁的儿童的身高,由此建立的身高y(cm)与年龄x(岁)的回归模型为y =8.25x+60.13,下列叙述正确的是()A.该地区一个10岁儿童的身高为142.63 cmB.该地区2~9岁的儿童每年身高约增加8.25 cmC.该地区9岁儿童的平均身高是134.38 cmD.利用这个模型可以准确地预算该地区每个2~9岁儿童的身高答案 B2.设(x1,y1),(x2,y2),…,(x n,y n)是变量x和y的n个样本点,直线l是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是()A.直线l过点(x,y)B.x和y的相关系数为直线l的斜率C.x和y的相关系数在0到1之间D.当n为偶数时,分布在l两侧的样本点的个数一定相同答案 A解析因为相关系数是表示两个变量是否具有线性相关关系的一个值,它的绝对值越接近1,两个变量的线性相关程度越强,所以B、C错误.D中n为偶数时,分布在l两侧的样本点的个数可以不相同,所以D错误.根据线性回归直线一定经过样本点中心可知A正确.3.(2012·湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为y=0.85x-85.71,则下列结论中不正确...的是() A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kgD.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg答案 D解析由于线性回归方程中x的系数为0.85,因此y与x具有正的线性相关关系,故A正确.又线性回归方程必过样本点中心(x,y),因此B正确.由线性回归方程中系数的意义知,x每增加1 cm,其体重约增加0.85 kg,故C正确.当某女生的身高为170 cm时,其体重估计值是58.79 kg,而不是具体值,因此D不正确.4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:χ2=110×(40×30-20×20)60×50×60×50≈7.8.下面结论正确的是 ( )A .有99%以上的把握认为“爱好该项运动与性别有关”B .有99%以上的把握认为“爱好该项运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” 答案 A解析 根据独立性检验的定义,由χ2≈7.8>6.635可知我们有99%以上的把握认为“爱好该项运动与性别有关”,故选A.5. 某产品的广告费用x 与销售额y 的统计数据如下表:6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元答案 B 解析 ∵x =4+2+3+54=72,y =49+26+39+544=42, 又y =bx +a 必过(x ,y ),∴42=72×9.4+a ,∴a =9.1.∴线性回归方程为y =9.4x +9.1.∴当x =6时,y =9.4×6+9.1=65.5(万元). 二、填空题6. 以下四个命题,其中正确的序号是________.①从匀速传递的产品生产流水线上,质检员每20分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量相关性越强,则相关系数的绝对值越接近于1 ;③在线性回归方程y =0.2x +12中,当解释变量x 每增加一个单位时,预报变量y 平均增加0.2个单位;④对分类变量X 与Y ,它们的随机变量χ2来说,χ2越小,“X 与Y 有关系”的把握程度越大.答案②③解析①是系统抽样;对于④,随机变量χ2越小,说明两个相关变量有关系的把握程度越小.7.已知回归方程y=4.4x+838.19,则可估计x与y的增长速度之比约为________.答案5∶22解析x每增长1个单位,y增长4.4个单位,故增长的速度之比约为1∶4.4=5∶22.事实上所求的比值为回归直线方程斜率的倒数.8.某数学老师身高176 cm,他爷爷、父亲和儿子的身高分别是173 cm、170 cm和182 cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________ cm.答案185解析儿子和父亲的身高可列表如下:设线性回归方程为y=a+bx,由表中的三组数据可求得b=1,故a=y-b x=176-173=3,故线性回归方程为y=3+x,将x=182代入得孙子的身高为185 cm.三、解答题9.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:(2)由以上统计数据填下面2×2列联表,问是否有99%的把握认为“两个分厂生产的零件的质量有差异”?附χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),解 (1)甲厂抽查的500件产品中有360件优质品,从而估计甲厂生产的零件的优质品率为360500=72%; 乙厂抽查的500件产品中有320件优质品,从而估计乙厂生产的零件的优质品率为320500=64%.(2)完成的2×2列联表如下:由表中数据计算得χ2=1 000×(360×180-320×140)2500×500×680×320≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”.10.(2013·重庆)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y =bx +a ; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄. 解 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy = i =1nx i y i -n x y =184-10×8×2=24,由此得b =l xy l xx =2480=0.3,a =y -b x =2-0.3×8=-0.4, 故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元).B 组 专项能力提升 (时间:30分钟)1. 下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y =3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ③回归方程y =bx +a 必过(x ,y );④有一个2×2列联表中,由计算得χ2=13.079,则有99%的把握确认这两个变量间有关系.其中错误的个数是( )A .0B .1C .2D .3答案 B解析 一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;回归方程中x 的系数具备直线斜率的功能,对于回归方程y =3-5x ,当x 增加一个单位时,y 平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y =bx +a 必过点(x ,y ),③正确;因为χ2=13.079>6.635,故有99%的把握确认这两个变量有关系,④正确.故选B. 2. (2013·福建)已知x 与y 之间的几组数据如下表:(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A .b >b ′,a >a ′B .b >b ′,a <a ′C .b <b ′,a >a ′D .b <b ′,a <a ′答案 C解析 b ′=2,a ′=-2,由公式b =∑i =16(x i -x )(y i -y )∑i =16(x i -x )2求得.b =57,a =y -b x =136-57×72=-13, ∴b <b ′,a >a ′.选C.3. 有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下非优秀统计成绩,得到如下所示的列联表:已知在全部105人中随机抽取1人,成绩优秀的概率为27,则下列说法正确的是( )A .列联表中c 的值为30,b 的值为35B .列联表中c 的值为15,b 的值为50C .根据列联表中的数据,若按95%的可靠性要求,能认为“成绩与班级有关系”D .根据列联表中的数据,若按95%的可靠性要求,不能认为“成绩与班级有关系” 答案 C解析 由题意知,成绩优秀的学生数是30,成绩非优秀的学生数是75, 所以c =20,b =45,选项A 、B 错误.根据列联表中的数据,得到χ2=105×(10×30-20×45)255×50×30×75≈6.6>3.841,因此有95%的把握认为“成绩与班级有关系”.4. 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y =0.67x +54.9.答案 68解析 由已知可计算求出x =30,而必过点(x ,y ), 则y =0.67×30+54.9=75,设模糊数字为a ,则a+62+75+81+895=75,计算得a=68.5.为了解某班学生喜爱打篮球是否与性别有关,对该班50名学生进行了问卷调查,得到了如下的2×2列联表:则有________答案0.5%解析χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=50×(20×15-5×10)225×25×30×20≈8.333>6.635,所以有99%的把握认为喜爱打篮球与性别有关.6.(2013·福建)某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.(1)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?解(1)40名.所以,样本中日平均生产件数不足60件的工人中,25周岁以上组工人有60×0.05=3(人),记为A1,A2,A3;25周岁以下组工人有40×0.05=2(人),记为B1,B2.从中随机抽取2名工人,所有的可能结果共有10种,它们是(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).其中,至少有1名“25周岁以下组”工人的可能结果共有7种,它们是(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).故所求的概率P=710.(2)由频率分布直方图可知,在抽取的100名工人中,“25周岁以上组”中的生产能手60×0.25=15(人),“25周岁以下组”中的生产能手40×0.375=15(人),据此可得2×2列联表如下:所以得χ2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)=100×(15×25-15×45)260×40×30×70=2514≈1.79.因为1.79<2.706.所以没有90%的把握认为“生产能手与工人所在的年龄组有关”.。
单元质检十统计与统计案例(时间:45分钟满分:100分)单元质检卷第20页一、选择题(本大题共6小题,每小题8分,共48分)1.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽取50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中抽到的数是39,则在第1小组1~16中随机抽到的数是()A.5B.7C.11D.13答案:B解析:间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.2.(2015某某质量检测)某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是()A.300B.400C.500D.600答案:D解析:依题意得,题中的1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是1 000×(0.035+0.015+0.010)×10=600,故选D.3.某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数小于该班女生成绩的平均数答案:C解析:五名男生成绩的平均数为(86+94+88+92+90)=90,五名女生成绩的平均数为(88+93+93+88+93)=91,五名男生成绩的方差为==8,五名女生成绩的方差为=6,所以,故选C.4.(2015某某某某模拟)下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差不变;②设有一个线性回归方程y=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程y=bx+a必过点();④一个2×2列联表中,由计算得K2=13.079,则有99%的把握认为这两个变量间有关系.其中错误的个数是()A.0B.1C.2D.3〚导学号32470645〛答案:B解析:一组数据都加上或减去同一个常数,数据的平均数有变化,方差不变(方差是反映数据的波动程度的量),①正确;线性回归方程中x的系数具备直线斜率的功能,对于线性回归方程y=3-5x,当x 增加一个单位时,y平均减少5个单位,②错误;由线性回归方程的定义知,线性回归方程y=bx+a必过点(),③正确;因为χ2=13.079>6.635,故有99%的把握认为这两个变量有关系,④正确.故选B.5.(2015某某第一次质量预测)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.如图是根据某地某日早7点到晚8点甲、乙两个PM2.5监测点统计的数据(单位:毫克/立方米)列出的茎叶图,则甲、乙两地浓度的方差较小的是()A.甲B.乙C.甲、乙相等D.无法确定答案:A解析:从茎叶图上可以观察到:甲监测点的样本数据比乙监测点的样本数据更加集中,因此甲地浓度的方差较小.6.(2015某某某某双基考试)对于下列表格所示五个散点,已知求得的线性回归方程为y=0.8x-155,则实数m的值为()A.8B.8.2C.8.4D.8.5〚导学号32470646〛答案:A解析:=200,.样本中心点为,将样本中心点代入y=0.8x-155,可得m=8.故A正确.二、填空题(本大题共3小题,每小题8分,共24分)7.(2015某某一模)若一组样本数据2,3,7,8,a的平均数为5,则该组数据的方差s2=.答案:解析:∵=5,∴a=5.∴s2=[(2-5)2+(3-5)2+(7-5)2+(8-5)2+(5-5)2]=.8.调查某高中1 000名学生的身高情况得下表,已知从这批学生随机抽取1名,抽到偏矮男生的概率为0.12,若用分层抽样的方法,从这批学生中随机抽取50名,偏高学生有名.〚导学号32470647〛答案:11解析:由题意可知x=1 000×0.12=120,所以y+z=220.所以偏高学生占学生总数的比例为,所以随机抽取50名学生中偏高学生有50×=11(名).9.给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小,样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数R2是用来刻画回归效果的,R2的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是(请将正确说法的序号写在横线上).答案:②④⑤解析:①在频率分布直方图中,中位数左边和右边的直方图的面积相等,故①错误.②标准差是衡量样本数据中的波动程度,标准差越小,数据越稳定,样本数据的波动也越小,故②正确.③回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法,故③错误.④在回归分析中,预报变量是由解释变量和随机误差共同确定的,故④正确.⑤根据相关性指数的定义和性质可知,相关指数R2是用来刻画回归效果的,R2的值越大,说明残差平方和越小,回归模型的拟合效果越好.故⑤正确.三、解答题(本大题共2小题,共28分)10.(14分)(2015某某月考)某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关?并说明理由.解:(1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此抽到积极参加班级工作的学生的概率是P 1=,又因为不太主动参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=.(2)由χ2统计量的计算公式得χ2=≈11.538,由于11.538>10.828,所以有99.9%的把握认为学生的学习积极性与对待班级工作的态度有关系.11.(14分)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下表:甲27 38 30 37 35 31乙33 29 38 34 28 36(1)画出茎叶图;(2)分别求出甲、乙两名自行车赛手最大速度(单位:m/s)数据的平均数、方差,并判断选谁参加比赛更合适?解:(1)画茎叶图如图所示,中间数为数据的十位数.(2)由茎叶图把甲、乙两名选手的6次成绩按从小到大的顺序依次排列为甲:27,30,31,35,37,38;乙:28,29,33,34,36,38.所以×(27+30+31+35+37+38)=33,×(28+29+33+34+36+38)=33.×[(-6)2+(-3)2+(-2)2+22+42+52]=,×[(-5)2+(-4)2+0+12+32+52]=.因为,所以乙的成绩更稳定,故乙参加比赛更合适.。
新教材老高考适用2023高考数学一轮总复习:单元质检卷十计数原理、概率、随机变量及其分布(时间:120分钟满分:150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021年八省新高考将实行“3+1+2”模式,即语文、数学、外语必选,物理、历史二选一,政治、地理、化学、生物四选二,共有12种选课模式.某同学已选了物理,记事件A为“该同学选择政治和地理”,事件B为“该同学选择化学和地理”,则事件A与事件B()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件2.(2021安徽安庆模拟)杭州亚运会三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,现将三张分别印有“琮琮”“宸宸”“莲莲”这三个图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.23B.13C.29D.193.某公司研发5G项目时遇到一项技术难题,由甲、乙两个部门分别独立攻关,已知甲部门攻克该技术难题的概率为0.8,乙部门攻克该技术难题的概率为0.7,则该公司攻克这项技术难题的概率为()A.0.56B.0.86C.0.94D.0.964.袋中装有5个大小相同的球,其中有2个白球,2个黑球,1个红球,现从袋中每次取出1球,取出后不放回,直到取到有两种不同颜色的球时即终止,用X表示终止取球时所需的取球次数,则随机变量X的数学期望EX是()A.115B.125C.135D.1455.一试验田某种作物一株生长果实个数x服从正态分布N(90,σ2),且P(x≤70)=0.2,从试验田中随机抽取10株,果实个数在(90,110]的株数记作随机变量X,且X服从二项分布,则X的方差为()A.3B.2.1C.0.3D.0.216.(2021福建福州一模)某次会议中,组委会要从6个国内媒体团和3个国外媒体团中选出3个媒体团进行提问,要求这三个媒体团中既有国内媒体团又有国外媒体团,且国内媒体团不能连续提问,则不同的提问方式的种数为()A.198B.268C.306D.3787.(2021广东茂名一模)某乒乓球训练馆使用的球是A,B,C三种不同品牌标准比赛球,根据以往使用的记录数据:若这些球在盒子中是均匀混合的,且无区别的标志,现从盒子中随机地取一只球用于训练,则它是合格品的概率为()A.0.986B.0.984C.0.982D.0.9808.设随机变量X的分布列如下:则方差DX=()A.0B.1C.2D.39.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是 ( )A.P (B )=25 B.P (B|A 1)=511C.事件B 与事件A 1相互独立D.A 1,A 2,A 3不是两两互斥的事件10.从甲袋中摸出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,下列结论不正确的是( ) A.2个球都是红球的概率为16 B.2个球中恰有1个红球的概率为12 C.至少有1个红球的概率为23 D.2个球不都是红球的概率为1311.在(2x -x)6的展开式中,下列说法正确的是( )A.常数项为160B.第5项的二项式系数最大C.第3项的系数最大D.所有项的系数和为64 12.下列结论正确的是( )A.若随机变量X 服从两点分布,P (X=1)=12,则EX=1 B.若随机变量Y 的方差DY=3,则D (2Y+1)=6C.若随机变量ξ服从二项分布B (4,13),则P (ξ=3)=3281D.若随机变量η服从正态分布N (1,σ2),P (η≤2)=0.82,则P (0≤η≤2)=0.64 二、填空题:本题共4小题,每小题5分,共20分.13.(2021天津滨海新区模拟)有三台车床加工同一型号的零件,第一台加工的次品率为0.06,第二、三台加工的次品率均为0.05,加工出来的零件混放在一起.已知第一、二、三台车床加工的零件数分别占总数的0.25,0.3,0.45,任取一个零件,是次品的概率为.14.已知(3x-1)6=a0+a1x+…+a6x6,则a1+a2+…+a6=.15.杭州亚运会启动志愿者招募工作,甲、乙等6人报名参加了A,B,C三个项目的志愿者工作,因工作需要,每个项目仅需1名志愿者,每人至多参加一个项目,若甲不能参加A,B项目,乙不能参加B,C项目,那么共有种不同的选拔志愿者的方法.(用数字作答)16.(2021浙江富阳中学模拟)已知甲、乙两所大学的笔试环节都设有三门考试科目,且每门科目是否通过相互独立.若某考生报考甲大学,每门科目通过的概率分别为13,23,12,该考生报考乙大学,每门科目通过的概率均为12,设A为事件“该考生报考乙大学在笔试环节至少通过二门科目”,则事件A 发生的概率为,设X为该考生通过甲大学的笔试环节科目数,则随机变量X的数学期望为.三、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对党史的了解,某班级开展党史知识竞赛活动,现把50名学生的成绩绘制了如图所示的频率分布直方图.(1)求a的值并估计这50名学生的平均成绩(同一组中的数据用该组区间的中点值为代表);(2)用分层抽样的方法从成绩在[80,90),[90,100]两组学生中抽取5人进行培训,再从这5人中随机抽取2人参加校级党史知识竞赛,求这2人来自不同小组的概率.18.(12分)(2021北京平谷一模)某牛奶企业针对生产的鲜奶和酸奶,在一地区进行了质量满意调查,现从消费者人群中随机抽取500人次作为样本,得到下表:(1)从样本中任取1个人,求这个人恰好对生产的酸奶质量满意的概率;(2)从该地区的老年人中抽取2人,青年人中随机选取1人,估计这三人中恰有2人对生产的鲜奶质量满意的概率.19.(12分)(2021新高考Ⅰ,18)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.20.(12分)某公司年会举行抽奖活动,每位员工均有一次抽奖机会.活动规则如下:一只盒子里装有大小相同的6个小球,其中3个白球,2个红球,1个黑球,抽奖时从中依次摸出3个小球.若所得的小球同色,则获得一等奖,奖金为300元;若所得的小球颜色互不相同,则获得二等奖,奖金为200元;若所得的小球恰有2个同色,则获得三等奖,奖金为100元.(1)求小张在这次活动中获得的奖金数X的分布列及数学期望;(2)若每个人获奖与否互不影响,求该公司某部门3个人中至少有2个人获二等奖的概率.21.(12分)在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层随机抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生表二:女生(1)求x,y的值;(2)从表一、表二中所有尚待改进的学生中随机抽取3人进行交谈,记其中抽取的女生人数为X,求随机变量X的分布列及均值;(3)由表中统计数据填写下列2×2列联表,测评结果优秀是否与性别有关.附:χ2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.22.(12分)(2021安徽合肥模拟)某调查组从一养鱼示范村的养鱼塘内随机捕捞两次,上午进行第一次捕捞,捕捞到60条鱼,共105 kg,称重后计算得出这60条鱼质量(单位:kg)的平方和为200.41,下午进行第二次捕捞,捕捞到40条鱼,共66 kg,称重后计算得出这40条鱼质量(单位:kg)的平方和为117.(1)请根据以上信息,求所捕捞100条鱼质量的平均数z 和方差s 2;(2)根据以往经验,可以认为该鱼塘鱼质量X 服从正态分布N (μ,δ2),用z 作为μ的估计值,用s 2作为δ2的估计值.随机从该鱼塘捕捞一条鱼,其质量在(1.21,3.21]的概率是多少?(3)某批发商从该村鱼塘购买了1 000条鱼,若从该鱼塘随机捕捞,记ξ为捕捞的鱼的质量在(1.21,3.21]的条数,利用(2)的结果,求ξ的数学期望. 附:(1)数据t 1,t 2,…,t n 的方差s 2=1n ∑i=1n (t i -t )2=1n(∑i=1n t i 2-n t 2);(2)若随机变量X 服从正态分布N (μ,δ2),则P (μ-δ<X ≤μ+δ)≈0.682 6;P (μ-2δ<X ≤μ+2δ)≈0.954 4;P (μ-3δ<X ≤μ+3δ)≈0.997 4.单元质检卷十 计数原理、概率、随机变量及其分布1.A 解析事件A 与事件B 不能同时发生,是互斥事件.该同学还可以选择化学和政治,故事件A与事件B不是对立事件.故选A.2.C解析记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为A,B,C,则样本点分别为(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9种情况,其中一张为“琮琮”,一张为“宸宸”的共2种情况,所以所求的概率P=29.故选C.3.C解析根据题意得,P=1-(1-0.8)(1-0.7)=0.94.故选C.4.A解析X的可能取值为2,3,P(X=3)=25×14+25×14=15,P(X=2)=1-P(X=3)=45,∴EX=45×2+15×3=115,故选A.5.B解析∵x~N(90,σ2),且P(x≤70)=0.2,∴P(x>110)=0.2,∴P(90<x≤110)=0.5-0.2=0.3,∴X~B(10,0.3),X的方差为10×0.3×(1-0.3)=2.1.故选B.6.A解析分两种情况.若选两个国内媒体一个国外媒体,有C62C31A22=90种不同提问方式;若选两个外国媒体一个国内媒体,有C61C32A33=108种不同提问方式,根据分类加法计数原理,共有90+108=198种提问方式.故选A.7.B解析将A,B,C分别记为第1,第2,第3个品牌,设事件M1表示“取到的球是第i个品牌(i=1,2,3)”,事件N表示“取到的是一个合格品”,其中M1,M2,M3两两互斥,所以P(N)=P(M1N)+P(M2N)+P(M3N)=P(M1)P(N|M1)+P(M2)P(N|M2)+P(M3)P(N|M3)=0.98×0.2+0.99×0.6+0.97×0.2=0.984,所以它是合格品的概率为0.984.故选B.8.B解析由题得,a=1-0.1-0.3-0.4=0.2,EX=1×0.2+2×0.3+3×0.4=2,E(X2)=1×0.2+4×0.3+9×0.4=5,DX=E(X2)-(EX)2=5-4=1.故选B.9.B解析易见A1,A2,A3是两两互斥的事件,故D不正确,P(B|A1)=511,故B正确,P(B)=P(BA1)+P(BA2)+P(BA3)=510×511+210×411+310×411=922,故A不正确,事件B与事件A1不相互独立,故C不正确,故选B.10.D 解析对于A,2个球都是红球的概率为13×12=16,故选项A 正确;对于B,2个球中恰有1个红球的概率为13×(1−12)+(1−13)×12=12,故选项B 正确;对于C,至少有一个红球包括两个都是红球和恰有1个红球,结合选项A,B 可知,至少有一个红球的概率为16+12=23,故选项C 正确;对于D,2个球不都是红球的对立事件为2个球都是红球,所以2个球不都是红球的概率为1-16=56,故选项D 不正确. 故选D .11.C 解析二项式通项为T r+1=C 6r(2x )6−r(-x )r=26-r(-1)r C 6rx2r-6.由2r-6=0,得r=3,所以常数项为23×(-1)3×C 63=-160,故A 错误;展开式共有7项,所以第4项二项式系数最大,故B 错误; 由二项式通项可得r 为偶数时,系数才有可能取到最大值, 当r=2时,该项系数最大为240,故C 正确;令x=1,得a 0+a 1+a 2+…+a 6=(2-1)6=1,所有项的系数和为1,故D 错误. 故选C .12.D 解析由条件可知,P (X=0)=1-P (X=1)=12,EX=0×12+1×12=12,故A 错误;D (2Y+1)=4DY=12,故B 错误;若随机变量ξ服从二项分布B (4,13),则P (ξ=3)=C 43×(13)3×23=881,故C 错误; 根据对称性可知,正态分布曲线关于x=1对称,所以P (0≤η≤2)=1-2(1-P (η≤2))=0.64,故D 正确. 故选D .13.0.052 5 解析依题意,任取一个零件,它是次品的概率为0.25×0.06+0.3×0.05+0.45×0.05=0.0525.14.63 解析令x=0,可得a 0=1,令x=1,可得a 0+a 1+a 2+…+a 6=(3×1-1)6=64, 所以a 1+a 2+…+a 6=64-1=63.15.52 解析根据题意,分4种情况讨论.①甲乙都不参加志愿活动,在剩下的4人中任选3人参加即可,有A 43=24种选拔方法; ②甲参加但乙不参加志愿活动,甲只能参加C 项目,在剩下的4人中任选2人参加A ,B 项目,有A 42=12种选拔方法;③乙参加但甲不参加志愿活动,乙只能参加A 项目,在剩下的4人中任选2人参加B ,C 项目,有A 42=12种选拔方法;④甲乙都参加志愿活动,在剩下的4人中任选1人参加B 项目,有A 41=4种选拔方法. 根据分类加法计数原理,则不同的选拔志愿者的方法种数为24+12+12+4=52. 16.1232解析(1)由题知,事件A 为该考生报考乙大学在笔试环节通过二门科目或通过三门科目,所以P (A )=C 32(12)212+C 33(12)3=12. (2)由题意可得,X 的值可能为0,1,2,3.P (X=0)=23×13×12=19;P (X=1)=13×13×12+23×23×12+23×13×12=718; P (X=2)=13×23×12+13×13×12+23×23×12=718; P (X=3)=13×23×12=19.即随机变量X 的数学期望为EX=0×19+1×718+2×718+3×19=32.17.解(1)根据频率分布直方图得(0.004+0.006+a+0.030+0.024+0.016)×10=1, 解得a=0.020.平均成绩为(45×0.004+55×0.006+65×0.020+75×0.030+85×0.024+95×0.016)×10=76.2. (2)来自[80,90)小组的有3人,记为a 1,a 2,a 3, 来自[90,100]小组的有2人,记为b 1,b 2, 从5人中随机抽取2人,样本点为(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),(b 1,b 2),共10个, 这2人来自不同组的样本点有(a 1,b 1),(a 1,b 2),(a 2,b 1),(a 2,b 2),(a 3,b 1),(a 3,b 2),共6个, 所以这2人来自不同小组的概率为P=610=35.18.解(1)设这个人恰好对生产的酸奶满意为事件A ,总人次为500人,对酸奶质量满意的人数为100+120+150=370,所以P (A )=370500=3750.(2)由频率估计概率,设“抽取的老年人中对鲜奶质量满意”为事件B ,则抽取的老年人中对鲜奶质量满意的概率为P (B )=45,设“抽取的青年人中对鲜奶质量满意”为事件C ,则抽取青年人中对鲜奶质量满意的概率为P (C )=35.故抽取这三人中恰有2人对生产的鲜奶质量满意的概率P=C 21×45×35×(1−45)+(45)2×(1−35)=56125,所以这三人中恰有2人对生产的鲜奶质量满意的概率为56125.19.解(1)X=0,20,100.P (X=0)=1-0.8=0.2=15,P (X=20)=0.8×(1-0.6)=45×25=825, P (X=100)=0.8×0.6=45×35=1225.所以X 的分布列为(2)若小明先回答A 类问题,期望为EX. 则EX=0×15+20×825+100×1225=2725.若小明先回答B 类问题,Y 为小明的累计得分,Y=0,80,100, P (Y=0)=1-0.6=0.4=25,P (Y=80)=0.6×(1-0.8)=35×15=325, P (Y=100)=0.6×0.8=35×45=1225. EY=0×25+80×325+100×1225=2885.因为EX<EY ,所以小明应选择先回答B 类问题.20.解(1)小张在这次活动中获得的奖金数X 的所有可能取值为100,200,300.P (X=300)=C 33C 63=120,P (X=200)=C 31C 21C 11C 63=620=310, P (X=100)=C 32C 31+C 22C 41C 63=9+420=1320,或P (X=100)=1-P (X=200)-P (X=300)=1320所以奖金数X 的概率分布列为奖金数X 的数学期望EX=100×1320+200×310+300×120=140.(2)设3个人中获二等奖的人数为Y ,则Y~B 3,310,所以P (Y=k )=C 3k 310k7103-k(k=0,1,2,3),设“该公司某部门3个人中至少有2个人获二等奖”为事件A ,则P (A )=P (Y=2)+P (Y=3)=C 32×3102×710+C 33×3103=27125.则该公司某部门3个人中至少有2个人获二等奖的概率为27125.21.解(1)设从高一年级男生中抽取m 人,则m 500=45500+400,解得m=25,则从女生中抽取20人,所以x=25-15-5=5,y=20-15-3=2.(2)表一、表二中所有尚待改进的学生共7人,其中女生有2人,则X 的所有可能的取值为0,1,2.P (X=0)=C 53C 73=1035=27,P (X=1)=C 52C 21C 73=2035=47,P (X=2)=C 51C 22C 73=535=17.则随机变量X 的分布列为所以X 的均值EX=27×0+47×1+17×2=67.(3)2×2列联表如下:χ2=45×(15×5−15×10)230×15×25×20=45×152×5230×15×25×20=98=1.125≤2.706.判断测评结果优秀与性别无关.22.解(1)z =105+6660+40=1.71,s 2=200.41+117100-1.712=0.25.(2)该鱼塘鱼质量满足X~N (μ,δ2),其中μ=1.71,δ2=0.25,即X~N (1.71,0.25), 则P (μ-δ<X ≤0)≈0.68262,P (0<X ≤μ+3δ)≈0.99742,∴P (1.21<X ≤3.21)=P (μ-δ<X ≤μ+3δ)=P (μ-δ<X ≤0)+P (0<X ≤μ+3δ)≈0.6826+0.99742=0.84.(3)由(2)可得鱼的质量在(1.21,3.21]的概率为0.84. 由题意可知ξ~B (1000,0.84),由二项分布的数学期望公式可得,ξ的数学期望为E ξ=1000×0.84=840.。
第十一编 统计、统计案例§11.1 随机抽样1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是( )A.B.C .总体的一个样本D.答案C2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 ( )A.B.C.D.答案D3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为( )A .5,10,15B .3,9,18C .3,10,17D .5,9,16答案B4.(2008·广东理,3)某校共有学生2 000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A .24B .48C .16D .12答案C5.某工厂生产A、B 、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n 的样本,样本中A 型号产品有16件,那么此样本的容量n = . 答案 80例1 某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请 用抽签法和产生随机数法设计抽样方案. 解 抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号; 第五步:所得号码对应的志愿者,就是志愿小组的成员.基础自测第一步:将18名志愿者进行编号,编号为01,02,03, (18)第二步:由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如比第6列和第7列这两列的第三行开始选数,由上到下读,凡不在01—18中的数或已读过的数都不作记录,依次可得到11,07,18,08,09,12.第三步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施.解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k =100001=100将总体均分为10段,每段含100个工人. (5)从第一段即为0001号到0100号中随机抽取一个号l .(6)按编号将l ,100+l ,200+l ,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本.例3 (12分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人 的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程. 解 应采取分层抽样的方法.过程如下:(1)将3万人分为五层,其中一个乡镇为一层.2分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人); 300×155=100(人);300×152=40(人); 300×153=60(人), 8分 因此各乡镇抽取人数分别为60人,40人,100人,40人,60人. 10分 (3)将300人组到一起即得到一个样本.12分例4 为了考察某校的教学水平,将抽查这个学校高三年级的部分学生本年度的考试成绩.为了全面反映实际情况,采 取以下三种方式进行抽查(已知该校高三年级共有20个班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生的人数相同):①从高三年级20个班中任意抽取一个班,再从该班中任意抽取20名学生,考察他们的学习成绩;②每个班抽取1人,共计20人,考察这20名学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从其中共抽取100名学生进行考察(已知该校高三学生共1 000人,若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,试回答下列问题:(1)上面三种抽取方式的总体、个体、样本分别是什么?每一种抽取方式抽取的样本中,样本容量分别是多少? (2)上面三种抽取方式各自采用的是何种抽取样本的方法? (3)试分别写出上面三种抽取方式各自抽取样本的步骤.解 (1)这三种抽取方式的总体都是指该校高三全体学生本年度的考试成绩,个体都是指高三年级每个学生本年度的考试成绩.其中第一种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第二种抽取方式的样本为所抽取的20名学生本年度的考试成绩,样本容量为20;第三种抽取方式的样本为所抽取的100名学生本年度的考试成绩,样本容量为100.(2)三种抽取方式中,第一种采用的是简单随机抽样法; 第二种采用的是系统抽样法和简单随机抽样法;第三种采用的是分层抽样法和简单随机抽样法. (3)第一种方式抽样的步骤如下:第一步,首先用抽签法在这20个班中任意抽取一个班.第二步,然后从这个班中按学号用随机数法或抽签法抽取20名学生,考察其考试成绩. 第二种方式抽样的步骤如下:第一步,首先用简单随机抽样法从第一个班中任意抽取一名学生,记其学号为a .第二步,在其余的19个班中,选取学号为a 的学生,加上第一个班中的一名学生,共计20人. 第三种方式抽样的步骤如下:第一步,分层,因为若按成绩分,其中优秀生共150人,良好生共600人,普通生共250人,所以在抽取样本时,应该把全体学生分成三个层次.第二步,确定各个层次抽取的人数.因为样本容量与总体的个体数之比为:100∶1 000=1∶10,所以在每个层次中抽取的个体数依次为10150,10600,10250,即15,60,25. 第三步,按层次分别抽取.在优秀生中用简单随机抽样法抽取15人;在良好生中用简单随机抽样法抽取60人;在普通生中用简单随机抽样法抽取25人.1.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,问此样本若采用简单随机抽样方法将如何获得?解 首先,把机器都编上号码001,002,003,…,112,如用抽签法,则把112个形状、大小相同的号签放在同一个箱子里,进行均匀搅拌,抽签时,每次从中抽出1个号签,连续抽取10次,就得到一个容量为10的样本.2.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解 (1)将624名职工用随机方式编号由000至623. (2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619. (4)分段,取间隔k =62620=10,将总体分成62组,每组含10人. (5)从第一段,即为000到009号随机抽取一个号l .(6)按编号将l ,10+l ,20+l ,…,610+l ,共62个号码选出,这62个号码所对应的职工组成样本.3.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应当怎样进行抽样? 解 可用分层抽样方法,其总体容量为12 000.“很喜爱”占000124352,应取60×000124352≈12(人);“喜爱”占000125674,应取60×000125674≈23(人);“一般”占000129263,应取60×000129263≈20(人);“不喜爱”占000120721,应取60×000120721≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样答案D一、选择题1.(2008·安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为()A.15,10,20B.10,5,30C.15,15,15D.15,5,25答案A2.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么()A.B.C.D.答案A3.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样答案C4.(2008·重庆文,5)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是()A.B.C.产生D.答案D5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断正确的是()A.B.C.D.答案D6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7答案C二、填空题7.(2008·天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的 健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工 人. 答案 108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 . 答案 0795 三、解答题9.为了检验某种作业本的印刷质量,决定从一捆(40本)中抽取10本进行检查,利用随机数表抽取这个样本时,应按怎样的步骤进行?分析 可先对这40本作业本进行统一编号,然后在随机数表中任选一数作为起始号码,按任意方向读下去,便会得到10个号码.解 可按以下步骤进行:第一步,先将40本作业本编号,可编为00,01,02, (39)第二步,由于总体是一个两位数的编号,每次要从随机数表中选取两列组成两位数.从随机数表中任意一个位置,比如第9列和第10列这两列的第3行开始选数.由上至下读数超过39的和重复出现的不能选取.这样选取的10个样本的编号分别为:28,33,16,20,31,37,21,05,01,09.第三步找出编号所对应的作业本.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数法抽取14人. (3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.11.从某厂生产的10 002辆电动自行车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程. 解 因为总体容量和样本容量都较大,可用系统抽样. 抽样步骤如下:第一步,将10 002辆电动自行车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用产生随机数法),将剩下的10 000辆电动自行车重新编号(分别为00001,00002,…,10000)并分成100段;第三步,在第一段00001,00002,…,00100这一百个编号中用简单随机抽样抽出一个作为起始号码(如00006); 第四步,把起始号码依次加间隔100,可获得样本.12.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n 36,分层抽样的比例是36n,抽取工程师36n ×6=6n(人),抽取技术人员36n ×12=3n(人), 抽取技工36n ×18=2n(人). 所以n 应是6的倍数,36的约数即n =6,12,18,36.当样本容量为(n +1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.§11.2 用样本估计总体1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为( )A .2B.5C .15D.80答案B2.(2008·山东理,8)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇 居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数 字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006 年我省城镇居民百户家庭人口数的平均数为 ( ) A.304.6B.303.6C.302.6D.301.6答案B3.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组在频率分布直方图的高为h ,则|a -b |等于( ) A .hmB .mhC .hm D .h +m答案C4.(2008·山东文,9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )A .3B.5102 C .3 D .58答案B5.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是( )基础自测A .20B .30C .40D .50答案C例 1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)依题意知第三组的频率为 1464324+++++=51,又因为第三组的频数为12, ∴本次活动的参评作品数为5112=60. (2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95, 第六组上交的作品数量为 60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高. 例2 对某电子元件进行寿命追踪调查,情况如下:(1)列出频率分布表; (2)画出频率分布直方图;(3)估计电子元件寿命在100 h ~400 h 以内的概率; (4)估计电子元件寿命在400 h 以上的概率. 解 (1)样本频率分布表如下:(2)频率分布直方图(3)由频率分布表可以看出,寿命在100 h ~400 h 的电子元件出现的频率为0.65,所以我们估计电子元件寿命在 100 h ~400 h 的概率为0.65.(4)由频率分布表可知,寿命在400 h 以上的电子元件出现的频率为0.20+0.15=0.35,故我们估计电子元件寿命在400 h 以上的概率为0.35.例3 为了解A ,B 两种轮胎的性能,某汽车制造厂分别从这两种轮胎中随机抽取了8个进行测试,下面列出了每一个轮胎行驶的最远里程数(单位:1 000 km ) 轮胎A 96, 112, 97, 108, 100, 103, 86, 98 轮胎B108,101,94,105,96,93,97,106(1)分别计算A ,B 两种轮胎行驶的最远里程的平均数、中位数; (2)分别计算A ,B 两种轮胎行驶的最远里程的极差、标准差; (3)根据以上数据你认为哪种型号的轮胎性能更加稳定? 解 (1)A 轮胎行驶的最远里程的平均数为: 898861031001089711296+++++++=100,中位数为:298100+ =99; B 轮胎行驶的最远里程的平均数为: 810697939610594101108+++++++=100,中位数为:297101+=99.(2)A 轮胎行驶的最远里程的极差为:112-86=26, 标准差为: s =821430831242222222+++++++=2221≈7.43; B 轮胎行驶的最远里程的极差为:108-93=15, 标准差为: s =86374561822222222+++++++=2118≈5.43.(3)由于A 和B 的最远行驶里程的平均数相同,而B 轮胎行驶的最远里程的极差和标准差较小,所以B 轮胎性能更加 稳定.例4 (12分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98, 99; 乙:110, 115,90,85,75,115,110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样. 3分(2)茎叶图如下:6分(3)甲车间: 平均值: 1x =71(102+101+99+98+103+98+99)=100, 7分 方差:21s =71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.8分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100, 9分 方差:22s =71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4. 10分 ∵1x =2x ,21s <22s ,∴甲车间产品稳定.12分1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内? 解 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2. (2)设参加这次测试的学生人数是n , 则有n =第一小组频率第一小组频数=5÷0.1=50(人).(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内.2.从高三学生中抽取50名同学参加数学竞赛,成绩的分组及各组的频数如下:(单位:分) [40,50),2;[50,60),3;[60,70),10;[70,80),15; [80,90),12;[90,100],8.(1)列出样本的频率分布表; (2)画出频率分布直方图;(3)估计成绩在[60,90)分的学生比例; (4)估计成绩在85分以下的学生比例. 解 (1)频率分布表如下:(2)频率分布直方图如图所示.(3)成绩在[60,90)的学生比例即为学生成绩在[60,90)的频率,即为(0.20+0.30+0.24)×100%=74%. (4)成绩在85分以下的学生比例即为学生成绩不足85分的频率. 设相应的频率为b . 由808560.0--b =809060.084.0--,故b =0.72.估计成绩在85分以下的学生约占72%.3.有甲、乙两位射击运动员在相同条件下各射击10次,记录各次命中环数; 甲:8,8,6,8,6,5,9,10,7,4 乙:9,5,7,8,7,6,8,6,8,7 (1)分别计算他们环数的标准差; (2)谁的射击情况比较稳定. 解 (1)x 甲=101(8+8+6+8+6+5+9+10+7+4)=7.1, x 乙=101(9+5+7+8+7+6+8+6+8+7)=7.1, 2甲s =101[(8-7.1)2+(8-7.1)2+(6-7.1)2+(8-7.1)2+(6-7.1)2+(5-7.1)2+(9-7.1)2+(10-7.1)2+(7-7.1)2+(4-7.1)2]=3.09, ∴s 甲≈1.76.2乙s =101[(9-7.1)2+(5-7.1)2+(7-7.1)2+(8-7.1)2+(7-7.1)2+(6-7.1)2+(8-7.1)2+(6-7.1)2+(8-7.1)2+(7-7.1)2]=1.29, ∴s 乙≈1.14.(2)∵x 甲=x 乙,s 乙<s 甲,∴乙射击情况比较稳定.4.(2008·海南、宁夏理,16)从甲、乙两品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271 273 280 285 285 287 292 294 295301 303 303 307 308 310 314 319 323325 325 328 331 334 337 352乙品种:284 292 295 304 306 307 312 313 315315 316 318 318 320 322 322 324 327329 331 333 336 337 343 356由以上数据设计了如下茎叶图:根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①;② . 答案①乙品种棉花的纤维平均长度大于甲品种棉花的纤维平均长度(或:乙品种棉花的纤维长度普遍大于甲品种棉花的纤维长度).②甲品种棉花的纤维长度较乙品种棉花的纤维长度更分散.(或:乙品种棉花的纤维长度较甲品种棉花的纤维长度更集中(稳定).甲品种棉花的纤维长度的分散程度比乙品种棉花的纤维长度的分散程度更大).③甲品种棉花的纤维长度的中位数为307 mm,乙品种棉花的纤维长度的中位数为318 mm.④乙品种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲品种棉花的纤维长度除一个特殊值(352)外,也大致对称,其分布较均匀.一、选择题1.下列关于频率分布直方图的说法中正确的是()A.B.C.D.答案D2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩()A.甲比乙稳定B.C.甲、乙的稳定程度相同D.答案A3.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用条形图表示如下:A.0.6 hB.0.9 hC.1.0 hD.1.5 h答案B4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为()A.0.9,35B.0.9,45C.0.1,35D. 0.1,45答案A5.(2008·佛山模拟)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎,部分数据丢失,但知道前四组的频数成等比数列,后六组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,则a,b的值分别为()A.0.27,78B.0.27,83C.2.7,78D.27,83答案A6.(2008·菏泽模拟)甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,A.xC.x答案A二、填空题7.(2008·上海理,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .答案10.5、10.58.(2008·滨海模拟)某教师出了一份共3道题的测试卷,每道题1分,全班得3分,2分,1分,0分的学生所占比例分别为30%,40%,20%,10%,若全班30人,则全班同学的平均分是分.答案 1.9三、解答题9.在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少?(3)这两个班参赛学生的成绩的中位数应落在第几小组内?(不必说明理由)解 (1)各小组的频率之和为1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05. ∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=组距频率=1040.0=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人. ∵第二小组的频数为40人,频率为0.40, ∴x40=0.40,解得x =100(人). 所以九年级两个班参赛的学生人数为100人.(3)因为0.3×100=30,0.4×100=40,0.15×100=15,0.10×100=10,0.05×100=5,即第一、第二、第三、第四、第五小组的频数分别为30,40,15,10,5,所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由. 解 (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为 391517424+++++=0.08.又因为频率=样本容量第二小组频数,所以样本容量=第二小组频率第二小组频数=08.012=150.(2)由图可估计该学校高一学生的达标率约为 39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内. 11.观察下面表格:(1)完成表中的频率分布表;(2)根据表格,画出频率分布直方图;(3)估计数据落在[10.95,11.35)范围内的概率约为多少?解 (1)频率依次为:0.03,0.09,0.13,0.16,0.26,0.20,0.07,0.04,0.02,1.00. (2)频率分布直方图如图所示(3)数据落在[10.95,11.35)范围的频率为 0.13+0.16+0.26+0.20=0.75.12.某赛季甲、乙两名篮球运动员每场比赛得分情况如下:甲的得分:12,15,24,25,31,31,36,36,37,39,44,49,50; 乙的得分:8,13,14,16,23,26,28,33,38,39,59.(1)制作茎叶图,并对两名运动员的成绩进行比较;(2)计算上述两组数据的平均数和方差,并比较两名运动员的成绩和稳定性;(3)能否说明甲的成绩一定比乙好,为什么?解(1)制作茎叶图如下:从茎叶图上可看出,甲运动员发挥比较稳定,总体得分情况比乙好.(2)x甲=33,2甲s≈199.09,∴x甲>x乙, 2甲s<2乙s,s≈127.23,x乙=27,2乙∴甲运动员总体水平比乙好,发挥比乙稳定.(3)不能说甲的水平一定比乙好,因为上述是甲、乙某赛季的得分情况,用样本估计总体也有一定的偶然性,并不能说一定准确反映总体情况.§11.3 变量间的相关关系基础自测1.下列关系中,是相关关系的为()①学生的学习态度与学习成绩之间的关系;②教师的执教水平与学生的学习成绩之间的关系;③学生的身高与学生的学习成绩之间的关系;④家庭的经济条件与学生的学习成绩之间的关系.A.B.C.D.答案A2.为了考察两个变量x、y之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l1和l2.已知在两人的试验中发现变量x的观测数据的平均值恰好相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是()A.直线l1,l2有交点(s,t)B.直线l1,l2相交,但是交点未必是(s,t)C.直线l1,l2由于斜率相等,所以必定平行D.直线l1,l2必定重合答案A3.下列有关线性回归的说法,不正确的是()A.相关关系的两个变量不一定是因果关系B.散点图能直观地反映数据的相关程度C.回归直线最能代表线性相关的两个变量之间的关系。
高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
滚动检测二第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2021·浏阳联考)设全集U =R ,A ={x |2x (x-2)<1},B ={x |y =ln(1-x )},则图中阴影部分表示的集合为( )A .{x |x ≥1}B .{x |x ≤1}C .{x |0<x ≤1}D .{x |1≤x <2}2.已知f (x )=⎩⎪⎨⎪⎧cos πx ,x ≤0,f (x -1)+1,x >0,则f (43)+f (-43)的值为( )A.12 B .-12C .-1D .1 3.(2021·湖北荆州中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax +1,x ≥1,ax 2+x +1,x <1,则-2≤a ≤1是f (x )在R 上单调递增的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.设f (x )=|2-x 2|,若0<a <b 且f (a )=f (b ),则a +b 的取值范围是( ) A .(0,2) B .(0,2) C .(0,4) D .(0,22)5.已知函数f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=ln(x +1),则函数f (x )的大致图像为( )6.对于R 上可导的任意函数f (x ),若满足1-xf ′(x )≤0,则必有( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)≥2f (1)7.(2021·渭南质检)已知函数f (x )满足f (-x )=f (x )和f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=1-x ,则关于x 的方程f (x )=(13)x 在x ∈[0,4]上解的个数是( )A .5B .4C .3D .28.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)9.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<010.当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]11.已知定义在R 上的函数f (x )满足f (x )=-f (x +32),且f (1)=2,则f (2 017)等于( )A .-1B .2C .-2 D.312.(2021·济源模拟)函数f (x )的定义域为A ,若当x 1,x 2∈A 且f (x 1)=f (x 2)时,总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1 (x ∈R )是单函数.给出下列结论:①函数f (x )=x 2(x ∈R )是单函数;②指数函数f (x )=2x (x ∈R )是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2);④在定义域上具有单调性的函数确定是单函数. 其中正确结论的个数是( ) A .3 B .2 C .1 D .0 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知函数f (x )=|log 2x |,正实数m 、n 满足m <n ,且f (m )=f (n ),若f (x )在区间[m 2,n ]上的最大值为2,则m ,n 的值分别为________.14.(2021·百色模拟)已知a ∈R ,函数f (x )=e x +a ·e -x 的导函数y =f ′(x )是奇函数,若曲线y =f (x )的一条切线的斜率为32,则切点的横坐标为________.15.(2021·江西省五校协作体高三期中)下列四个命题: ①存在x ∈(0,+∞),(12)x >(13)x ;②存在x ∈(0,+∞),log 2x <log 3x ; ③任意x ∈(0,+∞),(12)x >log 12x ;④任意x ∈(0,13),(12)x <log 13x .其中正确命题的序号是________.16.(2021·宜昌一模)定义域为R 的偶函数f (x )满足对任意x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (|x |+1)在(0,+∞)上至少有三个零点,则a 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021·黄冈中学月考)若二次函数f (x )=ax 2+bx +c (a ,b ,c ∈R )满足f (x +1)-f (x )=4x +1,且f (0)=3.(1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>6x +m 恒成立,求实数m 的取值范围.18.(12分)已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ⊆B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∁U A 及A ∩(∁U B ).19.(12分)定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时的解析式为f (x )=14x -a2x (a ∈R ).(1)写出f (x )在(0,1]上的解析式; (2)求f (x )在(0,1]上的最大值.20.(12分)(2021·广东阳东一中模拟)已知函数f (x )=ax +x ln|x +b |是奇函数,且图像在点(e ,f (e))处的切线斜率为3(e 为自然对数的底数). (1)求实数a 、b 的值;(2)若k ∈Z ,且k <f (x )x -1对任意x >1恒成立,求k 的最大值.21.(12分)(2021·惠州二调)已知函数f (x )=ax -ln(1+x 2). (1)当a =45时,求函数f (x )在(0,+∞)上的极值;(2)证明:当x >0时,ln(1+x 2)<x ;(3)证明:(1+124)(1+134)…(1+1n 4)<e(n ∈N +,n ≥2,e 为自然对数的底数).22.(12分)(2021·课标全国Ⅱ)设函数f (x )=e mx +x 2-mx . (1)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x 1,x 2∈[-1,1],都有|f (x 1)-f (x 2)|≤e -1,求m 的取值范围.答案解析1.D [由于图中阴影部分表示的集合为A ∩(∁U B ),由题意可知A ={x |0<x <2},B ={x |x <1},所以A ∩(∁U B )={x |0<x <2}∩{x |x ≥1}={x |1≤x <2}.故选D.] 2.D 3.B [函数f (x )=x 2+ax +1在[1,+∞)上单调递增,则a ≥-2,函数f (x )=ax 2+x +1在(-∞,1)上单调递增, 则-12≤a ≤0.而函数f (x )=⎩⎪⎨⎪⎧x 2+ax +1,x ≥1,ax 2+x +1,x <1在R 上单调递增,则-12≤a ≤0,故选B.]4.D [∵f (a )=f (b ),且0<a <b , ∴a <2<b ,由|2-a 2|=|2-b 2|, 得a 2+b 2=4.由(a +b )2≤2(a 2+b 2), 易知a +b ≤22(当且仅当a =b 时取等号), 又0<a <b ,故0<a +b <2 2.] 5.C6.A [当x <1时,f ′(x )<0,此时函数f (x )递减, 当x >1时,f ′(x )>0,此时函数f (x )递增,即当x =1时,函数f (x )取得微小值同时也取得最小值f (1), 所以f (0)>f (1),f (2)>f (1), 则f (0)+f (2)>2f (1).故选A.]7.A [由于f (-x )=f (x ),故f (x )为偶函数;由于f (x +2)=f (x ),故T =2.作出f (x )在[0,4]上的图像如图所示,再作出g (x )=(13)x 的图像,可知f (x )和g (x )在[0,4]上有5个交点,即方程f (x )=(13)x 在[0,4]上解的个数为5,故选A.]8.D [f ′(x )=k -1x ,由已知得f ′(x )≥0在x ∈(1,+∞)上恒成立,故k ≥1x 在(1,+∞)上恒成立.由于x >1,所以0<1x<1,故k 的取值范围是[1,+∞).] 9.D 10.C11.B [∵f (x )=-f (x +32),∴f (x +3)=f [(x +32)+32]=-f (x +32)=f (x ).∴f (x )是以3为周期的周期函数, 则f (2 017)=f (672×3+1)=f (1)=2.]12.A [由单函数的定义可知,函数值相同则自变量也必需相同.依题意可得①不正确,②正确,③正确,④正确.] 13.12,2 解析 f (x )=|log 2x |=⎩⎪⎨⎪⎧log 2x ,x ≥1,-log 2x ,0<x <1,依据f (m )=f (n )及f (x )的单调性, 知0<m <1,n >1,又f (x )在[m 2,n ]上的最大值为2,故f (m 2)=2, 易得n =2,m =12.14.ln 2解析 由题意可得,f ′(x )=e x -ae x 是奇函数,∴f ′(0)=1-a =0,∴a =1,f (x )=e x +1e x ,f ′(x )=e x -1e x ,∵曲线y =f (x )在(x ,y )的一条切线的斜率是32,∴32=e x -1e x ,解方程可得e x =2,∴x =ln 2. 15.①②④解析 ①存在x ∈(0,+∞),(12)x >(13)x 是真命题,如x =2,14>19成立;②存在x ∈(0,+∞),log 2x <log 3x 是真命题,如x =12,log 212=-1,log 312>log 313=-1,即存在x ∈(0,+∞),log 2x <log 3x ; ③任意x ∈(0,+∞),(12)x >log 12x 是假命题,如x =12,log 1212=1>(12)12;④任意x ∈(0,13),(12)x <log 13x 是真命题,由于任意x ∈(0,13),(12)13<(12)x <1,log 13x >1.16.(0,33) 解析 ∵f (x +2)=f (x )-f (1),且f (x )是定义域为R 的偶函数, 令x =-1可得f (-1+2)=f (-1)-f (1), 又f (-1)=f (1),可得f (1)=0,f (x +2)=f (x ),∴f (x )是周期为2的偶函数. 当x ∈[2,3]时,f (x )=-2x 2+12x -18=-2(x -3)2,函数f (x )的图像是开口向下、顶点为(3,0)的抛物线.∵函数y =f (x )-log a (|x |+1)在(0,+∞)上至少有三个零点,令g (x )=log a (|x |+1), 则f (x )的图像和g (x )的图像至少有3个交点.作出函数的图像,如图所示,∵f (x )≤0,∴g (x )≤0,可得0<a <1.要使函数y =f (x )-log a (|x |+1)在(0,+∞)上至少有三个零点, 则有g (2)>f (2),即log a (2+1)>f (2)=-2, ∴log a 3>-2,∴3<1a 2,解得-33<a <33.又∵0<a <1,∴0<a <33. 17.解 (1)由f (0)=3,得c =3. ∴f (x )=ax 2+bx +3. 又f (x +1)-f (x )=4x +1,∴a (x +1)2+b (x +1)+3-(ax 2+bx +3)=4x +1, 即2ax +a +b =4x +1,∴⎩⎪⎨⎪⎧ 2a =4,a +b =1,∴⎩⎪⎨⎪⎧a =2,b =-1.∴f (x )=2x 2-x +3.(2)f (x )>6x +m 等价于2x 2-x +3>6x +m , 即2x 2-7x +3>m 在[-1,1]上恒成立, 令g (x )=2x 2-7x +3,x ∈[-1,1], 则g (x )min =g (1)=-2, ∴m <-2. 18.解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}.所以,这个函数的定义域是{x|x≤3}∩{x|x>-2}={x|-2<x≤3}.即A={x|-2<x≤3}.(2)由于A={x|-2<x≤3},B={x|x<a}且A⊆B,所以a>3.(3)由于U={x|x≤4},A={x|-2<x≤3},所以∁U A=(-∞,-2]∪(3,4].由于a=-1,所以B={x|x<-1},所以∁U B=[-1,4],所以A∩∁U B=[-1,3].19.解(1)设x∈(0,1],则-x∈[-1,0),f(-x)=14-x -a2-x=4x-a·2x,又由于函数f(x)为奇函数,所以f(x)=-f(-x)=a·2x-4x,x∈(0,1].(2)由于f(x)=a·2x-4x,x∈(0,1],令t=2x,t∈(1,2],所以g(t)=at-t2=-(t-a2)2+a24,当a2≤1,即a≤2时,g(t)<g(1)=a-1,此时f(x)无最大值;当1<a2<2,即2<a<4时,g(t)max=g(a2)=a24;当a2≥2,即a≥4时,g(t)max=g(2)=2a-4.综上所述,当a≤2时,f(x)无最大值,当2<a<4时,f(x)的最大值为a24,当a≥4时,f(x)的最大值为2a-4.20.解(1)由f(x)=ax+x ln|x+b|=x(a+ln|x+b|)是奇函数,则y=a+ln|x+b|为偶函数,∴b=0.又x>0时,f(x)=ax+x ln x,∴f′(x)=a+1+ln x,∵f′(e)=3,∴a=1.(2)当x>1时,令g(x)=f(x)x-1=x+x ln xx-1,∴g′(x)=x-2-ln x(x-1)2,令h(x)=x-2-ln x,∴h′(x)=1-1x=x-1x>0,∴y=h(x)在(1,+∞)上是增函数,∴h(1)=-1<0,h(3)=1-ln 3<0,h(4)=2-ln 4>0,∴存在x0∈(3,4),使得h(x0)=0,则x∈(1,x0),h(x)<0,g′(x)<0,y=g(x)为减函数.x∈(x0,+∞),h(x)>0,g′(x)>0,y=g(x)为增函数.∴g(x)min=g(x0)=x0+x0ln x0x0-1=x0.∴k<x0,又x0∈(3,4),k∈Z,∴k max=3.21.(1)解当a=45时,f(x)=45x-ln(1+x2),∴f′(x)=45-2x1+x2=4x2-10x+45(1+x2).x,f′(x),f(x)变化如下表:∴f 极大值=f (12)=25-ln 54,f 微小值=f (2)=85-ln 5.(2)证明 令g (x )=x -ln(1+x 2), 则g ′(x )=1-2x1+x 2=(x -1)21+x 2≥0.∴g (x )在(0,+∞)上为增函数,∴g (x )>g (0)=0, ∴ln(1+x 2)<x .(3)证明 由(2)知ln(1+x 2)<x ,令x =1n 2,得ln(1+1n 4)<1n 2<1n (n -1)=1n -1-1n,∴ln(1+124)+ln(1+134)+…+ln(1+1n 4)<1-12+12-13+13-14+…+1n -1-1n=1-1n<1,∴(1+124)(1+134)…(1+1n 4)<e.22.(1)证明 f ′(x )=m (e mx -1)+2x .若m ≥0,则当x ∈(-∞,0)时,e mx -1≤0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1≥0,f ′(x )>0.若m <0,则当x ∈(-∞,0)时,e mx -1>0,f ′(x )<0; 当x ∈(0,+∞)时,e mx -1<0,f ′(x )>0. 所以,f (x )在(-∞,0)单调递减, 在(0,+∞)单调递增.(2)解 由(1)知,对任意的m ,f (x )在[-1,0]上单调递减,在[0,1]上单调递增,故f (x )在x =0处取得最小值.所以对于任意x 1,x 2∈[-1,1],|f (x 1)-f (x 2)|≤e -1的充要条件是⎩⎪⎨⎪⎧f (1)-f (0)≤e -1,f (-1)-f (0)≤e -1,即⎩⎪⎨⎪⎧e m-m ≤e -1,e -m +m ≤e -1.①设函数g (t )=e t -t -e +1,则g ′(t )=e t -1. 当t <0时,g ′(t )<0;当t >0时,g ′(t )>0.故g (t )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 又g (1)=0,g (-1)=e -1+2-e <0,故当t ∈[-1,1]时,g (t )≤0. 当m ∈[-1,1]时,g (m )≤0,g (-m )≤0, 即①式成立;当m >1时,由g (t )的单调性, 得g (m )>0,即e m -m >e -1;当m <-1时,g (-m )>0,即e -m +m >e -1. 综上,m 的取值范围是[-1,1].。
高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
单元检测十 统计与统计案例第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为规范学校办学,省训练厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名同学,现将该班同学随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应为( ) A .13 B .19 C .20 D .512.从N 个编号中抽取n 个号码入样,若接受系统抽样方法进行抽取,则分段间隔应为( ) A.Nn B .n C .[N n]D .[Nn]+13.已知一组数据:a 1,a 2,a 3,a 4,a 5,a 6,a 7构成公差为d 的等差数列,且这组数据的方差等于1,则公差d 等于( ) A .±14B .±12C .±128D .无法求解4.高二其次学期期中考试,依据甲、乙两个班级同学数学考试成果优秀和不优秀统计后,得到如下列联表: 班级与成果列联表优秀 不优秀 总计 甲班 11 34 45 乙班 8 37 45 总计197190则随机变量χ2的值约为( )A .0.600B .0.828C .2.712D .6.0045.从某项综合力气测试中抽取100人的成果,统计如下表,则这100人成果的标准差为( )分数 5 4 3 2 1 人数2010303010A. 3 B .3 C.2105 D.856.如图是一次选秀节目上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的平均数为85,则a 2+b 2的最小值是( )A .24B .32C .36D .487.(2022·重庆)已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y =0.4x +2.3 B .y =2x -2.4 C .y =-2x +9.5D .y =-0.3x +4.48.某校为了争辩同学的性别和对待某一活动的态度(支持和不支持)的关系,运用2×2列联表进行独立性检验,经计算χ2=7.069,则所得到的统计学结论是:有多大的把握认为“同学性别与支持该活动有关系.”( ) 附:P (χ2≥k 0)0.100 0.050 0.025 0.010 0.001 k 02.7063.8415.0246.63510.828A.0.1% B .1% C .99%D .99.9%9.一个频率分布表(样本容量为30)不当心被损坏了一部分(如图),只记得样本中数据在[20,60)上的频率为0.8,则估量样本分别在[40,50),[50,60)上的数据个数可能是( )A .7和6B .6和9C .8和9D .9和1010.对四组数据进行统计,获得图所示的散点图,关于其相关系数的比较,正确的是( )A .r 2<r 4<0<r 3<r 1B .r 4<r 2<0<r 1<r 3C .r 4<r 2<0<r 3<r 1D .r 2<r 4<0<r 1<r 311.(2021·驻马店模拟)中心电视台为了调查近三年的春晚节目中各类节目的受欢迎程度,用分层抽样的方法,从2011年至2021年春晚的50个歌舞类节目,40个戏曲类节目,30个小品类节目中抽取样本进行调查,若样本中的歌舞类和戏曲类节目共有27个,则样本容量为( ) A .36 B .35 C .32 D .30 12.(2021·蚌埠模拟)给出以下命题: ①若p 或q 为假命题,则p 与q 均为假命题;②对具有线性相关关系的变量x ,y 有一组观测数据(x i ,y i ) (i =1,2,…,8),其线性回归方程是y =13x +a ,且x 1+x 2+x 3+…+x 8=2(y 1+y 2+y 3+…+y 8)=6,则实数a =14;③对于分类变量X 与Y 的随机变量χ2来说,χ2越小,“X 与Y 有关联”的把握程度越大; ④已知x -12-x ≥0,则函数f (x )=2x +1x 的最小值为16.其中真命题的个数为( ) A .0 B .1 C .2 D .3 第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.从某中学高一班级中随机抽取100名同学,将他们的成果(单位:分)数据绘制成频率分布直方图(如图).则这100名同学成果的平均数,中位数分别为________.14.某企业三月中旬生产A 、B 、C 三种产品共3 000件,依据分层抽样的结果,该企业统计员制作了如下的统计表格:产品类别 A B C 产品数量(件) 1 300 样本容量(件)130由于不当心,表格中A 、C 产品的有关数据已被污染看不清楚,统计员记得A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数量是________件.15.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:时间x 1 2 3 4 5 命中率y0.40.50.60.60.4小李这5天的平均投篮命中率为________;用线性回归分析的方法,猜想小李该月6号打6小时篮球的投篮命中率为________.16.关于统计数据的分析,有以下几个结论: ①一组数不行能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样; ④一组数据的方差确定是正数;⑤如图是随机抽取的200辆汽车通过某一段大路时的时速频率分布直方图,依据这个直方图,可以得到时速在[50,60)的汽车大约是60辆,则这五种说法中错误的是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)(2021·济南模拟)从某高校高三班级800名男生中随机抽取50名同学测量其身高,据测量,被测同学的身高全部在155 cm 到195 cm 之间,将测量结果按如下方式分成8组:第一组[155,160),其次组[160,165),…,第八组[190,195],下图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第七组与第六组的人数差恰好为第八组与第七组的人数差.求下列频率分布表中所标字母的值,并补充完成频率分布直方图.频率分布表:分组频数频率频率/组距…………[180,185)x y z[185,190)m n p…………18.(12分)(2021·江西八所重点中学联考)“双节”期间,高速大路车辆较多,某调查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50辆就抽取一辆的抽样方法抽取40名驾驶员进行询问调查,将他们在某段高速大路的车速(km/h)分成六段:[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如图所示的频率分布直方图.(1)求这40辆小型汽车车速的众数和中位数的估量值;(2)若从车速在[60,70)内的车辆中任抽取2辆,求车速在[65,70)内的车辆恰有一辆的概率.19.(12分)(2022·课标全国Ⅱ)某地区2007年至2021年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120222021年份代号t1234567人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(1)求y关于t的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2021年该地区农村居民家庭人均纯收入的变化状况,并猜想该地区2021年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估量公式分别为:b=∑i=1n(t i-t)(y i-y)∑i=1n(t i-t)2,a=y-b t.20.(12分)为使同学更好地了解中华民族宏大复兴的历史学问,某校组织了一次以“我的梦,中国梦”为主题的学问竞赛,每班选25名同学参与竞赛,成果分为A,B,C,D四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将某班级的一班和二班的成果整理并绘制成统计图:请依据以上供应的信息解答下列问题:(1)把一班竞赛成果统计图补充完整;(2)写出下表中a,b,c的值.平均数(分)中位数(分)众数(分)一班a b90二班87.680c(3)①从平均数和中位数方面来比较一班和二班的成果;②从平均数和众数方面来比较一班和二班的成果;③从B级以上(包括B级)的人数方面来比较一班和二班的成果.21.(12分)某个体服装店经营某种服装,一周内获纯利y(元)与该周每天销售这种服装的件数x之间的一组数据如下:已知:∑7i =1x 2i =280,∑7i =1y 2i =45 309,∑i =1x i y i =3 487. (1)求x ,y ;(2)推断纯利润y 与每天销售件数x 之间是否线性相关,假如线性相关,求出线性回归方程.22.(12分)(2021·沈阳质量监测二)在一次数学测验后,班级学委对选答题的选题状况进行统计,如下表:(1)以得到如下2×2列联表:(2)在原统计结果中,假如不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈,已知这名学委和两名数学课代表都在选做“不等式选讲”的同学中. (i)求在这名学委被选中的条件下,两名数学课代表也被选中的概率; (ii)记抽取到数学课代表的人数为X ,求X 的分布列及均值EX . 下面临界值表仅供参考:(参考公式:χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ))答案解析1.C [抽样间隔为46-33=13,故另一位同学的编号为7+13=20,选C.] 2.C3.B [这组数据的平均数为a 1+a 2+a 3+a 4+a 5+a 6+a 77=7a 47=a 4.又由于这组数据的方差等于1,所以17[(a 1-a 4)2+(a 2-a 4)2+(a 3-a 4)2+(a 4-a 4)2+(a 5-a 4)2+(a 6-a 4)2+(a 7-a 4)2]=(-3d )2+(-2d )2+(-d )2+0+(d )2+(2d )2+(3d )27=1.即4d 2=1, 解得d =±12.]4.A [由题意知a =11,b =34,c =8,d =37,n =90, 则χ2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )的值约为0.600,故选A.]5.C [x =20×5+10×4+30×3+30×2+10×1100=3,s =1100[20×(5-3)2+10×(4-3)2+30×(3-3)2+30×(2-3)2+10×(1-3)2] =1100(80+10+30+40)= 160100=41010=2105.] 6.B [依据题意,得4+a +6+b +75=5,得a +b =8.方法一 由b =8-a ,得a 2+b 2=a 2+(8-a )2=2a 2-16a +64, 其中a ,b 满足0≤a ≤9,0≤b ≤9, 所以0≤a ≤9,0≤8-a ≤9, 即0≤a ≤8且a 是整数,设函数f (a )=2a 2-16a +64,分析知当a =4时, f (a )取得最小值32,所以a 2+b 2的最小值是32.故选B.方法二 由a +b =8,且a ,b ≥0, 得8≥2ab ,故ab ≤16,则a 2+b 2=(a +b )2-2ab ≥64-32=32, 当且仅当a =b =4时等号成立, 所以a 2+b 2的最小值是32.]7.A [由于变量x 和y 正相关,则回归直线的斜率为正,故可以排解选项C 和D.由于样本点的中心在回归直线上,把点(3,3.5)分别代入选项A 和B 中的直线方程进行检验,可以排解B ,故选A.]8.C [由于7.069与附表中的6.635最接近,所以得到的统计学结论是:有1-0.010=0.99=99%的把握认为“同学性别与支持该活动有关系”,选C.] 9.B [因样本中数据在[20,60)上的频率为0.8, 则样本中数据在[20,60)上的频数为30×0.8=24. 又由于样本中数据在[20,40)上的频数为4+5=9, 所以样本在[40,60)上的数据的个数为24-9=15. 由选项知B 符合.]10.A [易知题中图(1)与图(3)是正相关,图(2)与图(4)是负相关,且图(1)与图(2)中的样本点集中分布在一条直线四周,则r 2<r 4<0<r 3<r 1.]11.A [设从30个小品类节目中抽取x 个,则有x 30=2750+40,解得x =9.则27+9=36,所以样本容量为36.]12.B [①正确.②中a =18,所以②不正确.③中χ2越小,“X 与Y 有关联”的把握程度越小,所以③不正确.由x -12-x ≥0可得1≤x <2,由于f (x )=2x +1x ≥22=4,当且仅当x =1时取等号,所以④不正确.]13.125,124解析 由图可知(a +a -0.005)×10=1-(0.010+0.015+0.030)×10,解得a =0.025, 则x =105×0.1+115×0.3+125×0.25+135×0.2+145×0.15=125. 中位数在120~130之间,设为x ,则0.01×10+0.03×10+0.025×(x -120)=0.5,解得x =124. 14.800解析 设C 产品的数量为x ,C 产品的样本容量为a , 则A 产品的数量为1 700-x , A 产品的样本容量为10+a ,由分层抽样的定义可知:1 700-x a +10=x a =1 300130,∴x =800.15.0.5 0.53解析 平均投篮命中率y =15(0.4+0.5+0.6+0.6+0.4)=0.5,而x =3.∑i =15(x i -x )(y i -y )=(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)=0.1,∑i =15(x i -x )2=(-2)2+(-1)2+02+12+22=10,于是b =0.01,a =y -b x =0.47,∴y =0.01x +0.47,令x =6,得y =0.53. 16.①③④解析 一组数中可以有两个众数,故①错误;依据方差的计算法可知②正确;③属于简洁随机抽样,错误;④错误,由于方差可以是零;⑤正确.17.解 由频率分布直方图可知前五组的频率和是 (0.008+0.016+0.04+0.04+0.06)×5=0.82, 第八组的频率是0.008×5=0.04,所以第六、七组的频率和是1-0.82-0.04=0.14,所以第八组的人数为50×0.04=2,第六、七组的总人数为50×0.14=7. 由已知得x +m =7,m -x =2-m , 解得x =4,m =3.所以y =0.08,n =0.06,z =0.016,p =0.012.补充完成频率分布直方图如图所示.18.解 (1)众数的估量值为77.5,设中位数的估量值为x ,则0.01×5+0.02×5+0.04×5+0.06×(x -75)=0.5,解得x =77.5,即中位数的估量值为77.5.(2)从题图中可知,车速在[60,65)内的车辆数为0.01×5×40=2,车速在[65,70)内的车辆数为0.02×5×40=4,记车速在[60,65)内的两辆车为a ,b ,车速在[65,70)内的四辆车为c ,d ,e ,f ,则全部基本大事有 (a ,b ),(a ,c ),(a ,d ),(a ,e ),(a ,f ), (b ,c ),(b ,d ),(b ,e ),(b ,f ), (c ,d ),(c ,e ),(c ,f ), (d ,e ),(d ,f ), (e ,f ), 共15个,其中车速在[65,70)内的车辆恰有一辆的大事有:(a ,c ),(a ,d ),(a ,e ),(a ,f ),(b ,c ),(b ,d ),(b ,e ),(b ,f ),共8个.所以若从车速在[60,70)内的车辆中任抽取2辆,则车速在[65,70)内的车辆恰有一辆的概率为P =815.19.解 (1)由所给数据计算得t =17(1+2+3+4+5+6+7)=4,y =17(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑i =17(t i -t )2=9+4+1+0+1+4+9=28,∑i =17(t i -t )(y i -y )=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,b =∑i =17(t i -t )(y i -y )∑i =17(t i -t )2=1428=0.5, a =y -bt =4.3-0.5×4=2.3, 所求线性回归方程为 y =0.5t +2.3.(2)由(1)知,b ^=0.5>0,故2007年至2021年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2021年的年份代号t =9代入(1)中的回归方程,得y =0.5×9+2.3=6.8,故猜想该地区2021年农村居民家庭人均纯收入为6.8千元. 20.解 (1)25-6-12-5=2(人).(2)a =87.6,b =90,c =100.(3)①一班和二班平均数相等,一班的中位数大于二班的中位数,故一班的成果好于二班. ②一班和二班平均数相等,一班的众数小于二班的众数,故二班的成果好于一班; ③B 级以上(包括B 级)一班18人,二班12人, 故一班的成果好于二班.21.解 (1)x =17(3+4+5+6+7+8+9)=6,y =17(66+69+73+81+89+90+91)≈79.86.(2)依据已知∑7i =1x 2i =280,∑7i =1y 2i =45 309, ∑7i =1x i y i =3 487,得相关系数r =3 487-7×6×79.86(280-7×62)(45 309-7×79.862)≈0.973.由于0.973>0.75,所以纯利润y 与每天销售件数x 之间具有显著的线性相关关系. 利用已知数据可求得线性回归方程为 y =4.75x +51.36. 22.解 (1)由题意得 χ2=42×(16×12-8×6)224×18×20×22=25255≈4.582>3.841. 所以,据此统计有95%的把握认为选做“几何类”或“代数类”与性别有关. (2)由题意可知在“不等式选讲”的18位同学中,要选取3位同学. (i)令大事A 为“这名学委被选中”;大事B 为“两名数学课代表被选中”, 则P (A ∩B )=C 33C 318,P (A )=C 217C 318.所以P (B |A )=P (A ∩B )P (A )=C 33C 217=217×16=1136.另解:令大事A 为“在这名学委被选中的条件下,两名数学课代表也被选中”,则P (A )=C 22C 217=217×16=1136.(ii)由题意知X 的可能取值有0,1,2, 依题意P (X =0)=C 316C 318=3551,P (X =1)=C 216C 12C 318=517,P (X =2)=C 116C 22C 318=151.从而X 的分布列为于是EX =0×3551+1×517+2×151=1751=13.。
单元滚动检测十一统计与统计案例考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.3.本次考试时间120分钟,满分150分.4.请在密封线内作答,保持试卷清洁完整.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.检测机构对某地区农场选送的有机蔬菜进行农药残留量平安检测,其中供应黄瓜、花菜、小白菜、芹菜这4种蔬菜的分别有40家、10家、30家、20家,现从中抽取一个容量为20的样本进行农药残留量平安检测.若接受分层抽样的方法抽取样本,则抽取的供应花菜与芹菜这2种蔬菜的共有()A.4家B.5家C.6家D.7家2.(2022·武汉4月调研)已知某赛季甲、乙两名篮球运动员每场竞赛的得分茎叶图如图所示,则甲、乙两人得分的中位数之和为()A.62 B.63 C.64 D.653.(2022·大连双基测试)已知x、y的取值如表所示:x 23 4y 64 5假如y与x线性相关,且线性回归方程为y=bx+132,则b的值为()A.-12 B.12C.-110 D.1104.(2022·石家庄正定中学第一次月考)某健康协会从某地区睡前看手机的居民中随机选取了n人进行调查,得到如图所示的频率分布直方图.已知睡前看手机时间不低于20分钟的有243人,则n的值为()A.180 B.270 C.360 D.4505.(2022·沈阳质检)某班级有男生20人,女生30人,从中抽取10人作为样本,恰好抽到4个男生,6个女生.给出下列命题:(1)该抽样可能是简洁随机抽样;(2)该抽样肯定不是系统抽样;(3)该抽样中每个女生被抽到的概率大于每个男生被抽到的概率.其中真命题的个数为()A.0 B.1 C.2 D.36.(2022·石家庄一模)某工科院校对A、B两个专业的男、女生人数进行调查统计,得到以下表格:专业A 专业B 合计女生12男生4684合计50100假如认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过()A.0.005 B.0.01 C.0.025 D.0.05注:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(χ2≥k0)0.100.050.0250.0100.005k0 2.706 3.841 5.024 6.6357.8797.(2021·福建)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:收入x(万元)8.28.610.011.311.9支出y(万元) 6.27.58.08.59.8依据上表可得线性回归方程y=bx+a,其中b=0.76,a=y-b x.据此估量,该社区一户年收入为15万元家庭的年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元8.在对两个变量x,y进行线性回归分析时,有下列步骤:①对所求出的线性回归方程作出解释;②收集数据(x i,y i),i=1,2,…,n;③求线性回归方程; ④求相关系数;⑤依据所搜集的数据绘制散点图.假如依据可行性要求能够作出变量x ,y 具有线性相关结论,则在下列操作挨次中正确的是( ) A .①②⑤③④ B .③②④⑤① C .②④③①⑤D .②⑤④③①9.某校有1 400名考生参与市模拟考试,现实行分层抽样的方法从文、理科考生中分别抽取20份和50份数学试卷进行成果分析,得到下面的成果频数分布表:分数分组 0,30) 30,60) 60,90) 90,120) 120,150]文科频数 2 4 8 3 3 理科频数3712208由此可估量理科考生的及格人数(90分为及格分数线)大约为( ) A .400 B .560 C .600 D .64010.(2022·陕西质检二)一个频率分布表(样本容量为30)不当心被损坏了一部分,只记得样本中数据在20,60)上的频率为0.8,则估量样本在40,50),50,60)内的数据个数共为( )分组 10,20) 20,30) 30,40) 频数345A.19 B .17 C .16 D .1511.(2022·赣州模拟)为了考察两个变量x 和y 之间的线性相关性,甲、乙两位同学各自独立地做10次和15次试验,并且利用线性回归方法,求得回归直线分别为l 1和l 2,已知两个人在试验中发觉对变量x 的观测数据的平均数都是s ,对变量y 的观测数据的平均数都是t ,那么下列说法正确的是( ) A .l 1和l 2必定平行 B .l 1与l 2必定重合C .l 1和l 2肯定有公共点(s ,t )D .l 1与l 2相交,但交点不肯定是(s ,t )12.(2022·武汉4月调研)已知某产品连续4个月的广告费x i (千元)与销售额y i (万元)(i =1,2,3,4)满足∑i =14x i =18,∑i =14y i =14.若广告费用x 和销售额y 之间具有线性相关关系,且线性回归方程为y =0.8x +a ,那么广告费用为6千元时,可猜测的销售额为( )A .3.5万元B .4.7万元C .4.9万元D .6.5万元第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.(2022·福建厦门双十中学热身)某学校共有同学1 200名,各班级男、女生人数如表所示,已知在全校同学中随机抽取1名,抽到八班级女生的概率为0.18,现用分层抽样的方法在全校抽取200名同学,则在九班级应抽取________名同学.班级 同学 七班级 八班级 九班级 女生 204 a b 男生198222c14.(2022·合肥其次次质检)甲、乙两位同学5次考试的数学成果(单位:分),统计结果如表:同学 次数第一次 其次次 第三次 第四次 第五次 甲 77 81 83 80 79 乙8990929188则成果较为稳定的那位同学成果的方差为________.15.(2022·黑龙江哈尔滨六中月考)对某同学的六次数学测试成果(满分100分)进行统计,作出的茎叶图如图所示,给出关于该同学数学成果的以下说法:①中位数为84;②众数为85; ③平均数为85;④极差为12. 其中,正确说法的序号是________. 16.关于统计数据的分析,有以下几个结论: ①一组数不行能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③调查剧院中观众观看感受时,从50排(每排人数相同)中任意抽取一排的人进行调查,属于分层抽样;④一组数据的方差肯定是正数;⑤如图是随机抽取的200辆汽车通过某一段大路时的时速频率分布直方图,依据这个直方图,可以得到时速在50,60)的汽车大约是60辆.其中说法错误的有________.(填序号)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. (10分)已知某校高三理科班同学的化学与物理的水平测试成果抽样统计如下表,若抽取同学n人,成果分为A(优秀),B(良好),C(及格)三个等级,设x,y分别表示化学成果与物理成果.例如:表中化学成果为B等级的共有20+18+4=42(人),已知x与y均为B等级的概率是0.18.(1)求抽取的同学人数;(2)设在该样本中,化学成果优秀率是30%,求a,b 的值;(3)在物理成果为C等级的同学中,已知a≥10,b≥8,求化学成果为A等级的人数比C等级的人数少的概率.x人数yA B CA 720 5B 918 6C a 4b18.(12分)(2022·黑龙江双鸭山一中期末)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)求出y关于x的线性回归方程y=bx+a,并在坐标系中画出回归直线;(2)试猜测加工10个零件需要的时间.(注:442122111,,52.5,54ni iii i ini iiix y nx yb a y bx x y xnxx====-==-==-∑∑∑∑442122111,,52.5,54ni iii i ini iiix y nx yb a y bx x y xnxx====-==-==-∑∑∑∑)零件的个数x(个)234 5加工的时间y(小时) 2.534 4.519.(12分)为使同学更好地了解中华民族宏大复兴的历史学问,某校组织了一次以“我的梦,中国梦”为主题的学问竞赛,每班选25名同学参与竞赛,成果分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分,学校将某班级的一班和二班的成果整理并绘制成统计图:平均数(分)中位数(分)众数(分)一班 a b 90二班87.680c请依据以上供应的信息解答下列问题:(1)把一班竞赛成果统计图补充完整;(2)写出下表中a,b,c的值;(3)请从以下给出的三个方面中任选一个对这次竞赛成果的结果进行分析:①从平均数和中位数方面来比较一班和二班的成果;②从平均数和众数方面来比较一班和二班的成果;③从B级以上(包括B级)的人数方面来比较一班和二班的成果.20.(12分)为争辩同学宠爱打篮球是否与性别有关,某爱好小组对本班48名同学进行了问卷调查,得到了如下2×2列联表:若在全班48名同学中随机抽取一人为宠爱打篮球的同学的概率为23.(1)请将上面2×2列联表补充完整(不用写计算过程);(2)你是否有95%的把握认为宠爱打篮球与性别有关?请说明理由;(3)若从女同学中抽取2人进一步调查,设其中宠爱打篮球的女同学人数为X,求X的分布列与均值.附:χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)21.(12分)学校进行“文明环保,从我做起”征文竞赛,现有甲、乙两班各上交30篇作文,现将两班的各30篇作文的成果(单位:分)统计如下:甲班:等级成果(S)频数A 90<S≤100xB 80<S≤9015C 70<S≤8010D S≤70 3合计30乙班:依据上面供应的信息回答下列问题:(1)表中x=________,甲班同学成果的中位数落在等级________中,扇形统计图中等级D部分的扇形圆心角n 的度数是________.(2)现学校打算从两班全部A等级成果的同学中随机抽取2名同学参与市级征文竞赛,求抽取到两名同学恰好来自同一班级的概率(请列树状图或列表求解).22. (12分)我国是世界上严峻缺水的国家之一,城市缺水问题较为突出.某市为了节省生活用水,方案在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分依据平价收费,超过a的部分依据议价收费).为了较为合理地确定出这个标准,通过抽样获得了100位居民某年的月均用水量(单位:吨),制作了频率分布直方图,(1)由于某种缘由频率分布直方图部分数据丢失,请在图中将其补充完整;(2)用样本估量总体,假如期望80%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由;(3)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(2)中最低标准的人数为X,求X的分布列和均值.答案解析1.C依题意可知,抽取的供应花菜与芹菜这2种蔬菜的共有10+2040+10+30+20×20=310×20=6(家).]2.B利用中位数的概念求解.由茎叶图可得甲得分的中位数为26+282=27,乙得分的中位数为36,则中位数之和为63,故选B.]3.A将x=3,y=5代入到y=bx+132,得b=-12.]4.B依题意,睡前看手机不低于20分钟的频率为1-0.01×10=0.9,故n=2430.9=270,故选B.]5.B明显,该抽样可能是简洁随机抽样,故(1)正确;实行系统抽样时,抽到的样本中男生的人数与女生的人数无关,故该抽样可以是系统抽样,故(2)错误;每个女生被抽到的概率与每个男生被抽到的概率均为15,故(3)错误.]6.D易知,专业B女生人数为4,专业A男生人数为38,即a=12,b=4,c=38,d=46,可得χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)≈4.762>3.841,所以假如认为工科院校中“性别”与“专业”有关,那么犯错误的概率不会超过0.05.]7.B先求a,再利用线性回归方程猜测.由题意知,x=8.2+8.6+10.0+11.3+11.95=10,y=6.2+7.5+8.0+8.5+7.85=8,∴a=8-0.76×10=0.4,∴当x=15时,y=0.76×15+0.4=11.8(万元).] 8.D对两个变量进行回归分析时,首先收集数据(x i,y i),i=1,2,…,n;依据所搜集的数据绘制散点图.观看散点图的外形,推断线性关系的强弱,求相关系数,写出线性回归方程,最终对所求出的线性回归方程作出解释.故正确挨次是②⑤④③①.]9.B∵1 400×5070=1 000,1 000×20+850=560,∴估量理科考生有560人及格.]10.D由题意得样本数据在20,60)内的频数为30×0.8=24,则样本在40,50)和50,60)内的数据个数之和为24-4-5=15,故选D.]11.C留意到回归直线必经过样本中心点,故选C.]12.B由题意可得x=4.5,y=3.5,代入线性回归方程得a=-0.1,则y=0.8x-0.1,当x=6千元时,y=4.8-0.1=4.7万元,故选B.]13.60解析a1 200=0.18,解得a=216,则b+c=1 200-(204+198+216+222)=360,设在九班级抽取x名同学,则x200=3601 200,解得x=60.14.2解析依题意得x甲=15(77+81+83+80+79)=80,s2甲=15(2×32+2×12)=4;x乙=15(89+90+92+91+88)=90;s2乙=15(2×22+2×12)=2.因此成果较为稳定的那位同学成果的方差为2. 15.①③解析由茎叶图知,六次数学测试成果分别为78,83,83,85,91,90,可得中位数为83+852=84,故①正确;众数为83,故②错误;平均数为85,故③正确;极差为91-78=13,故④错误.16.①③④解析一组数中可以有两个众数,故①错误;依据方差的计算法可知②正确;③属于简洁随机抽样,故③错误;④错误,由于方差可以是零;⑤正确.17.解(1)由题意可知18n=0.18,得n =100.故抽取的同学人数是100.(2)由(1)知n=100,所以7+9+a100=0.3,故a=14,而7+9+a+20+18+4+5+6+b=100,故b=17.(3)由(2)易知a+b=31,且a≥10,b≥8,满足条件的(a,b)有(10,21),(11,20),(12,19),…,(23,8),共14组,其中b>a的有6组,则所求概率为P=614=37.18.解(1)由表中数据得x=14×(2+3+4+5)=3.5,y=14×(2.5+3+4+4.5)=3.5,∴b=52.5-4×3.5×3.554-4×3.52=0.7,a=3.5-0.7×3.5=1.05.∴y=0.7x+1.05.回归直线如图所示.(2)将x=10代入线性回归方程,得y=0.7×10+1.05=8.05,故猜测加工10个零件需要8.05小时.19.解(1)一班成果等级为C的人数为25-6-12-5=2. (2)a=87.6,b=90,c=100.(3)①一班和二班平均数相等,一班的中位数大于二班的中位数,故一班的成果好于二班;②一班和二班平均数相等,一班的众数小于二班的众数,故二班的成果好于一班;③B级以上(包括B级)一班18人,二班12人,故一班的成果好于二班.20.解(1)2×2列联表补充如下:宠爱打篮球不宠爱打篮球合计男生22628女生101020合计321648(2)由χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d)=48×(22×10-10×6)232×16×28×20≈4.286,由于4.286>3.841,所以有95%的把握认为宠爱打篮球与性别有关.(3)宠爱打篮球的女生人数X的可能取值为0,1,2,则P(X=0)=C010C210C220=938,P(X=1)=C110C110C220=1019,P(X=2)=C210C010C220=938,故X的分布列为X 01 2P9381019938所以EX=0×9 38+1×1019+2×938=1.21.(1)2B36解析x=30-15-10-3=2;中位数落在等级B中;等级D部分的扇形圆心角n=360°×330=36°.(2)解乙班A等级的人数是30×10%=3,甲班的两个人用甲1,甲2表示,乙班的三个人用乙1,乙2,乙3表示.共有20种状况,则抽取到的两名同学恰好来自同一班级的概率是820=25.22.解(1)补充频率分布直方图如图.(2)月均用水量的最低标准应定为2.5吨.由于样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估量总体,所以要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.(3)依题意可知,居民月均用水量不超过(2)中最低标准的概率是45,则X~B(3,45),P(X=0)=(15)3=1125,P(X=1)=C13×45×(15)2=12125,P(X=2)=C23(45)2(15)=48125,P(X=3)=(45)3=64125,故X的分布列为X 012 3P1125121254812564125EX=3×45=125.。
高三单元滚动检测卷·数学考生留意:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上。
3.本次考试时间120分钟,满分150分。
滚动检测七第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.假如复数z =2-1+i ,则( )A .|z |=2B .z 的实部为1C .z 的虚部为-1D .z 的共轭复数为1+i2.等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果为( )A .1-14nB .1-12nC.23⎝⎛⎭⎫1-14n D.23⎝⎛⎭⎫1-12n 3.已知争辩x 与y 之间关系的一组数据如下表所示,则y 对x 的线性回归方程y =bx +a 必过点( )x 0 1 2 3 y1357A.(1,2)B.⎝⎛⎭⎫32,0 C .(2,2) D.⎝⎛⎭⎫32,4 4.设M 是△ABC 边BC 上任意一点,且2AN →=NM →,若AN →=λAB →+μAC →,则λ+μ的值为( ) A.14 B.13 C.12D .1 5.下面图(1)是某学习小组同学数学考试成果的茎叶图,1号到16号同学的成果依次为A 1、A 2、…、A 16,图(2)是统计茎叶图中成果在确定范围内的同学人数的算法框图,那么该算法框图输出的结果是( )A .6B .10C .91D .926.某同学在纸上画出如下若干个三角形:△▲△△▲△△△▲△△△△▲△△△△△▲……,若依此规律,得到一系列的三角形,则在前2 015个三角形中共有▲的个数是( )A .64B .63C .62D .61 7.已知集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧ 2x +y -4≤0x +y ≥0x -y ≥0表示的平面区域为Ω,若在区域Ω内任取一点P (x ,y ),则点P 的坐标满足不等式x 2+y 2≤2的概率为( ) A.π32 B.3π16 C.π16 D.3π328.已知函数f (x )=e x +x ,对于曲线y =f (x )上横坐标成等差数列的三个点A ,B ,C ,给出以下推断: ①△ABC 确定是钝角三角形; ②△ABC 可能是直角三角形; ③△ABC 可能是等腰三角形; ④△ABC 不行能是等腰三角形. 其中,正确的推断是( ) A .①③ B .①④ C .②③D .②④9.(2021·洛阳统考)设实轴长为2的等轴双曲线的焦点为F 1,F 2,以F 1F 2为直径的圆交双曲线于A 、B 、C 、D 四点,则|F 1A |+|F 1B |+|F 1C |+|F 1D |等于( ) A .4 3 B .23 C. 3D.3210.某班有60名同学,一次考试后数学成果ξ~N (110,102),若P (100≤ξ≤110)=0.35,则估量该班同学数学成果在120分以上的人数为( ) A .10B .9C .8D .711.设n =ʃπ204sin x d x ,则二项式(x -1x )n 的开放式的常数项是( )A .12B .6C .4D .112.(2021·济源模拟)已知F 1,F 2是椭圆的左,右焦点,若椭圆上存在点P ,使得PF 1⊥PF 2,则椭圆的离心率的取值范围是( ) A.⎣⎡⎭⎫55,1 B.⎣⎡⎭⎫22,1 C.⎝⎛⎦⎤0,55D.⎝⎛⎦⎤0,22第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左,右焦点分别为F 1,F 2,点P 在双曲线的右支上,且|PF 1|=2 016|PF 2|,则此双曲线的离心率e 的最大值为________.14.给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是函数f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.经探究发觉:任何一个三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)都有“拐点”,且该“拐点”也为该函数的对称中心.若f (x )=x 3-32x 2+12x +1,则f ⎝⎛⎭⎫12 016+f ⎝⎛⎭⎫22 016+…+f ⎝⎛⎭⎫2 0152 016=________. 15.已知集合M =N ={0,1,2,3},定义函数f :M →N ,且点A (0,f (0)),B (i ,f (i )),C (i +1,f (i +1))(其中i =1,2).若△ABC 的内切圆圆心为I ,且IA →+IC →=λIB →(λ∈R ),则满足条件的△ABC 有________个.16.以下给出的是计算12+14+16+…+120的值的一个算法框图,其中推断框内应填入的条件是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)(2021·北京西城区二模)已知函数f (x )=sin(ωx +φ)+3cos(ωx +φ)的部分图像如图所示,其中ω>0,φ∈⎝⎛⎭⎫-π2,π2. (1)求ω与φ的值;(2)若f ⎝⎛⎭⎫α4=455,求2sin α-sin 2α2sin α+sin 2α的值.18.(12分)已知函数f (x )=ax -ln(1+x 2). (1)当a =45时,求函数f (x )在(0,+∞)上的极值;(2)证明:当x >0时,ln(1+x 2)<x ;(3)证明:⎝⎛⎭⎫1+124⎝⎛⎭⎫1+134…⎝⎛⎭⎫1+1n 4<e (n ∈N +,n ≥2,e 为自然对数的底数).19.(12分)数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列{S n +λn +λ2n }为等差数列?若存在,求出λ的值;若不存在,请说明理由.20.(12分)(2021·咸阳模拟)如图,四边形PCBM 是直角梯形,∠PCB =90°,PM ∥BC ,PM =1,BC =2.又AC =1,∠ACB =120°,AB ⊥PC ,直线AM 与直线PC 所成的角为60°. (1)求证:PC ⊥AC ;(2)求平面MAC 与平面ABC 夹角的余弦值; (3)求点B 到平面MAC 的距离.21.(12分)某产品按行业生产标准分成6个等级,等级系数ξ依次为1,2,3,4,5,6,按行业规定产品的等级系数ξ≥5的为一等品,3≤ξ<5的为二等品,ξ<3的为三等品.若某工厂生产的产品均符合行业标准,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:1 3 1 1 6 3 3 4 12 4 1 2 53 1 2 6 3 1 6 1 2 1 2 2 5 34 5(1)以此30件产品的样原来估量该厂产品的总体状况,试分别求出该厂生产的产品为一等品、二等品和三等品的概率;(2)已知该厂生产一件产品的利润y (单位:元)与产品的等级系数ξ的关系式为y =⎩⎪⎨⎪⎧1,ξ<3,2,3≤ξ<5,4,ξ≥5若从该厂大量产品中任取两件,其利润记为Z ,求Z 的分布列和均值.22.(12分)(2021·合肥质检)焦点分别为F 1,F 2的椭圆C :x 2a 2+y 2b 2=1 (a >b >0)过点M (2,1),且△MF 2F 1的面积为3.(1)求椭圆C 的方程;(2)过点(0,3)作直线l ,直线l 交椭圆C 于不同的两点A ,B ,求直线l 倾斜角θ的取值范围;(3)在(2)的条件下,使得|MA |=|MB |成立的直线l 是否存在?若存在,求直线l 的方程;若不存在,请说明理由.答案解析1.C [由z =2-1+i =2(-1-i )(-1+i )(-1-i )=-1-i ,所以|z |=2,z 的实部为-1,z 的虚部为-1,z 的共轭复数为-1+i.]2.C [依题意,知a n =2n -1,1a n a n +1=12n -1·2n =122n -1=12×14n -1,所以T n =12⎣⎡⎦⎤1-⎝⎛⎭⎫14n 1-14=23⎣⎡⎦⎤1-⎝⎛⎭⎫14n ,选C.] 3.D 4.B5.B [由算法框图可知,其统计的是数学成果大于等于90的人数,所以由茎叶图知:数学成果大于等于90的人数为10,因此输出结果为10.故选B.]6.C [前n 个▲中所包含的全部三角形的个数是1+2+3+…+n +n =n (n +3)2,由n (n +3)2=2 015,解得n =62.]7.D 8.B 9.A10.B [∵考试的成果ξ听从正态分布N (110,102). ∴考试的成果ξ关于ξ=110对称, ∵P (100≤ξ≤110)=0.35,∴P (ξ≥120)=P (ξ≤100)=12(1-0.35×2)=0.15,∴该班数学成果在120分以上的人数为0.15×60=9.] 11.B [由定积分得n =-4cos x |π20=4,二项式的通项公式为T r +1=C r 4x 4-r (-1x)r =C r 4(-1)r x4-2r, 由4-2r =0,得r =2,所以常数项为T 3=C 24(-1)2=6,故选B.]12.B [设P (x ,y ),PF 1→=(-c -x ,-y ),PF 2→=(c -x ,-y ),由PF 1⊥PF 2,得PF 1→⊥PF 2→=0,即(-c -x ,-y )·(c -x ,-y )=x 2+y 2-c 2=x 2+b 2⎝⎛⎭⎫1-x 2a 2-c 2=c 2x 2a 2+b 2-c 2=0,∴x 2=a 2(c 2-b 2)c 2≥0,∴c 2-b 2≥0,∴2c 2≥a 2,∴e ≥22.又∵e <1,∴椭圆的离心率e 的取值范围是⎣⎡⎭⎫22,1.] 13.2 0172 015解析 由题意得|PF 1|+|PF 2|≥2c ,|PF 1|-|PF 2|=2a , e ≤|PF 1|+|PF 2||PF 1|-|PF 2|=2 017|PF 2|2 015|PF 2|=2 0172 015. 14.2 015 15.18解析 由IA →+IC →=λIB →(λ∈R )知△ABC 是以B 为顶点的等腰三角形,A 点是4×4的格点中第一列的点.当i =1时,B 点是其次列格点中的点,C 点是第三列格点中的点,此时腰长为2,5,10的△ABC 分别有6个、4个、2个,当i =2时,B 点是第三列格点中的点,C 点是第四列格点中的点,此时腰长为5的△ABC 有6个,如图,△ABC 为其中的一个.综上,满足条件的△ABC 共有18个. 16.i ≤10解析 这是一个循环结构,s =0,n =2,i =1,其中变量i 是计数变量,它应使循环体执行10次,因此条件应是i ≤10.17.解 (1)f (x )=2sin(ωx +φ+π3).设f (x )的最小正周期为T .由图像可得T 2=π4-⎝⎛⎭⎫-π4=π2,所以T =π,ω=2. 由f (0)=2,得sin ⎝⎛⎭⎫φ+π3=1, 由于φ∈⎝⎛⎭⎫-π2,π2,所以φ=π6. (2)f (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由f ⎝⎛⎭⎫α4=2cos α2=455,得cos α2=255, 所以cos α=2cos 2α2-1=35.所以2sin α-sin 2α2sin α+sin 2α=2sin α(1-cos α)2sin α(1+cos α)=1-cos α1+cos α=14. 18.(1)解 当a =45时,f (x )=45x -ln(1+x 2),∴f ′(x )=45-2x1+x 2=4x 2-10x +45(1+x 2).x ,f ′(x ),f (x )变化如下表:x (0,12)12 (12,2) 2 (2,+∞)f ′(x ) +0 -0 +f (x )极大值微小值∴f (x )极大值=f ⎝⎛⎭⎫12=25-ln 54,f (x )微小值=f (2)=85-ln 5. (2)证明 令g (x )=x -ln(1+x 2),则g ′(x )=1-2x 1+x 2=(x -1)21+x 2≥0.∴g (x )在(0,+∞)上为增函数,∴g (x )>g (0)=0, ∴ln(1+x 2)<x . (3)证明 由(2)知ln(1+x 2)<x ,令x =1n 2,得ln ⎝⎛⎭⎫1+1n 4<1n 2<1n (n -1)=1n -1-1n , ∴ln ⎝⎛⎭⎫1+124+ln ⎝⎛⎭⎫1+134+…+ln ⎝⎛⎭⎫1+1n 4 <1-12+12-13+13-14+…+1n -1-1n =1-1n <1,∴⎝⎛⎭⎫1+124⎝⎛⎭⎫1+134…⎝⎛⎭⎫1+1n 4<e. 19.解 (1)由题意,可得2a n +1+S n -2=0.① 当n ≥2时,2a n +S n -1-2=0.② ①-②,得2a n +1-2a n +a n =0,所以a n +1a n =12(n ≥2).由于a 1=1,2a 2+a 1=2,所以a 2=12.所以{a n }是首项为1,公比为12的等比数列.所以数列{a n }的通项公式为a n =(12)n -1.(2)由(1)知,S n =1-12n1-12=2-12n -1.若{S n +λn +λ2n }为等差数列,则S 1+λ+λ2,S 2+2λ+λ22,S 3+3λ+λ23成等差数列,则2(S 2+9λ4)=S 1+3λ2+S 3+25λ8,即2(32+9λ4)=1+3λ2+74+25λ8,解得λ=2.又λ=2时,S n +2n +22n =2n +2,明显{2n +2}成等差数列,故存在实数λ=2, 使得数列{S n +λn +λ2n }为等差数列.20.(1)证明 ∵PC ⊥BC ,PC ⊥AB ,∴PC ⊥平面ABC ,又AC 平面ABC ,∴PC ⊥AC .(2)解 在平面ABC 内,过点C 作BC 的垂线,并建立空间直角坐标系如图所示.设P (0,0,z ),则C (0,0,0),A ⎝⎛⎭⎫32,-12,0,M (0,1,z ),B (0,2,0), ∴CP →=(0,0,z ),AM →=(0,1,z )-⎝⎛⎭⎫32,-12,0=⎝⎛⎭⎫-32,32,z .∵cos 60°=|cos 〈AM →,CP →〉|=⎪⎪⎪⎪⎪⎪AM →·CP →|AM →||CP →|=z 23+z 2·|z |,且z >0,∴zz 2+3=12,得z =1,∴AM →=⎝⎛⎭⎫-32,32,1.设平面MAC 的一个法向量为n =(x ,y,1), 则由⎩⎪⎨⎪⎧n ·AM →=0,n ·CA →=0,得⎩⎨⎧-32x +32y +1=0,32x -12y =0,得⎩⎪⎨⎪⎧x =-33,y =-1,∴n =⎝⎛⎭⎫-33,-1,1.∵平面ABC 的一个法向量为CP →=(0,0,1). ∴cos 〈n ,CP →〉=n ·CP →|n ||CP →|=217.∴平面MAC 与平面ABC 夹角的余弦值为217. (3)解 点B 到平面MAC 的距离d =⎪⎪⎪⎪⎪⎪CB→·n |n |=2217.21.解 (1)由题意在抽取的30件产品中一等品有6件,二等品有9件,三等品有15件, 故该厂生产一等品概率为P 1=630=15,二等品概率为P 2=930=310,三等品概率为P 3=1530=12.(2)由题意得:Z 的可能取值为2,3,4,5,6,8,而从该厂大量产品中任取两件取得一等品、二等品、三等品是相互独立的,故:P (Z =2)=12×12=14,P (Z =3)=2×12×310=310,P (Z =4)=310×310=9100,P (Z =5)=2×12×15=15,P (Z =6)=2×310×15=325,P (Z =8)=15×15=125.∴Z 的分布列为∴EZ =2×14+3×310+4×9100+5×15+6×325+8×125=3.8.22.解 (1)设F 1(-c,0),F 2(c,0),由M (2,1), △MF 2F 1的面积为3,得12·2c ·1=3⇒c =3,故椭圆C 的方程为x 2a 2+y 2a 2-3=1,又椭圆C 过点M (2,1), ∴4a 2+1a 2-3=1且a 2>3, 于是(a 2)2-8a 2+12=0且a 2>3,∴a 2=6, 故椭圆C 的方程为x 26+y 23=1.(2)易知θ=π2时,符合题意;当θ≠π2时,可设直线l 方程为y =kx +3,联立方程⎩⎪⎨⎪⎧y =kx +3,x 26+y 23=1得(1+2k 2)x 2+12kx +12=0,由Δ=144k 2-4×12×(1+2k 2)>0, 解得k ∈(-∞,-1)∪(1,+∞),∴θ∈⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π2,3π4,综上知θ∈⎝⎛⎭⎫π4,3π4. (3)易知,当直线l 与x 轴垂直时,不合题意. 假设存在直线l 满足条件,记A (x 1,y 1),B (x 2,y 2).若M ,A ,B 三点共线,留意到|MA |=|MB |,故A ,B 两点重合于点M ,这与A ,B 是椭圆C 上不同的两点冲突.故M ,A ,B 三点不共线,取AB 的中点D ,连接MD ,知MD ⊥AB .由方程(1+2k 2)x 2+12kx +12=0知x 1+x 2=-12k1+2k 2, 则y 1+y 2=k (x 1+x 2)+6=-12k 21+2k 2+6=61+2k 2.于是,点D 坐标为⎝ ⎛⎭⎪⎫-6k 1+2k 2,31+2k 2, 由MD ⊥AB 得31+2k 2-1-6k1+2k 2-2=-1k (k >1或k <-1),得k 2+k +1=0,此方程无实数解,所以满足条件的直线不存在.。
一、单项选择题1.为了解某大学的学生是否喜欢体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:男女总计喜欢a b 73不喜欢c 25总计74则a -b -c 等于()A .7B .8C .9D .102.(2023·黄冈中学模拟)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 互不相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =13x -5上,则这组样本数据的样本相关系数为()A .-13B.13C .-1D .13.(2023·洛阳模拟)为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据:药物流感患流感未患流感服用218未服用812根据表中数据,计算χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),若由此认为“该药物预防流感有效果”,则该结论有多大把握()A .95%B .90%C .99%D .99.5%4.根据如表样本数据:X 23456Y42.5-0.5-2-3得到的线性回归方程为Y =b ^X +a ^,则()A.a ^>0,b ^>0 B.a ^>0,b ^<0C.a ^<0,b ^>0D.a ^<0,b ^<05.某中学调查了高一年级学生的选科倾向,随机抽取300人,其中选考物理的有220人,选考历史的有80人,统计各选科人数如表,则下列说法正确的是()选择科目选考类型思想政治地理化学生物物理类80100145115历史类50453035A.物理类的学生中选择政治的比例比历史类的学生中选择政治的比例高B .物理类的学生中选择地理的比例比历史类的学生中选择地理的比例高C .选择生物与选考类别无关D .有99%的把握认为选择生物与选考类别有关6.某市物价局派人对5个商场某商品同一天的销售量及其价格进行调查,得到该商品的售价X (元)和销售量Y (件)之间的一组数据如表所示:价格X (元)9095100105110销售量Y (件)1110865用最小二乘法求得Y 关于X 的线性回归方程是Y =-0.32X +a ^,样本相关系数r =-0.9923,则下列说法不正确的是()A .变量X 与Y 负相关且相关性很强B.a ^=40C .当x =85时,y 的估计值为15D .对应点(105,6)的偏差为-0.4二、多项选择题7.(2024·厦门模拟)为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素是否对本校学生体育锻炼的经常性有影响,随机抽取了300名学生,对他们是否经常锻炼的情况进行了调查,调查发现经常锻炼人数是不经常锻炼人数的2倍,绘制其等高堆积条形图,如图所示,则()A .参与调查的男生中经常锻炼的人数比不经常锻炼的人数多B .从参与调查的学生中任取一人,已知该学生为女生,则该学生经常锻炼的概率为57C .有90%的把握认为性别因素影响学生体育锻炼的经常性D .假设调查人数为600人,经常锻炼人数与不经常锻炼人数的比例不变,统计得到的等高堆积条形图也不变,有95%的把握认为性别因素影响学生体育锻炼的经常性附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .8.沃柑,因其口感甜柔、低酸爽口,且营养成分高,成为大家喜欢的水果之一,目前主要种植于我国广西、云南、四川、湖南等地.得益于物流的快速发展,沃柑的销量大幅增长,同时刺激了当地农民种植沃柑的热情.根据对广西某地的沃柑种植面积情况进行调查,得到统计表如表所示:年份T 20182019202020212022年份代码X 12345种植面积Y /万亩814152028附:①样本相关系数r =错误!;②在线性回归方程Y =b ^X +a ^中,b ^=错误!=错误!,a ^=y -b ^x ;2240≈47.33.根据此表,下列结论正确的是()A .该地区这5年沃柑的种植面积的方差为212B .种植面积y 与年份代码x 的样本相关系数约为0.972(精确到0.001)C .Y 关于X 的线性回归方程为Y =4.6X +3.2D .预测该地区沃柑种植面积最早在2027年能突破40万亩三、填空题9.(2023·辽宁实验中学模拟)为了比较甲、乙、丙、丁四组数据的线性相关性的强弱,小明分别计算了甲、乙、丙、丁四组数据的样本相关系数,其数值分别为-0.95,-0.87,0.76,0.92,则这四组数据中线性相关性最强的是________组数据.10.(2024·安庆模拟)对于数据组(x i ,y i )(i =1,2,…,n ),如果由线性回归方程得到的对应自变量x i 的估计值是y ^i ,那么将y i -y ^i 称为对应点(x i ,y i )的偏差.某商场为了给一种新商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如表所示的数据:单价X /元8.28.48.68.8销量Y /件848378m根据表中的数据,得到销量Y (单位:件)与单价X (单位:元)之间的线性回归方程为Y =-16X +a ,据计算,样本点(8.4,83)处的偏差为1.4,则m =__________.11.在某病毒疫苗的研发过程中,需要利用基因编辑小鼠进行动物实验.现随机抽取100只基因编辑小鼠对该病毒疫苗进行实验,得到如下2×2列联表(部分数据缺失):被某病毒感染未被某病毒感染总计注射疫苗1050未注射疫苗3050总计30100计算可知,有________的把握认为“给基因编辑小鼠注射该种疫苗能起到预防该病毒感染的效果”.附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .12.为了考察某种药物预防疾病的效果,进行动物试验,得到如下列联表:药物疾病未患病患病总计服用a 50-a 50未服用80-a a -3050总计8020100若在本次考察中得出“有99%的把握认为药物有效”的结论,则a 的最小值为________.(其中a ≥40且a ∈N +)(参考数据:6.635≈2.58,10.828≈3.29)附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .四、解答题13.(2021·全国甲卷)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如表:一级品二级品总计甲机床15050200乙机床12080200总计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)是否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:χ2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .14.(2023·绵阳模拟)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.如图是2018-2022年移动物联网连接数W 与年份代码T 的散点图,其中年份2018-2022对应的T 分别为1~5.(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;(2)求W 关于T 的经验回归方程,并预测2024年移动物联网连接数.附:样本相关系数r =错误!,b ^=错误!,a ^=w -b ^t ,1740≈41.7.§9.3统计案例1.C 2.D 3.A4.B5.C6.C[由线性回归方程可得变量X 与Y 负相关,且由样本相关系数|r |=0.9923,可知相关性很强,故A 正确;由表中数据可得x =15×(90+95+100+105+110)=100,y =15×(11+10+8+6+5)=8,故回归直线过点(100,8),故8=-0.32×100+a ^,解得a ^=40,故B 正确;当x =85时,y =-0.32×85+40=12.8,故C 错误;对应点(105,6)的偏差为6-(-0.32×105+40)=-0.4,故D 正确.]7.ABD[由题意知经常锻炼人数是不经常锻炼人数的2倍,故经常锻炼人数为200人,不经常锻炼人数为100人,故男生中经常锻炼的人数为200×0.5=100(人),不经常锻炼的人数为100×0.6=60(人),故男生中经常锻炼的人数比不经常锻炼的人数多,故A 正确;女生中经常锻炼的人数为200×0.5=100(人),不经常锻炼的人数为100×0.4=40(人),故从参与调查的学生中任取一人,已知该学生为女生,则该学生经常锻炼的概率为100100+40=57,故B 正确;由题意结合男、女生中经常锻炼和不经常锻炼的人数,可得列联表如表所示:经常锻炼不经常锻炼总计男10060160女10040140总计200100300则χ2=300×(100×40-60×100)2140×160×200×100≈2.679<2.706,故没有90%的把握认为性别因素影响学生体育锻炼的经常性,故C 错误;由题意可得经常锻炼不经常锻炼总计男200120320女20080280总计400200600则此时χ2=600×(200×80-200×120)2400×200×320×280≈5.357>3.841,所以有95%的把握认为性别因素影响学生体育锻炼的经常性,故D 正确.]8.BC[根据题意,得y =8+14+15+20+285=17,s 2y =15×[(-9)2+(-3)2+(-2)2+32+112]=44.8,故A 错误;由题意得x =1+2+3+4+55=3,错误!i y i =1×8+2×14+3×15+4×20+5×28=301,错误!2i =12+22+32+42+52=55,错误!2i =82+142+152+202+282=1669,所以r =错误!=错误!=301-5×3×1755-45×1669-1445≈4647.33≈0.972,故B 正确;因为b ^=错误!=301-5×3×1755-45=4.6,a ^=y -b ^x =17-4.6×3=3.2,所以Y 关于X 的线性回归方程为Y =4.6X +3.2,故C 正确;令4.6x +3.2≥40,得x ≥8,所以最小的整数为8,2017+8=2025,所以该地区沃柑种植面积最早在2025年能突破40万亩,故D 错误.]9.甲10.7511.0.0512.46解析由题意可得χ2=100[a (a -30)-(50-a )(80-a )]250×50×80×20≥6.635,整理得(100a -4000)2≥502×42×6.635,所以100a -4000≥200× 6.635≈200×2.58=516或100a -4000≤-200× 6.635≈-200×2.58=-516,解得a ≥45.16或a ≤34.84,又因为a ≥40且a ∈N +,所以a ≥46,所以a 的最小值为46.13.解(1)根据题表中数据知,甲机床生产的产品中一级品的频率是150200=0.75,乙机床生产的产品中一级品的频率是120200=0.6.(2)根据题表中的数据可得χ2=400×(150×80-120×50)2200×200×270×130=40039≈10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.14.解(1)由图可知,两个变量线性相关.由已知条件可得t =1+2+3+4+55=3,w =7+12+13+19+245=15,所以错误!(t i -t )(w i -w )=16+3+0+4+18=41,错误!=64+9+4+16+81=174,错误!=4+1+0+1+4=10,所以样本相关系数r =411740≈4141.7≈0.98,因此,两个变量具有很强的线性相关性.(2)结合(1)可知,b ^=4110=4.1,a ^=w -b ^·t =15-4.1×3=2.7,所以线性回归方程是W =4.1T +2.7,当t =7时,有w =4.1×7+2.7=31.4,即预测2024年移动物联网连接数为31.4亿户.。
高三单元转动检测卷· 数学考生注意:1.本试卷分第Ⅰ卷(选择题 )和第Ⅱ卷 (非选择题 )两部分,共 4 页。
2.答卷前,考生务必用蓝、黑色笔迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应地点上。
3.本次考试时间120 分钟,满分150 分。
单元检测十统计与统计事例第Ⅰ卷一、选择题 (本大题共12 小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的)1.为规范学校办学,省教育厅督察组对某所高中进行了抽样检查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为 4 的样本,已知7 号、33 号、 46 号同学在样本中,那么样本中还有一位同学的编号应为()A .13B.19C. 20D.512.从 N个编号中抽取n 个号码入样,若采纳系统抽样方法进行抽取,则分段间隔应为() NA. n B .nN C. [ n ]N D. [ n ] + 13.已知一组数据:a1,a2, a3,a4,a5,a6,a7组成公差为 d 的等差数列,且这组数据的方差等于1,则公差 d 等于 ()1 A .±41 B .±2C.±128D.没法求解4.高二第二学期期中考试,依据甲、乙两个班级学生数学考试成绩优异和不优异统计后,获取以以下联表:班级与成绩列联表优异不优异总计甲班113445乙班83745总计1971902)则随机变量χ的值约为 (A . 0.600B .0.828C. 2.712D. 6.0045.从某项综合能力测试中抽取100 人的成绩,统计以下表,则这 100 人成绩的标准差为()分数54321人数2010303010A.3B. 3 C.2 1058D.56.如图是一次选秀节目上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的均匀数为85,则a2+ b2的最小值是()A .24B .32C. 36D. 487.(2014·庆重 )已知变量x 与y 正有关,且由观察数据算得样本均匀数x = 3,y =3.5,则由该观察数据算得的线性回归方程可能是()A . y= 0.4x +2.3B .y= 2x-2.4C. y=- 2x+ 9.5D. y=- 0.3x+ 4.48.某校为了研究学生的性别和对待某一活动的态度(支持和不支持 )的关系,运用2×2 列联表进行独立性查验,经计算2“学生χ= 7.069,则所获取的统计学结论是:有多大的掌握以为性别与支持该活动有关系.”( )附:2P( χ≥k)0.1000.0500.0250.0100.001k0 2.706 3.841 5.024 6.63510.828A.0.1% B .1%C. 99%D. 99.9%9.一个频次散布表(样本容量为30)不当心被破坏了一部分(如图 ),只记得样本中数据在[20,60)上的频次为0.8,则预计样安分别在[40,50) , [50,60) 上的数据个数可能是()A.7和 6 B.6和 9 C.8和 9 D.9和 1010.对四组数据进行统计,获取图所示的散点图,对于其有关系数的比较,正确的选项是()A . r2< r4< 0< r3< r1B .r 4< r2< 0< r1< r3C. r4< r2<0< r3< r1D. r 2< r4< 0<r1< r311.(2015 驻·马店模拟 )中央电视台为了检查近三年的春晚节目中各种节目的受欢迎程度,用分层抽样的方法,从 2011 年至 2013 年春晚的 50 个歌舞类节目,品类节目中抽取样本进行检查,若样本中的歌舞类和戏曲类节目共有40 个戏曲类节目, 30 个小27 个,则样本容量为()A .36B.35C. 32D.3012. (2015·埠模拟蚌)给出以下命题:①若p 或 q 为假命题,则p 与q 均为假命题;②对拥有线性有关关系的变量x, y 有一组观察数据(x i, y i) (i = 1,2,,8),其线性回归方程是 y=1x+ a,且 x1+x2+x3++ x8= 2(y1+ y2+ y3++ y8)= 6,则实数 a=1;3422有关系”的掌握程度越大;③对于分类变量 X 与 Y 的随机变量χ来说,χ越小,“X与 Y④已知x-11的最小值为 16. 2-x≥0,则函数f(x) = 2x+x此中真命题的个数为 ()A .0 B.1 C.2 D.3第Ⅱ卷二、填空题 (本大题共 4 小题,每题 5 分,共 20 分.把答案填在题中横线上)13.从某中学高一年级中随机抽取100 名同学,将他们的成绩(单位:分 )数据绘制成频次分布直方图 (如图 ).则这 100 名学生成绩的均匀数,中位数分别为________.14.某公司三月中旬生产 A 、 B、 C 三种产品共 3 000 件,依据分层抽样的结果,该公司统计员制作了以下的统计表格:产品类型A B C产品数目 (件 ) 1 300样本容量 (件 )130因为不当心,表格中 A 、C 产品的有关数据已被污染看不清楚,统计员记得 A 产品的样本容量比 C 产品的样本容量多 10,依据以上信息,可得 C 产品的数目是 ________件.15.为认识篮球喜好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到 5号每日打篮球时间 x(单位:小时 )与当日投篮命中率 y 之间的关系:时间 x12345命中率 y0.40.50.60.60.4小李这 5 天的均匀投篮命中率为________;用线性回归剖析的方法,展望小李该月6号打 6小时篮球的投篮命中率为________.16.对于统计数据的剖析,有以下几个结论:①一组数不行能有两个众数;②将一组数据中的每个数据都减去同一个数后,方差没有变化;③检查剧院中观众观看感觉时,从50 排 (每排人数同样)中随意抽取一排的人进行检查,属于分层抽样;④一组数据的方差必定是正数;⑤如图是随机抽取的200 辆汽车经过某一段公路时的时速频次散布直方图,依据这个直方图,能够获取时速在[50,60) 的汽车大概是60 辆,则这五种说法中错误的选项是________.三、解答题 (本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤) 17.(10 分)(2015 济·南模拟 )从某高校高三年级800 名男生中随机抽取50 名学生丈量其身高,据丈量,被测学生的身高所有在155 cm 到 195 cm 之间,将丈量结果按以下方式分红8 组:第一组 [155,160) ,第二组 [160,165) ,,第八组 [190,195] ,以下图是按上述分组获取的频次散布直方图的一部分.已知第一组与第八组的人数同样,第七组与第六组的人数差恰巧为第八组与第七组的人数差.求以下频次散布表中所标字母的值,并增补达成频次散布直方图.频次散布表:分组频数频次频次 /组距[180,185)x y z[185,190)m n p18. (12 分 )(2015 江·西八所要点中学联考) “双节”时期,高速公路车辆许多,某检查公司在一服务区从七座以下小型汽车中按进服务区的先后每间隔50 辆就抽取一辆的抽样方法抽取40名驾驶员进行咨询检查,将他们在某段高速公路的车速(km/h) 分红六段: [60,65) , [65,70) ,[70,75) , [75,80) , [80,85) , [85,90] 后获取以下图的频次散布直方图.(1)求这 40 辆小型汽车车速的众数和中位数的预计值;(2)若从车速在 [60,70) 内的车辆中任抽取 2 辆,求车速在 [65,70) 内的车辆恰有一辆的概率.19.(12 分)(2014 课·标全国Ⅱ ) 某地域 2007 年至 2013 年乡村居民家庭人均纯收入 y(单位:千元 )的数据以下表:年份 2007 2008 2009 2010 2011 2012 2013 年份代号 t 1 2 3 4 5 6 7 人均纯收入 y2.93.33.64.44.85.25.9(1) 求 y 对于 t 的线性回归方程;(2) 利用 (1) 中的回归方程,剖析 2007 年至 2013 年该地域乡村居民家庭人均纯收入的变化状况,并展望该地域 2015 年乡村居民家庭人均纯收入.n (t i - t )(y i - y )i =1附:回归直线的斜率和截距的最小二乘预计公式分别为:b =, a = y - bn(t i - t )2i =1t .20.(12 分 )为使学生更好地认识中华民族伟大中兴的历史知识,某校组织了一次以 “我的梦,中国梦 ”为主题的知识比赛,每班选25 名同学参加比赛,成绩分为A ,B ,C ,D 四个等级,此中相应等级的得分挨次记为100 分、 90 分、 80 分、 70 分,学校将某年级的一班和二班的成绩整理并绘制成统计图:请依据以上供给的信息解答以下问题:(1) 把一班比赛成绩统计图增补完好;(2) 写出下表中 a ,b , c 的值 .均匀数 (分 )中位数 (分 )众数 (分)一班 a b 90 二班87.680c(3) 请从以下给出的三个方面中任选一个对此次比赛成绩的结果进行剖析;①从均匀数和中位数方面来比较一班和二班的成绩;②从均匀数和众数方面来比较一班和二班的成绩;③从 B 级以上 (包含 B 级 )的人数方面来比较一班和二班的成绩.21. (12 分 )某个体服饰店经营某种服饰,一周内获纯利y(元 )与该周每日销售这类服饰的件数 x 之间的一组数据以下:x3456789y66697381899091777已知:∑x i2= 280,∑y i2= 45 309,∑x i y i= 3 487.i =1i=1i=1(1)求 x , y ;(2)判断纯收益 y 与每日销售件数 x 之间能否线性有关,假如线性有关,求出线性回归方程.22.(12 分 )(2015 沈·阳质量监测二)在一次数学测试后,班级学委对选答题的选题状况进行统计,以下表:几何证明坐标系与不等式共计选讲参数方程选讲男同学 (人数 )124622女同学 (人数 )081220共计12121842(1)在统计结果中,假如把几何证明选讲和坐标系与参数方程称为几何类,把不等式选讲称为代数类,我们能够获取以下2×2 列联表:几何类代数类共计男同学 (人数 )16622女同学 (人数 )81220共计241842据此统计你能否定为选做“几何类”或“代数类”与性别有关,如有关,你有多大掌握?(2)在原统计结果中,假如不考虑性别要素,按分层抽样的方法从选做不一样选做题的同学中随机选出7 名同学进行会谈,已知这名学委和两名数学课代表都在选做“不等式选讲”的同学中.(i)求在这名学委被选中的条件下,两名数学课代表也被选中的概率;(ii) 记抽取到数学课代表的人数为X ,求 X 的散布列及均值EX.下边对界值表仅供参照:20.150.100.050.0250.0100.0050.001P( χ≥ k)k 2.072 2.706 3.841 5.024 6.6357.87910.8282n(ad- bc)2( 参照公式:χ=(a+b)(c + d)(a+ c)(b+ d))答案分析1. C [ 抽样间隔为 46- 33= 13,故另一位同学的编号为 7+ 13= 20,选 C.]2. C3. B[ 这组数据的均匀数为a 1 +a 2 +a 3 +a 4 +a 5 +a 6 +a 747=7a= a 4.7又因为这组数据的方差等于 1,1 2+ (a 2- a 4) 22 2 222因此 [(a 1- a 4 )+(a 3- a 4) + (a 4- a 4) + (a 5 -a 4)+ (a 6- a 4) +(a 7- a 4) ]7 = (- 3d)2 +(- 2d)2 +(-d)2 +0+ (d) 2+(2d) 2+ (3d)27= 1.即 4d 2= 1,1解得 d = ±2.]4. A [ 由题意知 a = 11, b = 34, c = 8, d = 37, n =90,2n(ad - bc)0.600,则 χ= (a + b)(c +d)(a +c)(b +d) 的值约为 应选 A.]5. C [ x = 20×5+10×4+ 30×3+ 30×2+ 10×1=3,100 s =1[20 ×(5- 3)2+ 10×(4- 3)2+ 30×(3- 3)2 +30×(2- 3)2+ 10×(1-3) 2]100=1160= 410=2 10100(80+10+ 30+ 40)=100 105 .] 6. B[ 依据题意,得 4+ a + 6+ b + 7= 5,得 a + b = 8.5方法一由 b = 8-a ,得 a 2+ b 2= a 2+ (8- a)2= 2a 2- 16a +64,此中 a , b 知足 0≤a ≤9,0 ≤b ,≤9因此 0≤a ≤9,08≤- a ≤9,即 0≤a ≤8且 a 是整数,设函数 f(a)= 2a 2- 16a + 64,剖析知当 a = 4 时,f(a) 获得最小值32,因此 a 2+ b 2 的最小值是 32.应选 B.方法二由 a + b = 8,且 a , b ≥0,得 8≥2ab ,故 ab ≤16,则 a 2+ b 2= (a + b)2- 2ab ≥64- 32=32,当且仅当a= b= 4 时等号建立,因此 a2+ b2的最小值是32.]7. A [ 因为变量 x 和 y 正有关,则回归直线的斜率为正,故能够清除选项 C 和 D.因为样本点的中心在回归直线上,把点(3,3.5) 分别代当选项 A 和 B 中的直线方程进行查验,能够清除 B ,应选 A.]8.C [ 因为 7.069 与附表中的 6.635 最靠近,因此获取的统计学结论是:有1- 0.010=0.99= 99% 的掌握以为“学生性别与支持该活动有关系”,选 C.]9. B [ 因样本中数据在 [20,60) 上的频次为 0.8,则样本中数据在 [20,60) 上的频数为 30×0.8=24.又因为样本中数据在[20,40) 上的频数为 4+ 5= 9,因此样本在 [40,60) 上的数据的个数为 24- 9=15.由选项知 B 切合. ]10.A [ 易知题中图(1)与图 (3) 是正有关,图 (2)与图 (4)是负有关,且图 (1)与图 (2)中的样本点集中散布在一条直线邻近,则r 2< r4< 0< r3< r1.]11. A [ 设从 30 个小品类节目中抽取 x 个,则有x =27,解得 x= 9.则 27+ 9= 36,所3050+40以样本容量为 36.]12,因此②不正确.③中χ越小,“X与 Y 有关系”的掌握程度越12. B [ ①正确.②中 a=8小,因此③不正确.由x- 112= 4,当且仅当 x= 1 时取等2-x≥0可得 1≤ x<2,因为 f(x) = 2x+x≥2号,因此④不正确.]13. 125,124分析由图可知 (a+ a-0.005)×10= 1- (0.010+ 0.015+ 0.030)×10,解得 a= 0.025,则 x = 105×0.1+ 115×0.3+ 125×0.25+ 135×0.2+ 145×0.15= 125.中位数在120~ 130 之间,设为x,则 0.01 ×10+ 0.03 ×10+ 0.025 ×(x-120)=0.5,解得 x= 124.14. 800分析设 C 产品的数目为x, C 产品的样本容量为a,则 A 产品的数目为 1 700- x,A 产品的样本容量为10+ a,由分层抽样的定义可知: 1 700- x= x=1 300,a+ 10a 130∴ x= 800.15. 0.5 0.53分析 均匀投篮命中率1 + 0.5+ 0.6+ 0.6+ 0.4)= 0.5,而 x = 3.y = (0.455 (x i - x )(y i - y )= ( -2) ×(-0.1)+ (- 1) ×0+ 0×0.1+ 1×0.1+ 2×(- 0.1)= 0.1,i = 15(x i - x )2= (- 2)2+ (- 1)2+ 02+ 12+ 22= 10,i =1于是 b = 0.01, a = y - b x = 0.47,∴ y = 0.01x +0.47,令 x = 6,得 y = 0.53.16.①③④分析 一组数中能够有两个众数, 故①错误; 依据方差的计算法可知②正确;③属于简单随机抽样,错误;④错误,因为方差能够是零;⑤正确. 17.解 由频次散布直方图可知前五组的频次和是 (0.008+ 0.016+ 0.04+0.04+ 0.06) ×5= 0.82, 第八组的频次是 0.008 ×5= 0.04, 因此第六、七组的频次和是1- 0.82-0.04= 0.14,因此第八组的人数为 50×0.04= 2,第六、七组的总人数为 50×0.14= 7.由已知得 x + m = 7, m - x = 2- m , 解得 x = 4, m = 3.因此 y = 0.08, n = 0.06, z = 0.016, p = 0.012. 增补达成频次散布直方图以下图.18.解(1)众数的预计值为77.5,设中位数的预计值为0.06 ×(x - 75)= 0.5,解得 x = 77.5,x ,则0.01 ×5+ 0.02×5+ 0.04×5+即中位数的预计值为77.5.(2) 从题图中可知,车速在[60,65) 内的车辆数为 0.01 ×5×40= 2,车速在 [65,70) 内的车辆数为0.02 ×5×40= 4,记车速在[60,65) 内的两辆车为a ,b ,车速在[65,70) 内的四辆车为c ,d ,e ,f ,则所有基本领件有(a ,b) ,(a , c),(a , d), (a , e), (a , f) ,(b , c),(b , d), (b , e), (b , f) ,(c ,d) ,(c , e),(c , f) ,(d , e),(d , f) ,(e ,f) ,共 15个,此中车速在 [65,70) 内的车辆恰有一辆的事件有:(a ,c), (a ,d) ,(a , e), (a , f) , (b , c),(b ,d), (b , e), (b , f) ,共 8 个.因此若从车速在 [60,70) 内的车辆中任抽取 2 辆,则车速在 [65,70) 内的车辆恰有一辆的概率为8P = 15.19.解(1)由所给数据计算得t = 17(1+ 2+3+ 4+ 5+6+ 7)= 4,1y = 7(2.9+ 3.3+ 3.6+ 4.4+ 4.8+5.2+ 5.9)= 4.3,7(t i - t ) 2= 9+ 4+ 1+ 0+1+ 4+ 9=28,i =17(t i - t )(y i - y )= ( - 3) ×(- 1.4) + ( - 2) ×(- 1)+ ( - 1) ×(- 0.7) + 0×0.1+ 1×0.5 + 2×0.9+i =13×1.6= 14,7(t i - t )(y i - y )i =114= 0.5,b ==7(t i - t )228i =1a = y - bt = 4.3- 0.5 ×4=2.3,所求线性回归方程为y = 0.5t + 2.3.^(2) 由 (1)知, b = 0.5>0,故 2007 年至 2013 年该地域乡村居民家庭人均纯收入逐年增添,均匀每年增添 0.5 千元.将 2015 年的年份代号 t = 9 代入 (1)中的回归方程,得y = 0.5 ×9+ 2.3= 6.8,故展望该地域 2015 年乡村居民家庭人均纯收入为6.8 千元.20.解 (1)25-6- 12- 5= 2(人 ).(2)a = 87.6, b = 90, c = 100.(3) ①一班和二班均匀数相等,一班的中位数大于二班的中位数,故一班的成绩好于二班.②一班和二班均匀数相等,一班的众数小于二班的众数,故二班的成绩好于一班;③ B 级以上 (包含 B 级 )一班 18 人,二班 12 人,故一班的成绩好于二班.121.解(1) x =7(3+ 4+ 5+6+ 7+ 8+9)= 6,1y = 7(66+ 69+ 73+ 81+89+ 90+ 91) ≈ 79.86.7 7(2) 依据已知 ∑x i 2= 280, ∑y i 2= 45 309,i =1i =17∑x i y i = 3 487,得有关系数i =1r =3 487- 7×6×79.86≈ 0.973.(280 - 7×62)(45 309 -7×79.862)因为 0.973>0.75 ,因此纯收益 y 与每日销售件数 x 之间拥有明显的线性有关关系.利用已知数据可求得线性回归方程为y = 4.75x + 51.36. 22.解(1)由题意得2=42×(16 ×12- 8×6)2=252χ 24×18×20×22 55 ≈ 4.582>3.841.因此,据此统计有 95%的掌握以为选做 “几何类 ”或 “代数类 ”与性别有关.(2) 由题意可知在 “不等式选讲 ”的 18 位同学中,要选用 3 位同学.(i) 令事件 A 为 “这名学委被选中 ”;事件 B 为 “两名数学课代表被选中 ”,32则 P(A ∩B) =C33, P(A) =C317C 18 C 18.因此 P(B|A) = P(A ∩B ) = C 33 2 =1P(A) 2 = 136.C 17 17×162另解:令事件A 为 “在这名学委被选中的条件下,两名数学课代表也被选中”,则 P(A) = C 2C 17221=17×16=136.(ii) 由题意知 X 的可能取值有 0,1,2,3C1635依题意 P(X =0)= 3 =,215121C16C2C16C2P(X = 1)=C183=17,P(X= 2)=C183=51.进而 X 的散布列为X012P 3551 511751351×51171.于是 EX= 0×++2×==511751513。