2017-2018学年天津市红桥区七年级(上)期中数学试卷(解析版)
- 格式:doc
- 大小:101.00 KB
- 文档页数:11
2017-2018学年天津市红桥区七年级(上)期末数学试卷一、选择题(本大题10小题,每小题2分,共20分)1.(2分)下列各组数中,互为相反数的是()A.3和﹣3B.﹣3和C.﹣3和D.和32.(2分)已知4个数:(﹣1)2018,|﹣2|,﹣(﹣1.5),﹣32,其中正数的个数有()A.1B.2C.3D.43.(2分)长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米4.(2分)如图,下列图形全部属于柱体的是()A.B.C.D.5.(2分)化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣6.(2分)平面上有三个点A,B,C,如果AB=8,AC=5,BC=3,则()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.不能确定7.(2分)如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于()A.30°B.45°C.50°D.60°8.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°9.(2分)下列说法中正确的有()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A.1个B.2个C.3个D.4个10.(2分)某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)3﹣|﹣2|=.12.(3分)“a的3倍与b的相反数的差”用代数式表示为.13.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是14.(3分)已知多项式(m﹣1)x4﹣x n+2x﹣5是三次三项式,则(m+1)n=.15.(3分)如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为度.16.(3分)计算:77°53′26″+33.3°=.17.(3分)数a、b在数轴上的位置如图所示,化简|a+b|﹣b=18.(3分)某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为.三、解答题(本大题6小题,共56分)19.(8分)计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.20.(5分)先化简,再求值:2(a2+ab2)﹣2(a2b﹣1)﹣2ab2+a﹣2,其中a=﹣2,b=2.21.(22分)解下列方程:(1)3(2m﹣1)=5m+2;(2)3(20﹣y)=6y﹣4(y﹣11);(3);(4)=1.22.(5分)已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.解:∵OE是∠COB的平分线,∴∠COB=(理由:).∵∠COE=40°,∴.∵∠AOC=,∴∠AOB=∠AOC+=110°.23.(5分)已知,如图,点C在线段AB上,且AC=8cm,BC=12cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果已知线段AB的长为(a+b)cm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结果,并说明理由.24.(11分)整理一批数据,由一个人单独做需要80小时完成.现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的,假设这些人的效率相同,则先后参与整理这批数据的人数分别有多少?2017-2018学年天津市红桥区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题2分,共20分)1.(2分)下列各组数中,互为相反数的是()A.3和﹣3B.﹣3和C.﹣3和D.和3【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.2.(2分)已知4个数:(﹣1)2018,|﹣2|,﹣(﹣1.5),﹣32,其中正数的个数有()A.1B.2C.3D.4【分析】根据乘方运算法则、绝对值性质、相反数的定义逐一计算即可得出答案.【解答】解:(﹣1)2018=1、|﹣2|=2,﹣(﹣1.5)=1.5,﹣32=﹣9,所以正数有3个,故选:C.【点评】本题主要考查有理数的乘方,解题的关键是熟练掌握有理数乘方运算法则、绝对值性质、相反数的定义.3.(2分)长城总长约为6700000米,用科学记数法表示为()A.67×105米B.6.7×106米C.6.7×107米D.6.7×108米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2分)如图,下列图形全部属于柱体的是()A.B.C.D.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选:C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.5.(2分)化简的结果是()A.﹣7x+B.﹣5x+C.﹣5x+D.﹣5x﹣【分析】本题涉及整式的加减乘法运算、去括号法则.解答时根据每个考点作出回答,然后根据整式的加减运算得出结果.【解答】解:原式=x+﹣6x+=﹣5x+故选:C.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.括号前添负号,括号里的各项要变号.6.(2分)平面上有三个点A,B,C,如果AB=8,AC=5,BC=3,则()A.点C在线段AB上B.点C在线段AB的延长线上C.点C在直线AB外D.不能确定【分析】本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系,再根据正确画出的图形解题.【解答】解:如图:从图中我们可以发现AC+BC=AB,所以点C在线段AB上.故选:A.【点评】考查了直线、射线、线段,在未画图类问题中,正确画图很重要,所以能画图的一定要画图这样才直观形象,便于思维.7.(2分)如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于()A.30°B.45°C.50°D.60°【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选:A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.8.(2分)如图,下列说法中错误的是()A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°【分析】准确的找到对应的角度,关键是射线和南北方向之间的夹角.一一求出角度即可判断正误.【解答】解:A、OA的方向是北偏东45度即东北方向,故正确;B、OB的方向是北偏西60°,故正确;C、OC的方向是南偏西60°,故正确;D、OD的方向是南偏东30°,故错误.故选:D.【点评】主要考查了方位角的运用.会准确的找到所对应的角度是需要掌握的基本能力之一.9.(2分)下列说法中正确的有()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A.1个B.2个C.3个D.4个【分析】依据余角和补角的定义进行计算即可.【解答】解:(1)互余的两个角的和为90°,故(1)错误;(2)同角的补角相等,故(2)错误;(3)设这个角为x,则其余角为(90°﹣x),补角为(180°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,故(3)正确;(4)73°42+16°18′=90°,故(4)正确.故选:B.【点评】本题主要考查的是余角和补角的定义,熟练掌握余角和补角的概念是解题的关键.10.(2分)某市按以下规定收取每月水费:若每月每户不超过20立方米,则每立方米按1.2元收费,若超过20立方米则超过部分每立方米按2元收费、如果某户居民在某月所交水费的平均水价为每立方米1.5元,那么这个月共用多少立方米的水设这个月共用x立方米的水,下列方程正确的是()A.1.2×20+2(x﹣20)=1.5x B.1.2×20+2x=1.5xC.D.2x﹣1.2×20=1.5x【分析】设这个月共用x立方米的水,根据题意用户所缴纳的水费可表示为:1.2×20+2(x ﹣20),同时还可表示为1.5x.进而可得方程,即可得答案.【解答】解:设这个月共用x立方米的水,则用户所缴纳的水费可表示为:1.2×20+2(x﹣20).根据题意有1.2×20+2(x﹣20)=1.5x,故选:A.【点评】解题关键是要读懂题目的意思,本题的等量关系为:用户所缴纳的水费是一定的,根据两种不同的计算方式可列出方程.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)3﹣|﹣2|=1.【分析】先算|﹣2|,再求3与它的差得结果.【解答】解:3﹣|﹣2|=3﹣2=1故答案为:1【点评】本题考查了有理数的减法和绝对值的意义.本题难度不大,注意运算顺序.先算绝对值,再算减法.12.(3分)“a的3倍与b的相反数的差”用代数式表示为3a﹣(﹣b).【分析】首先求出a的3倍为3a,b的相反数为﹣b,再进一步作差即可.【解答】解:3a﹣(﹣b).故答案为:3a﹣(﹣b).【点评】本题考查列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.注意抓住关键词,找到相应的运算顺序.13.(3分)如图,是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是津【分析】根据正方体的特点得出其中上面的和下面的是相对的2个面,即可得出正方体中与“建”字所在的面相对的面上标的字是津.【解答】解:由正方体的展开图特点可得:“建”和“京”相对;“设”和“丽”相对;“美”和“北”相对.故答案为:津.【点评】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.14.(3分)已知多项式(m﹣1)x4﹣x n+2x﹣5是三次三项式,则(m+1)n=8.【分析】根据多项式中次数最高的项的次数叫做多项式的次数;多项式的组成元素的单项式,即多项式的每一项都是一个单项式,单项式的个数就是多项式的项数,如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式进行分析即可.【解答】解:由题意得:m=1,n=3,则(m+1)n=8.故答案为:8【点评】此题主要考查了多项式,关键是掌握多项式的相关定义.15.(3分)如图,直线AB与CD相交于点O,∠1=∠2,若∠AOE=140°,则∠AOC的度数为80度.【分析】先求得∠2的度数,然后可得到∠BOD的度数,最后可求得∠AOC的度数.【解答】解:∵∠BOE=180°﹣∠AOE,∴∠BOE=180°﹣140°=40°.∵∠1=∠2,∴∠BOD=80°,∴∠AOC=80°.故答案为:80.【点评】本题主要考查的是对顶角和邻补角的定义,熟练掌握相关概念是解题的关键.16.(3分)计算:77°53′26″+33.3°=111°11′26″.【分析】先将33.3°转化为33°18′,然后度与度、分与分、秒和秒对应相加,秒的结果满60转化为分,分的结果满60转化为度.【解答】解:77°53′26″+33.3°=77°53′26″+33°18′=110°71′26″=111°11′26″.故答案为:111°11′26″.【点评】本题考查度分秒的换算,属于基础题,比较简单,注意以60为进制即可.分与分相加得71′,结果满60,转化为1°11′.17.(3分)数a、b在数轴上的位置如图所示,化简|a+b|﹣b=﹣a﹣2b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:b<0<a,且|b|>|a|,∴b+a<0,则原式=﹣b﹣b﹣a=﹣2b﹣a.故答案为:﹣2b﹣a.【点评】本题考查了数轴、相反数,熟练掌握去绝对值的运算法则是解本题的关键.18.(3分)某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,些时仍可获利10%,此商品的进价为700元.【分析】设此商品的进价是x元,用两种方式表示出售价,继而可得出方程.【解答】解:设此商品的进价是x元,则商品的售价可表示为900×0.9﹣40,也可表示为(1+10%)x,由题意得,900×0.9﹣40=(1+10%)x,解得x=700.故此商品的进价为700元.故答案为:700元.【点评】本题考查了一元一次方程的应用知识,解答本题的关键是找到等量关系.三、解答题(本大题6小题,共56分)19.(8分)计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.【分析】(1)根据幂的乘方、有理数的乘法和加减法可以解答本题;(2)根据幂的乘方、有理数的乘除法和加减法可以解答本题.【解答】解:(1)22+2×[(﹣3)2﹣3+]=4+2×[9﹣3+]=4+2×=4+13=17;(2)﹣0.25÷×(﹣1)3+(﹣3.75)×24=﹣×(﹣1)+33+56﹣90=1+33+56﹣90=0.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20.(5分)先化简,再求值:2(a2+ab2)﹣2(a2b﹣1)﹣2ab2+a﹣2,其中a=﹣2,b=2.【分析】首先去括号,进而合并同类项,再把已知代入得出答案.【解答】解:2(a2+ab2)﹣2(a2b﹣1)﹣2ab2+a﹣2=2a2+2ab2﹣2a2b+2﹣2ab2+a﹣2=2a2﹣2a2b+a,当a=﹣2,b=2时,原式=2×(﹣2)2﹣2×(﹣2)2×2﹣2=﹣10.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.21.(22分)解下列方程:(1)3(2m﹣1)=5m+2;(2)3(20﹣y)=6y﹣4(y﹣11);(3);(4)=1.【分析】(1)直接去括号,进而移项合并同类项解方程即可;(2)直接去括号,进而移项合并同类项解方程即可;(3)3和4的最简公分母是12,直接去分母乘以12,进而移项合并同类项解方程即可.(4)6和2的最简公分母是12,直接去分母乘以12,进而移项合并同类项解方程即可,注意1不能漏乘.【解答】(本题满分20分)解:(1)去括号,得6m﹣3=5m+2,…2分移项,合并同类项,得m=5,所以原方程的解是m=5;…4分(2)去括号,得60﹣3y=6y﹣4y+44,…6分移项,合并同类项,得5y=16,系数化为1,得y=,所以原方程的解是y=.…8分(3)去分母,得3(3x﹣2)=24﹣4(5x﹣2),…10分去括号,得9x﹣6=24﹣20x+8,…12分移项、合并,得29x=38,系数化为1,得x=,所以原方程的解是x=,…14分(4)方程两边同乘以6,去分母,得(2x﹣5)﹣3(3x+1)=6,…16分去括号,得2x﹣5﹣9x﹣3=6,…18分移项,合并同类项,得﹣7x=14,系数化为1,得x=﹣2,所以原方程的解是x=﹣2.…20分【点评】此题主要考查了一元一次方程的解法,正确去分母、移项合并同类项是解题关键.22.(5分)已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.解:∵OE是∠COB的平分线,∴∠COB=2∠COE(理由:角平分线定义).∵∠COE=40°,∴∠COB=80°.∵∠AOC=30°,∴∠AOB=∠AOC+∠COB=110°.【分析】根据角平分线线的定义求得∠COB=80°.然后根据图中角与角间的和差关系得到∠AOB=∠AOC+∠COB=110°.【解答】解:∵OE是∠COB的平分线,∴∠COB=2∠COE(角平分线定义).∵∠COE=40°,∴∠COB=80°.∵∠AOC=30°,∴∠AOB=∠AOC+∠COB=110°.故答案是:2∠COE,角平分线定义,∠COB=80°,30°,∠COB.【点评】本题考查了角平分线的定义.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.23.(5分)已知,如图,点C在线段AB上,且AC=8cm,BC=12cm,点M、N分别是AC、BC的中点.(1)求线段MN的长度;(2)在(1)中,如果已知线段AB的长为(a+b)cm,其它条件不变,你能猜测出MN的长度吗?请说出你发现的结果,并说明理由.【分析】(1)根据点M、N分别是AC、BC的中点,先求出MC、CN的长度,再利用MN =CM+CN即可求出MN的长度即可,(2)根据点M、N分别是AC、BC的中点,可知CM AC,CN=BC,再利用MN=CM+CN =AB即可求出MN的长度.【解答】解:(1)∵点M、N分别是AC、BC的中点,∴CM=AC=4cm,CN=BC=6cm,∴MN=CM+CN=4+6=10cm,(2)猜测MN=(a+b),∵点M、N分别是AC、BC的中点,∴CM=AC,CN=BC,∴MN=CM+CN=(AC+BC)=AB=(a+b)cm.【点评】本题主要考查两点间的距离的知识点,理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系.24.(11分)整理一批数据,由一个人单独做需要80小时完成.现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的,假设这些人的效率相同,则先后参与整理这批数据的人数分别有多少?【分析】设最初2小时有x人整理,根据题意可得一个人的工作效率是,根据题目中的等量关系:x个人2小时的工作量+(x+5)人8小时的工作量=,再列出方程,解方程即可.【解答】解:设最初2小时有x人参与整理这批数据,此后8小时有x+5人参与整理这批数据,这样共完成了这项工作的.由题意得+=,解得x=2.所以x+5=7.答:最初2小时有2人参与整理这批数据、此后8小时有7人参与整理这批数.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,此题用到的公式是:工作效率×工作时间=工作量.。
天津市红桥区2016-2017学年七年级数学上学期期末考试试题七年级数学答案(2017年1月)一、选择题(本大题12个小题,每小题2分,共24分)二、填空题(本大题共6题,每小题3分,共18分)13. -3 14.;; 15. 4 16. 3 17. 学 18. 10三、解答题(本大题6小题,共58分)19.(本题满分12分)(1) (3)(2) (7)(3) (12)20.(本题满分12分)(1)方程移项得:合并同类项得:解得: (4)(2)去分母,得去括号,得移项、合并同类项,得系数化为,得 (8)(3) (12)21.(本题满分5分) (3)当时, (5)22.(本题满分8分)(1)图中与互余的角是:,..与互补的角是:. (3)(2)平分,.=∠-180∴0-BOABONAOM∠∠050∠∴AOM (8)-=-4090180=23.(本题满分10分)设每个二级技工每天刷,则每个一级技工每天刷 (1)依题意得 (5)解得 (8) (9)答:每个一级和二级技工每天粉刷的墙面各是和平方米 (10)24.(本题满分11分)(1),.. (3)(2),,.. (6)(3) CBE ∠不变. (8),,(平角定义),即090=∠CBE (11)。
人教版数学七年级上册期中考试试题及答案一、选择题:(每小题3分,满分30分) 1. 在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个 2.下列计算正确的是 ( )A .(-3)-(-5)=-8B .(-3)+(-5)=+8C .(-3)3=-9 D .-32=-9 3.若x m y 2与-xy n 是同类项,则m 等于 ( )A .1B .-1C .2D .-24. 计算2)3(-的结果是( )A .-6B .9C .-9D .6 5.2-的相反数是( )A .0B .2C .12-D .126.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( ) A.-10秒 B.-5秒 C.+5秒 D.+10秒 7.下列说法不正确的是 ( )A .任何一个有理数的绝对值都是正数B .0既不是正数也不是负数C .有理数可以分为正有理数,负有理数和零D .0的绝对值等于它的相反数 8.下列各组中的两项属于同类项的是 ( )(A )25x 2y 与-23xy 3(B )-8a 2b 与5a 2c (C )41pq 与-25qp(D )19abc 与-28ab9. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,表示正确的是 ( ) A .0<b <a B .b >0>aC .b <0<aD .a <b <0 10.一个数的绝对值是3,则这个数可以是 ( ) A.3 B.3- C.3或者3- D.31二、填空题:(每小题3分,满分18分)1.15-的相反数是________,倒数是________,绝对值是_______ 2. 单项式225x y -的系数是 ,次数是 。
3.比较大小:--3553;4. 若()0322=-++b a ,则a+b=______________.5. 在数轴上,距离与表示—2的点有5个单位的点所对应的数是6.单项式m b a 22-与单项式b a n 3是同类项,则m=_______,n=三、计算下列各题(每小题5分,满分20分)(1)、 33+(-32)+7-(-3) (2)、 )12()4332125(-⨯-+(3)、32×(-32)+(-11)×(-32 人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分) 1.﹣3的绝对值是( ) A .3B .﹣3C .D .2.如果高出海平面20米,记作+20米,那么﹣30米表示( ) A .不足30米 B .低于海平面30米C .高出海平面30米D .低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为( ) A .70×102B .0.7×104C .7×103D .7×1044.下列各组数中是同类项的是( ) A .4x 和4y B .4xy 2和4xy C .4xy 2和﹣8x 2yD .﹣4xy 2和4y 2x5.下列各式中不是单项式的是( ) A .B .﹣C .0D .6.下列计算正确的是( ) A .4x ﹣9x +6x =﹣x B .xy ﹣2xy =3xyC .x 3﹣x 2=xD .7.方程x ﹣2=2﹣x 的解是( )A.x=1B.x=﹣1C.x=2D.x=08.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=19.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>011.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或212.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x =,即0.=,仿此方法,将0.化成分数是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是.14.单项式﹣的系数是,次数是,多项式2a2b2+5a3﹣1的次数是.15.当n=时,单项式7x2y2n+1与﹣x2y5是同类项.16.数轴上距离原点为4个单位长度的数是.17.若5x+2与﹣2x+7互为相反数,则x的值为.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为,b的值为,c的值为;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?参考答案一、选择题1.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米【分析】本题可从题意进行分析,高出海平面20米,记作+20米,“+”代表高出,则“﹣”代表低于,即可求得答案.【解答】解:由分析可得:“+”代表高出,“﹣”代表低于,则﹣30米表示低于海平面30米.故选:B.【点评】本题考查正数,负数的基本性质,看清题意即可.3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()A.70×102B.0.7×104C.7×103D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将7000用科学记数法表示为:7×103.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列各组数中是同类项的是()A.4x和4y B.4xy2和4xyC.4xy2和﹣8x2y D.﹣4xy2和4y2x【分析】根据同类项的定义:所含字母相同,并且相同字母的指数也相同,结合选项进行判断.【解答】解:A、4x和4y所含字母不同,不是同类项,故本选项错误;B、4xy2和4xy所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;C、4xy2和﹣8x2y所含字母相同,但相同字母的指数不相同,不是同类项,故本选项错误;D、﹣4xy2和4y2x所含字母相同,并且相同字母的指数也相同,是同类项,故本选项正确.故选:D.【点评】本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.5.下列各式中不是单项式的是()A.B.﹣C.0D.【分析】数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,可以做出选择.【解答】解:A、是数与字母的积的形式,是单项式;B、C都是数字,是单项式;D、分母中有字母,是分式,不是单项式.故选:D.【点评】本题考查单项式的定义,较为简单,要准确掌握定义.6.下列计算正确的是()A.4x﹣9x+6x=﹣x B.xy﹣2xy=3xyC.x3﹣x2=x D.【分析】根据同类项的定义和合并同类项的法则求解.【解答】解:A、4x﹣9x+6x=x,故选项错误;B、xy﹣2xy=﹣xy,故选项错误;C、x3x2=不是同类项,不能合并,故选项错误;D、正确.故选:D.【点评】本题主要考查同类项的定义和合并同类项的法则.同类项的定义:所含字母相同,并且相同字母的指数也相同的项是同类项.合并同类项的法则:系数相加作为系数,字母和字母的指数不变.注意不是同类项的一定不能合并.7.方程x﹣2=2﹣x的解是()A.x=1B.x=﹣1C.x=2D.x=0【分析】解本题的过程是移项,合并同类项,最后把系数化为1,就可求出x的值.【解答】解:移项得:x+x=2+2即2x=4∴x=2.故选:C.【点评】解方程的过程就是一个方程变形的过程,变形的依据是等式的基本性质,变形的目的是变化成x=a的形式;同时要注意在移项的过程中要变号.8.方程﹣=1,去分母,得()A.2x﹣1﹣x+1=6B.3(2x﹣1)﹣2(x+1)=6C.2(2x﹣1)﹣3(x+1)=6D.3x﹣3﹣2x﹣2=1【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:方程﹣=1,去分母得:3(2x﹣1)﹣2(x+1)=6,故选:B.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.已知长方形的设长为xcm,则宽为ycm,则长方形的周长为()A.(x+y)cm B.(2x+y)cm C.2(x+y)cm D.xycm【分析】根据“长方形的周长=2(长+宽)”,列出代数式,即可得到答案.【解答】解:根据题意得:长方形的周长为:2(x+y),故选:C.【点评】本题考查列代数式,正确掌握长方形的周长公式是解题的关键.10.如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>0【分析】由数轴可知:a<﹣1<0<b<1,再根据不等式的基本性质即可判定谁正确.【解答】解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.【点评】主要考查了数轴上数的大小比较和不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.11.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8B.2C.8或﹣2D.﹣8或2【分析】首先根据相反数,绝对值的概念分别求出x、y的值,然后代入x+y,即可得出结果.【解答】解:x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选:D.【点评】此题主要考查相反数、绝对值的意义.绝对值相等但是符号不同的数是互为相反数.一个数到原点的距离叫做该数的绝对值,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.12.我们知道,无限循环小数都可以转化为分数,例如:将0.=x,则x=0.3+x,解得x =,即0.=,仿此方法,将0.化成分数是()A.B.C.D.【分析】设x=0.•45,则x=0.4545…,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.【解答】解:设x=0…45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,99x=45解方程得:x==.故选:D.【点评】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.二、填空题(本大题共6小题,每小题3分,共18分)13.﹣的相反数是,绝对值是,它的倒数是﹣.【分析】直接利用倒数以及相反数和绝对值的性质分别分析得出答案.【解答】解:﹣的相反数是:,绝对值是:,它的倒数是:﹣.故答案为:,,﹣.【点评】此题主要考查了倒数以及相反数和绝对值的性质,正确把握相关定义是解题关键.14.单项式﹣的系数是﹣,次数是4,多项式2a2b2+5a3﹣1的次数是4.【分析】直接利用单项式的次数与系数以及多项式的次数确定方法分别分析得出答案.【解答】解:单项式﹣的系数是:﹣,次数是:4,多项式2a2b2+5a3﹣1的次数是:4.故答案为:﹣,4,4.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.15.当n=2时,单项式7x2y2n+1与﹣x2y5是同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程2n+1=5,求出n的值即可.【解答】解:∵单项式7x2y2n+1与﹣x2y5是同类项,∴2n+1=5,∴n=2,故答案为2.【点评】本题考查同类项的定义、关键是根据同类项的定义列出方程解答.16.数轴上距离原点为4个单位长度的数是±4.【分析】根据互为相反数的数到原点的距离都相等,可得结论.【解答】解:数轴上,距离原点4个单位长度的数是±4.故答案为:±4.【点评】本题考察了数轴上距离的意义.注意互为相反数的数到数轴上原点的距离相等.17.若5x+2与﹣2x+7互为相反数,则x的值为﹣3.【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:5x+2﹣2x+7=0,移项合并得:3x=﹣9,解得:x=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.18.如图所示的运算程序中,若开始输入的x值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为3.【分析】根据运算程序可推出第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,依此类推,即可推出从第三次开始,第偶数次输出的为3,第奇数次输出的为6,可得第2010此输出的结果为3.【解答】解:∵第二次输出的结果为12,∴第三次输出的结果为6,第四次输出的结果为3,第五次输出的结果为6,第六次输出的结果为3,…,∴从第三次开始,第偶数次输出的为3,第奇数次输出的为6,∴第2010次输出的结果为3.故答案为3.【点评】本题主要要考查有理数的乘法和加法运算,关键在于每次输出的结果总结出规律.三、解答题(本大题共7个小题,共66分.解答应写出必要的文字说明、过程或演算步骤)19.(16分)计算(1)﹣26﹣(﹣15)(2)(+7)+(﹣4)﹣(﹣3)﹣14(3)(﹣3)×÷(﹣2)×(﹣)(4)﹣(3﹣5)+32×(﹣3)【分析】(1)原式利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,计算即可得到结果;(3)原式从左到右依次计算即可得到结果;(4)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣26+15=﹣11;(2)原式=7﹣4+3﹣14=8;(3)原式=﹣;(4)原式=2﹣27=﹣25.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.(10分)化简求值(1)x2﹣4(x﹣x2)+3x,其中x=﹣1.(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2004.【分析】先将原式化简,然后将未知数的值代入即可求出答案.【解答】解:(1)原式=x2﹣4x+4x2+3x=5x2﹣x当x=﹣1时,原式=5×1+1=6;(2)原式=﹣3a2+4ab+(a2﹣4a﹣4ab)=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2,b=2004时,原式=﹣2×4﹣4×(﹣2)=﹣8+8=0.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.21.(8分)解方程(1)3x+7=32﹣2x(2)=1﹣【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:3x+2x=32﹣7,合并同类项得:5x=25,系数化为1得:x=5,(2)方程两边同时乘以6得:2(2y﹣1)=6﹣3y,去括号得:4y﹣2=6﹣3y,移项得:4y+3y=6+2,合并同类项得:7y=8,系数化为1得:y=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程得方法是解题的关键.22.(6分)在数轴上表示下列各数,并将下列各数用“<”连接.﹣22,﹣(﹣1),0,﹣2.5,|﹣|【分析】直接将各数在数轴上表示,进而得出大小关系.【解答】解:如图所示:,故﹣22<﹣2.5<0<|﹣|<﹣(﹣1).【点评】此题主要考查了有理数大小比较,正确在数轴上找到各数是解题关键.23.(8分)已知多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,求2m2﹣m2003+3的值.【分析】根据题意得出m的值,进而代入原式求出答案.【解答】解:∵多项式(m+1)x2﹣xy+3y2﹣x+10不含x2项,∴m+1=0,解得:m=﹣1,故2m2﹣m2003+3=2×1﹣(﹣1)2003+3=6.【点评】此题主要考查了多项式,正确得出m的值是解题关键.24.(8分)观察一列数:1、2、4、8、16、…我们发现,这一列数从第二项起,每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,这一列数就叫做等比数列,这个常数就叫做等比数列的公比.(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)如果一列数a1,a2,a3,a4是等比数列,且公比为q.那么有:a2=a1q,a3=a2q=(a1q)q=a1q2,a4=a3q=(a1q2)q=a1q3则:a5=a1q4.(用a1与q的式子表示)(3)一个等比数列的第2项是10,第4项是40,求它的公比.【分析】(1)根据题意可得等比数列5,﹣15,45,…中,从第2项起,每一项与它前一项的比都等于﹣3;故第4项是45×(﹣3)=﹣135;(2)观察数据可得a n=a1q n﹣1;即可得出a5的值;(3)根据(2)的关系式,可得公比的性质,进而得出第2项是10,第4项是40时它的公比.【解答】解:(1)等比数列5、﹣15、45、…的第4项是﹣135.(2)则:a5=a1q4.(用a1与q的式子表示),(3)设公比为x,10x2=40,解得:x=±2.【点评】此题主要考查了数字变化规律,要求学生通过观察,分析、归纳发现其中的规律,应用发现的规律解决问题.分析数据获取信息是必须掌握的数学能力,如观察数据可得a n=a1q n﹣1.25.(10分)点A、B、C在数轴上表示的数a、b、c满足(b+3)2+|c﹣24|=0,且多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式.(1)a的值为﹣6,b的值为﹣3,c的值为24;(2)已知点P、点Q是数轴上的两个动点,点P从点A出发,以3个单位/秒的速度向右运动,同时点Q从点C出发,以7个单位/秒的速度向左运动:①若点P和点Q经过t秒后在数轴上的点D处相遇,求出t的值和点D所表示的数;②若点P运动到点B处,动点Q再出发,则P运动几秒后这两点之间的距离为5个单位?【分析】(1)利用非负数的性质求出b与c的值,根据多项式为五次四项式求出a的值;(2)①利用点P、Q所走的路程=AC列出方程;②此题需要分类讨论:相遇前和相遇后两种情况下PQ=5所需要的时间.【解答】解:(1)∵(b+3)2+|c﹣24|=0,∴b=﹣3,c=24,∵多项式x|a+3|y2﹣ax3y+xy2﹣1是五次四项式,∴|a+3|=5﹣2,﹣a≠0,∴a=﹣6.故答案是:﹣6;﹣3;24;(2)①依题意得3t+7t=|﹣6﹣24|=30,解得t=3,则3t=9,所以﹣6+9=3,所以出t的值是3和点D所表示的数是3.②设点P运动x秒后,P、Q两点间的距离是5.当点P在点Q的左边时,3x+5+7(x﹣1)=30,解得x=3.2.当点P在点Q的右边时,3x﹣5+7(x﹣1)=30,解得x=4.2.综上所述,当点P运动3.2秒或4.2秒后,这两点之间的距离为5个单位.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.七年级上学期期中考试数学试题及答案一、选择题1.如图,由6个相同的小正方体搭成的几何体,那么从左面看几何体的平面图形是2.下列说法中,正确的是A.在数轴上表示-a 的点一定在原点的左边B.有理数a的倒数是1 2C.一个数的相反数一定小于或等于这个数D.如果a a=-那么a是负数或零3.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是A. a >bB. a <bC. ab >0D. a b>0 4.在代数式4a ,0,m ,x + y ,1x ,2x y π+中,整式共有() A.3 个B.6 个C.5 个D.4 个5.下列判断正确的是A. 3a 2bc 与 b ca 2 不是同类项B. 25m n 和2a b +都是单项式C.单项式 - x 3 y 2 的次数是 3,系数是-1D. 3x 2 - y + 2 x y 2 是三次三项式6.下列去括号正确的是A. a + (b - c ) = a + b + cB. a - (b - c ) = a - b - cC. a - (- b + c ) = a - b - cD. a - (- b - c ) = a + b + c7.下列说法中正确的是A.角是由两条射线组成的图形B.两点之间的线段叫做两点之间的距离C.如果线段 A B=BC,那么 B 叫做线段 A C 的中点D.两点确定一条直线8.下列说法不正确的是A.若 x = y 则 x + a = y + aB.若 x = y 则 x - b = y - bC.若 x = y 则 a x = ayD.若 x = y 则x y b b=9.如图,点 A 位于点 O 的A.南偏东35°方向上B.北偏西65°方向上C.南偏东65°方向上D.南偏西65°方向上10.如图,∠AOC和∠BOD都是直角,如果∠DOC=28°,则下列判断错误的是A.∠AOD=∠BOCB.∠AOB=148°C.∠AOB+∠DOC=180°D.若∠DOC变小,则∠AOB变大二、填空题1l.有资料显示,被称为“地球之肺”的森林正以毎年15000000公顷的速度从地球上消失, 将15000000用科学记数法表示为.12.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是.第12题第13题13.把一副三角板按照如图所示的位置拼在一起,不重叠也没有缝隙,则∠ABC的度数为.14.时钟的时间是3点30分,时钟面上的时针与分针的夹角是.15.将一个圆分割成三个扇形,它们圆心角度数之间的关系为2:3:4,则这三个扇形中圆心角最小的度数是.16.下列方程中:(1)3x +6y =1;(2)y2 -3y- 4 =0;(3)x2 +2x=1;(4)3x- 2 =4x+1.其中是一元一次方程的是(填写序号即可)17.已知点A、B、C三点在一条直线上,线段A B=6cm,线段B C=8cm,则线段A C的长度为.18.一家商店把一种旅游鞋按成本价a 元提高50%标价,然后再以8折优惠卖出,则这种旅游鞋每双的售价是元(用含a的式子表示).三、解答题19.计算:(1)(-20)+(+3)-(-5)-(+ 7) (2)(-3)⨯(-4)- 48 ÷6-(3)151(12)()236-⨯--(4)-14 +(-2)3⨯(-0.5)-15--20.合并同类项:(1)3a2-2a +4a2 - 7a (2)(x2 +5y)-12(4x2 -3y-1)21.化简求值:2(2x-3y)-(3x+2y +1)其中x= 2,y = 0.5.22.解方程:(1)4(x+0.5)+x = 7 (2)2121 34x x-+=-四、解答题23.如图,一个窗户的上部是由4个扇形组成的半圆,下部是由4个边长相同的小正方形组成的正方形,问: (1)这个窗户的外框总长为;(2)这个窗户的面积为;(3)当a= 4 时,求这个窗户的面积。
2017-2018学年天津市红桥区七年级(上)期中数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣5的绝对值是()A.5 B.C.﹣ D.﹣52.(2分)下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)3.(2分)在﹣2,+3.5,0,,﹣0.7中,负分数有()A.1个 B.2个 C.3个 D.4个4.(2分)我市现有人口数约为356.91万人,用科学记数法表示该数是()A.3.5691×102人B.3.5691×106人C.3.5691×101人D.3.5691×10﹣6人5.(2分)下列说法正确的是()A.﹣5,a不是单项式B.﹣的系数是﹣2C.﹣的系数是﹣,次数是4D.x2y的系数为0,次数为26.(2分)下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y7.(2分)下列选项不是同类项的是()A.﹣1和0 B.﹣4xy2z和﹣4x2yz2C.﹣x2y和2yx2D.﹣a3和4a38.(2分)﹣(﹣x﹣6)+(x﹣1)去括号正确的是()A.﹣x﹣6+x﹣1 B.x+6+x﹣1 C.x﹣6+x﹣1 D.﹣x+6x+x﹣19.(2分)有理数a,b满足a>0,b<0,a+b<0,那么a,b,﹣a,﹣b的大小关系是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a10.(2分)已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b二、填空题(共8小题,每小题3分,满分24分)11.(3分)计算:的倒数是;﹣24=;1﹣(﹣2)=.12.(3分)比较大小:(填“<”或“>”)13.(3分)由四舍五入得到的近似数0.69精确到位.14.(3分)数轴上的点A到原点的距离是6,则点A表示的数为.15.(3分)若使多项式5x3﹣8x2+x与多项式4x3+2mx2﹣10x﹣1相加后不含二次项,则m的值是.16.(3分)若(a﹣1)2+|b+2|=0,那么a+b=.17.(3分)一个长方形的宽为a,长比宽的2倍少3,则这个长方形的周长是(用含a的式子表示)18.(3分)已知a和b互为相反数,m与n互为倒数,|﹣c|=2,则2a+2b+=.三、解答题(共6小题,满分56分)19.(16分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(3)﹣24×(4).20.(8分)化简:(1)5x4+3x2y﹣10﹣3x2y+x4﹣1(2)2(x2+3)﹣(5﹣x2).21.(10分)先化简,再求值.(1)﹣5a2+(3a﹣2)﹣(3a﹣7),其中a=﹣2(2),其中x=3,y=.22.(6分)若x的相反数是3,|y|=8,且xy>0,求y﹣x的值.23.(8分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中小轿车每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)求第三天行驶了多少千米.(2)这七天中行驶路程最多的一天比行驶路程最少的一天多行驶了多少千米?(3)求出这7天中平均每天行驶多少千米?24.(8分)某工厂生产一种茶几和茶具,茶几每套定价400元,茶具每套定价90元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套茶几送一套茶具;②茶几和茶具都按定价的90%付款.现某客户要到该厂购买茶几10套,茶具x套(x>10).(1)若该客户按方案①购买,需付款元.;(用含x的代数式表示)若该客户按方案②购买,需付款;(用含x的代数式表示)(2)若x=20,通过计算说明此时按方案①和方案②,用哪种方案买较为合算?(3)当x=20时,你能工具厂方提供的两种优惠方式给出一种更为省钱的购买方案吗?如果有,请写出你的购买方案.2017-2018学年天津市红桥区七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣5的绝对值是()A.5 B.C.﹣ D.﹣5【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选:A.2.(2分)下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)【解答】解:A、﹣的相反数是,错误;B、﹣的相反数的是,错误;C、﹣2.25和2互为相反数,正确;D、5的相反数是﹣5,5=﹣(﹣5),错误.故选:C.3.(2分)在﹣2,+3.5,0,,﹣0.7中,负分数有()A.1个 B.2个 C.3个 D.4个【解答】解:∵3.5,﹣,﹣0.7是分母不为1的数,∴3.5,﹣,﹣0.7是分数,∵﹣<0,﹣0.7<0,∴﹣,﹣0.7是负分数,故选:B.4.(2分)我市现有人口数约为356.91万人,用科学记数法表示该数是()A.3.5691×102人B.3.5691×106人C.3.5691×101人D.3.5691×10﹣6人【解答】解:356.91万=3 569 100=3.5691×106人.故选:B.5.(2分)下列说法正确的是()A.﹣5,a不是单项式B.﹣的系数是﹣2C.﹣的系数是﹣,次数是4D.x2y的系数为0,次数为2【解答】解:A、﹣5,a是单项式,故此选项错误;B、﹣的系数是﹣,故此选项错误;C、﹣的系数是﹣,次数是4,故此选项正确;D、x2y的系数为1,次数为3,故此选项错误.故选:C.6.(2分)下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y【解答】解:A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选:A.7.(2分)下列选项不是同类项的是()A.﹣1和0 B.﹣4xy2z和﹣4x2yz2C.﹣x2y和2yx2D.﹣a3和4a3【解答】解:A、两个常数项是同类项;B、相同字母的次数不同,故不是同类项;C、是同类项;D、是同类项.故选:B.8.(2分)﹣(﹣x﹣6)+(x﹣1)去括号正确的是()A.﹣x﹣6+x﹣1 B.x+6+x﹣1 C.x﹣6+x﹣1 D.﹣x+6x+x﹣1【解答】解:﹣(﹣x﹣6)+(x﹣1)=x+6+x﹣1.故选:B.9.(2分)有理数a,b满足a>0,b<0,a+b<0,那么a,b,﹣a,﹣b的大小关系是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a 【解答】解:∵a+b<0,∴a<﹣b,b<﹣a.又∵a>0,b<0,∴b<﹣a<0<a<﹣b.故选:B.10.(2分)已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b【解答】解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)计算:的倒数是;﹣24=﹣16;1﹣(﹣2)=3.【解答】解:的倒数是,﹣24=﹣16,1﹣(﹣2)=1+2=3,故答案为:,﹣16,3.12.(3分)比较大小:<(填“<”或“>”)【解答】解:根据有理数比较大小的方法,可得<.故答案为:<.13.(3分)由四舍五入得到的近似数0.69精确到百分位.【解答】解:近似数0.69精确到百分位.故答案为百分.14.(3分)数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6.【解答】解:数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6,故答案为:6或﹣6.15.(3分)若使多项式5x3﹣8x2+x与多项式4x3+2mx2﹣10x﹣1相加后不含二次项,则m的值是4.【解答】解:根据题意得:5x3﹣8x2+x+4x3+2mx2﹣10x﹣1=9x3+(2m﹣8)x2﹣9x ﹣1,由结果不含二次项,得到2m﹣8=0,解得:m=4,故答案为:416.(3分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.17.(3分)一个长方形的宽为a,长比宽的2倍少3,则这个长方形的周长是6a ﹣6(用含a的式子表示)【解答】解:∵长方形的宽为a,长比宽的2倍少3,∴长方形的长为2a﹣3,∴长方形的周长为2×(a+2a﹣3)=6a﹣6,故答案为:6a﹣618.(3分)已知a和b互为相反数,m与n互为倒数,|﹣c|=2,则2a+2b+=±.【解答】解:∵a和b互为相反数,m与n互为倒数,|﹣c|=2,∴a+b=0,mn=1,c=±2,∴2a+2b+=2(a+b)+=2×0±=0±=±.故答案为:±.三、解答题(共6小题,满分56分)19.(16分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(3)﹣24×(4).【解答】解:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49)+(﹣91)+5+(﹣9)=﹣144;(2)=2.5×=1;(3)﹣24×=﹣24×(﹣)﹣24×=12﹣18+8=2;(4)=﹣1+÷=﹣1+=﹣1+=﹣.20.(8分)化简:(1)5x4+3x2y﹣10﹣3x2y+x4﹣1(2)2(x2+3)﹣(5﹣x2).【解答】解:(1)原式=6x4﹣11;(2)原式=2x2+6﹣5+x2=3x2+1.21.(10分)先化简,再求值.(1)﹣5a2+(3a﹣2)﹣(3a﹣7),其中a=﹣2(2),其中x=3,y=.【解答】解:(1)原式=﹣5a2+3a﹣2﹣3a+7=﹣5a2+5,当a=﹣2时,原式=﹣20+5=﹣15;(2)原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,当x=3,y=﹣时,原式=1.22.(6分)若x的相反数是3,|y|=8,且xy>0,求y﹣x的值.【解答】解:∵x的相反数是3,∴x=﹣3,∵|y|=8,∴y=±5,∵xy>0,∴x=﹣3,y=﹣8,∴y﹣x=﹣8﹣(﹣3)=﹣8+3=﹣5.23.(8分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中小轿车每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)求第三天行驶了多少千米.(2)这七天中行驶路程最多的一天比行驶路程最少的一天多行驶了多少千米?(3)求出这7天中平均每天行驶多少千米?【解答】解:(1)第三天行驶了(50﹣14)=36千米;(2)(50+41)﹣(50﹣14)=55千米;(3)平均每天行驶的路程为50+=50千米.24.(8分)某工厂生产一种茶几和茶具,茶几每套定价400元,茶具每套定价90元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套茶几送一套茶具;②茶几和茶具都按定价的90%付款.现某客户要到该厂购买茶几10套,茶具x套(x>10).(1)若该客户按方案①购买,需付款90x+3100元.;(用含x的代数式表示)若该客户按方案②购买,需付款81x+3600;(用含x的代数式表示)(2)若x=20,通过计算说明此时按方案①和方案②,用哪种方案买较为合算?(3)当x=20时,你能工具厂方提供的两种优惠方式给出一种更为省钱的购买方案吗?如果有,请写出你的购买方案.【解答】解:(1)若该客户按方案①购买,需付款400×10+90(x﹣10)=90x+3100元,若该客户按方案②购买,需付款(400×10+90x)×0.9=81x+3600元;故答案为:90x+3100,81x+3600;(2)当x=20时,方案一:20×90+3100=4900(元)方案二:20×81+3600=5220(元)所以,按方案一购买较合算.(3)先按方案一购买10套茶几送10套茶具,再按方案二购买10套茶具.赠送初中数学几何模型【模型一】“一线三等角”模型: 图形特征:60°60°60°45°45°45°运用举例:1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标;2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .ls 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D 作∠ADE =45°,DE 交AC 于E . (1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
天津市七年级上学期期中数学试卷新版一、选择题 (共10题;共20分)1. (2分)下列各对数:+(﹣3)与﹣3,+(+3)与+3,﹣(﹣3)与+(﹣3),﹣(+3)与+(﹣3),﹣(+3)与+(+3),+3与﹣3中,互为相反数的有()A . 3对B . 4对C . 5对D . 6对2. (2分) (2017七上·深圳期中) 下列说法中,正确的有().① xy的系数是;② −22ab 的次数是5;③多项式 mn2+2mn−3n−1 的次数是3;④ a−b 和都是整式.A . 1个B . 2个C . 3个D . 4个3. (2分) (2016七下·随县期末) 实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简的结果为()A . 2a+bB . ﹣2a+bC . bD . 2a﹣b4. (2分)下面的数中,与-3的和为0的是()A . 3B . -3C .D . -5. (2分)下列属于一元一次方程的是()A . 2x2+x=1B . 3x+y=7C . 2x+3=6D . +2=16. (2分) (2019七上·东城期中) 下列变形中,正确的是()A . 由-x+2=0 变形得x=-2B . 由-2(x+2)=3 变形得-2x-4=3C . 由变形得D . 由变形得7. (2分)地球绕太阳公转的速度用科学记数法表示为1.1×105km/h,把它写成原数是()A . 1100000km/hB . 110000km/hC . 11000km/hD . 0.000011km/h8. (2分) (2017七上·罗平期末) 若长方形的周长为6m,一边长为m+n,则另一边长为()A . 3m+nB . 2m+2nC . m+3nD . 2m﹣n9. (2分)根据下列条件,能列出方程的是().A . 一个数的2倍比2小3B . a与1的差的C . 甲数的3倍与乙数的的和D . a与b的和的10. (2分) (2016七下·夏津期中) 某种出租车的收费标准:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米后,每增加1千米,加收2.4元(不足1千米按1千米计).某人乘这种出租车从甲地到乙地共付车费19元,那么甲地到乙地路程的最大值是()A . 5千米B . 7千米C . 8千米D . 15千米二、填空题 (共8题;共9分)11. (1分) (2016七上·武胜期中) 若单项式3x2yn与﹣2xmy3是同类项,则m+n=________.12. (1分) (2018七上·天台期中) 如图,数轴上点A、B、C分别表示有理数a 、b、c ,若a 、b、c三个数的乘积为正数,这三个数的和与其中一个数相等,则b________0.13. (1分) (2018七上·鞍山期末) 如果单项式xa+1y3与2x3yb-1是同类项,那么ab=________.14. (1分)计算:﹣1﹣(3﹣a)=________15. (1分)当m=________时,方程2x+m=x+1的解为x=﹣4.16. (1分)甲、乙两站相距300km,一列慢车从甲站开往乙站,每小时行40km,一列快车从乙站开往甲站,每小时行80km。
2017-2018学年七年级(上)期中数学试卷一、选择题:(每小题只有一个答案是正确的,每小题2分,本大题有10小题共20分)1.- 3的倒数是()A . - 3 B. 3 C.-丄D. y2 •下列运算有错误的是()A . 8-(- 2)=10B . - 5+(-土)=10C . (- 5)+ (+3)=- 8D . - 1 X(-丄)=JL=33. 预计下届世博会将吸引约69 000 000人次参观.将69 000 000用科学记数法表示正确的是()A . 0.69X 108B . 6.9X 106C . 6.9X 107D . 69X 1064. 有理数a、b在数轴上的表示如图所示,那么()- •---------- «---- • --------- »b0 aA . - b> aB . - a v bC . b > aD . | a| > | b|5. 下面计算正确的是( )A . 3x2- X2=3B . 3a2+2a3=5a5C . 3+X=3XD . - 0.25ab丄ba=06. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是( )3 7 CA . 6B . 5C . 4D . 37. 若原产量为n吨,增产30%后的产量为( )A . 30%n 吨B . (1 - 30%) n 吨C . (1+30%) n 吨D. (n+30%)吨&下列去括号错误的是( )A . 2X2-(X - 3y) =2X2- x+3y丄 2 2 J. 2 2B . — X + ( 3y - 2xy) =〔x - 3y +2xyC . a2+ (- a+1) =a2- a+1D. -( b - 2a)- (- a2+b2) = - b+2a+a2- b29.下列说法错误的是( )A . 2X2- 3xy - 1是二次三项式B . - X+1不是单项式2? 2C.—亍兀耳y的系数是-乓口D . - 22xab2的次数是610 .已知多项式X2+3X=3,可求得另一个多项式3X2+9X - 4的值为( )A . 3B . 4C . 5D . 6二、填空题:(本大题共8小题,每小题2分,共16分)11 .如果把收入30元记作+30元,那么支出20元可记作12•-丄的相反数是一;倒数是一13.比较大小:- 9 - 13 (填'”或号)14•用四舍五入法将1.893 5取近似数并精确到0.001,得到的值是__________ .15. _______________________________________________ 若单项式-3a m b3与4a2b n是同类项,贝V m+n= _________________________________________ •16•若a与b互为相反数,c与d互为倒数,则(a+b) 3- 3(cd) 2015= _____________ .17.已知|a+1|=0, b2=4,贝U a+b= ______ .18•用火柴棒按如图所示的方式摆图形,按照这样的规律继续摆下去,第n个图形需要三•解答题:(本大题共64分)19•在数轴上表示下列各数:0,- 4,专■,- 2, | - 5| , -(- 1),并用号连接.-5 -4 -3-2-10 1 2 3 4 5?20・耐心算一算(同学们,请你注意解题格式,一定要写出解题步骤哦!(1)- 20+ (- 14)-( - 18)- 13(3)- 24-〒X [5-( - 3) 2] •21.化简:(1)12x - 20x+10x(2) 2 (2a- 3b)- 3 (2b- 3a)(3)- 5m2n+2 - 2mn+6m2n+3mn - 3.22•某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月工作人数不一定相等,实际每月生产量与计划量相比情况如表(增加为正,减少为负)月份一二三四五六增减(辆) +3 - 2 - 1 +4 +2 - 5①生产量最多的一月比生产量最少的一月多生产多少辆?②半年内总产量是多少?比计划增加了还是减少了,增加或减少多少?23. 先化简,再求值:- 5ab+2[3ab-( 4ab2+丄ab) ] - 5ab2,其中(a+2) 2+| b -f-1 =0 .24. 已知A=2x 2- 9x - 11, B=3x2- 6x+4.求(1) A - B ;(2)±A+2B.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费 1.8 元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x 千米.(1)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13 千米多一点,请问他乘坐哪种车较合算?26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+--+52015的值.2分,本大题有10小题共20分)2016-2017学年七年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题只有一个答案是正确的,每小题1 •- 3的倒数是()A • - 3B • 3 C.—丄D •寺【考点】倒数.【分析】根据倒数的定义可得-3的倒数是-丿-•3【解答】解:-3的倒数是-寺•故选:C •2 •下列运算有错误的是()A • 8 -( - 2)=10B • - 5+(-丄)=10C • (- 5)+ (+3)= - 8D . - 1 X(-丄)=JL =3【考点】有理数的混合运算•【分析】原式各项计算得到结果,即可做出判断•【解答】解:A、原式=8+2=10,正确;B、原式=-5X(- 2)=10,正确;C、原式=-5+3= - 2,错误;D、原式=丄,正确•故选C3•预计下届世博会将吸引约69 000 000人次参观•将69 000 000用科学记数法表示正确的是()A • 0.69X 108B • 6.9X 106C • 6.9x 107D . 69X 106【考点】科学记数法一表示较大的数•【分析】科学记数法的表示形式为a x 10n的形式,其中1 w|a v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同. 当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:将69 000 000用科学记数法表示为: 6.9X 107•故选:C •4•有理数a、b在数轴上的表示如图所示,那么()- • ---------- «--- •--------- ►b0 aA • - b> aB • - a v bC . b> a D. | a| >| b|【考点】数轴.【分析】根据图中所给数轴,判断a、b之间的关系,分析所给选项是否正确.【解答】解:由图可知,b v O v a且|b| > | a| ,所以,—b> a, —a>b,A、- b> a,故本选项正确;B、正确表示应为:-a> b,故本选项错误;C、正确表示应为:b v a,故本选项错误;D、正确表示应为:| a| v | b|,故本选项错误.故选A .5. 下面计算正确的是()A . 3x2—X2=3B. 3a2+2a3=5a5C. 3+X=3X D . —0.25ab丄ba=O【考点】整式的加减.【分析】先判断是否为同类项,若是同类项则按合并同类项的法则合并.【解答】解:A、3X2—X2=2X2M 3,故A错误;B、3a2与2a3不可相加,故B错误;C、3与X不可相加,故C错误;1 “ &D、-0.25ab+—ba=0,故D 正确.故选:D.6. 下列式子:X2+2, - + 4, 越7,坐,-5X , 0中,整式的个数是()3 7 CA . 6 B. 5 C. 4 D. 3【考点】整式.【分析】根据整式的定义分析判断各个式子,从而得到正确选项.2【解答】解:式子X2+2,二—,-5X, 0,符合整式的定义,都是整式;-+4,二-这两个式子的分母中都含有字母,不是整式.a c故整式共有4个.故选:C.7. 若原产量为n吨,增产30%后的产量为()A . 30%n 吨B . (1 —30%)n 吨C. (1 +30%)n 吨D. (n+30%)吨【考点】代数式.【分析】根据增产量=原产量x(1+增长率)作答.【解答】解:原产量为n吨,增产30%后的产量为(1+30%)n吨,故选C.&下列去括号错误的是( )2 2A . 2X—( X—3y) =2X—x+3y--x 2 - 3y 2+2xyC. a 2+ (- a+1) =a 2- a+1D. -( b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2 【考点】去括号与添括号.【分析】利用去括号法则:如果括号外的因数是正数, 的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反, 进而判断得出即可.【解答】 解:A 、2x 2-( x - 3y ) =2x 2- x+3y ,正确,不合题意; 丄x 2+ (3y 2 - 2xy )」-x 2+3y 2 - 2xy ,故原式错误,符合题意; a 2+ (- a+1) =a 2- a+1,正确,不合题意;-(b - 2a )- (- a 2+b 2) =- b+2a+a 2- b 2,正确,不合题意; 故选:B . 9.下列说法错误的是( )A . 2x 2- 3xy - 1是二次三项式B . - x+1不是单项式 C.—寻兀K /的系数是 J 二rD .- 22xab 2的次数是6【考点】多项式;单项式.【分析】根据单项式和多项式的概念及性质判断各个选项即可. 【解答】 解:A 、2x 2- 3xy - 1是二次三项式,故本选项不符合题意; B 、- x+1不是单项式,故本选项不符合题意; 9 ? 7c 、一亍兀xy 的系数是-宁■飞,故本选项不符合题意; D 、 - 22xab 2的次数是4故本选项符合题意. 故选D . 10.已知多项式x 2+3x=3,可求得另一个多项式 3x 2+9x - 4的值为( )A . 3B . 4C . 5D . 6【考点】代数式求值.【分析】 先把3x 2+9x - 4变形为3 (x 2+3x )- 4,然后把x 2+3x=3整体代入计算即可. 【解答】解:I x 2+3x=3,3x 2+9x - 4=3 (x 2+3x ) - 4=3 X 3 - 4=9 - 4=5 . 故选:C .二、填空题:(本大题共8小题,每小题2分,共16分) 11 .如果把收入 30元记作+30元,那么支出20元可记作 -20元 .【考点】 正数和负数.【分析】答题时首先知道正负数的含义, 在用正负数表示向指定方向变化的量时, 通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数. 【解答】解:由收入为正数,则支出为负数,故收入 30元记作+30元,那么支出20元可记作-20元.x 2+ ( 3y 2- 2xy )=去括号后原括号内各项的符号与原来 B 、 C 、【解答】解:-5丄的相反数是罕倒数是一13•比较大小:-9 > - 13 (填、”或号) 【考点】有理数大小比较.【分析】有理数大小比较的法则: ①正数都大于0;②负数都小于0;③正数大于一切负 数;④两个负数,绝对值大的其值反而小,据此判断即可. 【解答】解:根据有理数比较大小的方法,可得 -9 >- 13. 故答案为:〉.14•用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是 1.894 .【考点】 近似数和有效数字.【分析】 精确到哪一位,即对下一位的数字进行四舍五入.【解答】 解:用四舍五入法将 1.893 5取近似数并精确到 0.001,得到的值是1.894 . 故答案为:1.894.15. 若单项式-3a m b 3与4a 2b n 是同类项,贝V m+n= 5 .【考点】同类项.【分析】根据同类项的定义解答.【解答】 解:•••单项式-3a m b 3与4a 2b n 是同类项, m=2 , n=3 , m+n=2+3=5. 故答案为5.16. 若a 与b 互为相反数,c 与d 互为倒数,则(a+b ) 3- 3 (cd ) 2015= - 3 . 【考点】代数式求值.【分析】 根据a 与b 互为相反数,c 与d 互为倒数,可以得到: a+b=0, cd=1 .代入求值即可求解.【解答】 解:••• a 与b 互为相反数,c 与d 互为倒数, .a+b=0, cd=1.•••( a+b ) 3 - 3 (cd ) 2015=0 - 3 x 仁-3.故答案是:-3.17. 已知 |a+1|=0, b 2=4,贝U a+b= 1 或- 3 .【考点】绝对值.1112.- 5丄的相反数是2 -【考点】倒数;相反数.【分析】根据只有符号不同的两个数互为相反数, 可得一个数的相反数;根据乘积为1的两个数互为倒数,可得一个数的倒数.一;倒数是II —'【分析】根据绝对值和平方根,即可解答.【解答】解:••• | a+1|=0, b 2=4, a= — 1, b= ± 2, a+b=—1+2=1 或 a+b= — 1 — 2=— 3, 1 或—3.18.用火柴棒按如图所示的方式摆图形, 按照这样的规律继续摆下去,第n 个图形需要 5n+1【分析】仔细观察发现每增加一个正六边形其火柴根数增加 5根,将此规律用代数式表示出来即可.【解答】解:由图可知: 图形标号(1 )的火柴棒根数为 6; 图形标号(2 )的火柴棒根数为11; 图形标号(3)的火柴棒根数为16;由该搭建方式可得出规律:图形标号每增加 1,火柴棒的个数增加 5,所以可以得出规律:搭第 n 个图形需要火柴根数为: 6+5 ( n — 1) =5n+1,故答案为:5n+1.三•解答题:(本大题共64分) 19.在数轴上表示下列各数: 0,- 4,「二,-2, | — 5| , — (— 1),并用号连接.-5 -4 -3 -2-16 1 1 3 4 5?【考点】 有理数大小比较;数轴;绝对值.【分析】根据数轴是表示数的一条直线, 可把数在数轴上表示出来, 根据数轴上的点表示的 数右边的总比左边的大,可得答案.【解答】解:20. 耐心算一算(同学们,请你注意解题格式, (1) — 20+ (— 14) — (— 18)— 13 (2) - 4雜寻匚乂(- 30) (3) - 24-卜[5-( - 3) 2].—4v — 2<0V — (— 1) <定要写出解题步骤哦!根火柴棒(用含n 的代数式表示)【考点】 有理数的混合运算.【分析】(1)首先对式子进行化简,然后正、负数分别相加,然后把所得结果相加即可;(2)首先计算乘法、除法,然后进行加减即可; (3) 首先计算乘方,然后计算括号里面的式子,最后进行加减即可.【解答】 解:(1)原式=-20 - 14+18 - 13= - 20 - 14- 13+18=- 47+18= - 29;(3)原式=-16-^^X( 5 - 9) = - 16- 21. 化简: (1) 12x - 20x+10x (2) 2 (2a- 3b )- 3 (2b - 3a ) (3) - 5m 2n+2 - 2mn+6m 2n+3mn - 3. 【考点】整式的加减. 【分析】(1)先去括号,然后合并同类项; (2 )先去括号,然后合并同类项; (3 )直接合并同类项即可. 【解答】 解:(1)原式=(12 -20+10) x=2x ; (2) 原式=4a — 6b — 6b+9a =12a - 12b ; (3) 原式=(-5+6) m 2n+ (- 2+3) mn - 3+2 2 =m n+mn — 1. 22. 某汽车厂计划半年内每月生产汽车 20辆,由于另有任务,每月工作人数不一定相等, 实际每月生产量与计划量相比情况如表(增加为正,减少为负) 月份 一二 三 四 五 六 增减(辆) +3 - 2 - 1 +4 +2 - 5 ① 生产量最多的一月比生产量最少的一月多生产多少辆? ② 半年内总产量是多少?比计划增加了还是减少了,增加或减少多少? 【考点】 正数和负数. 【分析】①利用表中的最大数减去最小的数即可; ② 半年内的计划总产量是 20X 6=120辆,然后求得六个月中的增减的总和即可判断. 【解答】 解:①生产量最多的一月比生产量最少的一月多生产 4 -( - 5) =9 (辆); ② 总产量是:20 X 6+ (3 - 2 - 1+4+2 - 5) =121 (辆), 3 - 2 - 1+4+2 - 5=1 (辆). 答:半年内总产量是 121辆,比计划增加了 1辆. 23. 先化简,再求值:- 5ab+2[3ab -( 4ab 2+丄 ab ) ] - 5ab 2,其中(a+2) 2+| b -f _ | =0 . 【考点】整式的加减一化简求值;非负数的性质:绝对值;非负数的性质:偶次方. 【分析】原式去括号合并得到最简结果, 利用非负数的性质求出 a 与b 的值,代入计算即可(2)原式=-4X -^ —X 30= - 6 - 20=- 26; 3(—4) = - 16+2= - 14.求出值.【解答】解:•••(a+2)2+|b-二|=0,“a= - 2, r则原式=-5ab+6ab- 8ab2- ab- 5ab2= - 13ab2亠二2 •2 224. 已知A=2x - 9x - 11, B=3x - 6x+4.求(1) A - B ;(2)」-A+2B.【考点】整式的加减.【分析】(1)根据A=2x 2- 9x - 11, B=3x2- 6x+4,可以求得 A - B的值;(2)根据A=2x2- 9x - 11, B=3x2- 6x+4,可以求得|".|A+2B的值.【解答】解:(1)T A=2x 2- 9x - 11, B=3x 2- 6x+4,••• A - B=2x2- 9x - 11 - 3x2+6x - 4=-x2- 3x - 15;(2 )T A=2x 2- 9x- 11, B=3x 2- 6x+4,1 十•二 +=二(2x2- 9x - 11) +2 (3x2- 6x+4)=x2- 4.5x - 5.5+6x2- 12x+8=7x2- 16.5x+2.5.25•某市有甲、乙两种出租车,他们的服务质量相同•甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1 千米按1千米收费)•某人到该市出差,需要乘坐的路程为x千米.(1 )用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;(2)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?【考点】列代数式;代数式求值.【分析】(1)分0v x w 3和x >3两种情况分别写出对应的代数式;(2)分别求得x=13时,各自的费用,然后进行比较即可.【解答】解:(1)甲:①当O v x w 3时10元;②当x > 3 时10+1.2 ( x - 3)乙:①当O v x w 3时8元②当x > 3 时8+1.8 ( x - 3)(2)当乘坐的路程为13千米多一点,即x =14时甲的费用23.2元,乙的费用27.8元,应乘甲种车.26.求1+2+22+23+・・+22°15的值,可令S=1+2+22+23+・・+22°15,则2S=2+22+23+24+・・+22°16,因此2S- S=22016- 1.仿照以上推理,计算出1+5+52+53+-+52015的值.【考点】规律型:数字的变化类.【分析】仔细阅读题目中示例,找出其中规律,求解本题.【解答】解:令S=1+5+52+53+-+52015,贝廿5S=5+52+53+54+ - +52016,••• 5S - S=52016- 1,2016 年9 月15 日。
天津市红桥区七年级(上)期中数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣5的绝对值是()A.5B.C.﹣D.﹣52.(2分)下列两个数互为相反数的是()A.﹣和0.2B.﹣和0.333C.﹣2.25和2D.5和﹣(﹣5)3.(2分)在﹣2,+3.5,0,,﹣0.7,11中,负分数有()A.1个B.2个C.3个D.4个4.(2分)我市现有人口数约为356.91万人,用科学记数法表示该数是()A.3.5691×106人B.0.35691×107人C.3.5691×105人D.3.5691×104人5.(2分)下列说法正确的是()A.﹣5,a不是单项式B.﹣的系数是﹣2C.﹣的系数是﹣,次数是4D.x2y的系数为0,次数为26.(2分)下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1C.a3+a2﹣3D.x2+y2+x﹣y 7.(2分)下列选项不是同类项的是()A.﹣1和0B.﹣4xy2z和﹣4x2yz2C.﹣x2y和2yx2D.﹣a3和4a38.(2分)﹣(﹣x﹣6)+(x﹣1)去括号正确的是()A.﹣x﹣6+x﹣1B.x+6+x﹣1C.x﹣6+x﹣1D.﹣x+6x+x﹣1 9.(2分)有理数a,b满足a>0,b<0,a+b<0,那么a,b,﹣a,﹣b的大小关系是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a10.(2分)已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b二、填空题(共8小题,每小题3分,满分24分)11.(3分)计算:的倒数是;﹣24=;1﹣(﹣2)=.12.(3分)比较大小:(填“<”或“>”)13.(3分)由四舍五入得到的近似数0.69精确到位.14.(3分)数轴上的点A到原点的距离是6,则点A表示的数为.15.(3分)若使多项式5x3﹣8x2+x与多项式4x3+2mx2﹣10x﹣1相加后不含二次项,则m的值是.16.(3分)若(a﹣1)2+|b+2|=0,那么a+b=.17.(3分)一个长方形的宽为a,长比宽的2倍少3,则这个长方形的周长是(用含a的式子表示)18.(3分)已知a和b互为相反数,m与n互为倒数,|﹣c|=2,则2a+2b+=.三、解答题(共6小题,满分56分)19.(16分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(3)﹣24×(4).20.(8分)化简:(1)5x4+3x2y﹣10﹣3x2y+x4﹣1(2)2(x2+3)﹣(5﹣x2).21.(10分)先化简,再求值.(1)﹣5a2+(3a﹣2)﹣(3a﹣7),其中a=﹣2(2),其中x=3,y=.22.(6分)若x的相反数是3,|y|=8,且xy>0,求y﹣x的值.23.(8分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中小轿车每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km 的记为“0”.(1)求第三天行驶了多少千米.(2)这七天中行驶路程最多的一天比行驶路程最少的一天多行驶了多少千米?(3)求出这7天中平均每天行驶多少千米?24.(8分)某工厂生产一种茶几和茶具,茶几每套定价400元,茶具每套定价90元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套茶几送一套茶具;②茶几和茶具都按定价的90%付款.现某客户要到该厂购买茶几10套,茶具x套(x>10).(1)若该客户按方案①购买,需付款元.;(用含x的代数式表示)若该客户按方案②购买,需付款;(用含x的代数式表示)(2)若x=20,通过计算说明此时按方案①和方案②,用哪种方案买较为合算?(3)当x=20时,你能工具厂方提供的两种优惠方式给出一种更为省钱的购买方案吗?如果有,请写出你的购买方案.天津市红桥区七年级(上)期中数学试卷参考答案一、选择题(共10小题,每小题2分,满分20分)1.A;2.C;3.B;4.A;5.C;6.A;7.B;8.B;9.B;10.B;二、填空题(共8小题,每小题3分,满分24分)11.;﹣16;3;12.<;13.百分;14.6或﹣6;15.4;16.﹣1;17.6a﹣6;18.±;三、解答题(共6小题,满分56分)19.;20.;21.;22.;23.;24.90x+3100;81x+3600;。
七年级(上)数学期中考试试题【答案】一、选择题(每小题4分,共48分)1.﹣的相反数是()A.﹣B.C.﹣2D.22.(﹣)×(﹣)×(﹣)×(﹣)可以表示为()A.(﹣)×4B.﹣C.﹣()4D.(﹣)43.绝对值大于1且小于5的所有的整数的和是()A.9B.﹣9C.6D.04.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0D.负数和05.计算(﹣2)2﹣(﹣2)3的结果是()A.﹣4B.2C.4D.126.有理数a、b在数轴上的位置如图,则a+b的值为()A.大于0B.小于0C.等于0D.无法确定7.有一种记分方法:以90分为基准,95分记为+5分,某同学得87分,则应记为()A.+3分B.﹣3分C.+7分D.﹣7分8.如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2011的值是()A.1B.﹣1C.±1D.20089.地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6B.﹣6C.D.11.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣1 12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm二、填空题(每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.若向东走5米记作+5米,则向西走5米应记作米.14.比较大小:﹣π﹣3.14(选填“>”、“=”、“<”).15.用四舍五入法把0.07902精确到万分位为.16.数轴上到原点的距离是3的点表示的数是.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则:+3cd+m的值为.18.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有.三、(本大题6个大题,共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)计算:(1)8+(﹣10)+(﹣2)﹣(﹣5)(2 )﹣7+13﹣6+20.20.(8分)计算(1)(﹣2)÷×(﹣3)(2)(+﹣)×(﹣12).21.(8分)把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,,﹣,﹣0.75,0,2014,20%,π.正数集合:{…}负数集合:{…}整数集合:{…}正分数集合:{…}.22.(12分)计算(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(2)﹣12﹣(﹣10)÷×2+(﹣4)2(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3).23.(6分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离.(2)数轴上表示﹣12和﹣6的两点之间的距离是.(3)数轴上表示x和1的两点之间的距离表示为.(4)若x表示一个有理数,且﹣4<x<2,则|x﹣2|+|x+4|=.24.(12分)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?四、(本大题2个大题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是数(填“无理”或“有理”),这个数是;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第次滚动后,A点距离原点最近,第次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有,此时点A所表示的数是.26.(12分)已知:|a+1|+(5﹣b)2+|c+2|=0且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么?(3)在数轴上是否存在一点P,使P到A、B、C的距离和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.2018-2019学年吉林省长春108中七年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.﹣的相反数是()A.﹣B.C.﹣2D.2【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(﹣)×(﹣)×(﹣)×(﹣)可以表示为()A.(﹣)×4B.﹣C.﹣()4D.(﹣)4【分析】原式利用乘方的意义变形即可得到结果.【解答】解:(﹣)×(﹣)×(﹣)×(﹣)=(﹣)4,故选:D.【点评】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.3.绝对值大于1且小于5的所有的整数的和是()A.9B.﹣9C.6D.0【分析】利用数轴可得到绝对值大于1且小于5的所有的整数为﹣2、﹣3、﹣4、2、3、4,然后计算它们的和即可.【解答】解:绝对值大于1且小于5的所有的整数为﹣2、﹣3、﹣4、2、3、4,所以绝对值大于1且小于5的所有的整数的和为0.故选:D.【点评】本题考查了有理数大小比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.数轴比较:在数轴上右边的点表示的数大于左边的点表示的数.4.一个数的相反数比它的本身大,则这个数是()A.正数B.负数C.0D.负数和0【分析】根据相反数的定义和有理数的大小比较解答.【解答】解:∵一个数的相反数比它的本身大,∴这个数是负数.故选:B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.计算(﹣2)2﹣(﹣2)3的结果是()A.﹣4B.2C.4D.12【分析】先算乘方,再算减法.【解答】解:(﹣2)2﹣(﹣2)3=4﹣(﹣8)=12.故选:D.【点评】本题主要考查了学生利用有理数的乘方法则计算,较简单.6.有理数a、b在数轴上的位置如图,则a+b的值为()A.大于0B.小于0C.等于0D.无法确定【分析】根据数轴表示数的方得到a<0,b>0,且|a|>|b|,于是可判断a+b为负数.【解答】解:根据题意得a<0,b>0,且|a|>|b|,所以a+b<0.故选:B.【点评】本题考查了数轴:规定了原点、正方向、单位长度的直线叫做数轴;所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数;一般来说,当数轴方向朝右时,右边的数总比左边的数大.7.有一种记分方法:以90分为基准,95分记为+5分,某同学得87分,则应记为()A.+3分B.﹣3分C.+7分D.﹣7分【分析】首先审清题意,明确“正”和“负”所表示的意义;再根据题意作答.【解答】解:∵以90分为基准,95分记为+5分,∴87分记为﹣3分.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.8.如果|a+2|与(b﹣1)2互为相反数,那么代数式(a+b)2011的值是()A.1B.﹣1C.±1D.2008【分析】根据非负数的性质,可确定a、b的值,代入运算即可.【解答】解:∵|a+2|与(b﹣1)2均为非负数,且互为相反数,∴|a+2|=0,(b﹣1)2=0,∴a=﹣2,b=1,∴(a+b)2011=﹣1.故选:B.【点评】本题考查了代数式求值的知识,解答本题的关键是掌握绝对值及偶次方的非负性.9.地球上陆地的面积约为148 000 000平方千米,用科学记数法表示为()A.148×106平方千米B.14.8×107平方千米C.1.48×108平方千米D.1.48×109平方千米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:148 000 000=1.48×108平方千米.故选:C.【点评】用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.10.如果规定符号“⊗”的意义为a⊗b=,则2⊗(﹣3)的值是()A.6B.﹣6C.D.【分析】按照规定的运算方法改为有理数的混合运算计算即可.【解答】解:2⊗(﹣3)==6.故选:A.【点评】此题考查有理数的混合运算,掌握规定的运算方法,利用有理数混合运算的计算方法计算即可.11.已知|x|=3,|y|=2,且xy>0,则x﹣y的值等于()A.5或﹣5B.1或﹣1C.5或1D.﹣5或﹣1【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.有理数的乘法法则:同号得正,异号得负.【解答】解:∵|x|=3,|y|=2,∴x=±3,y=±2.又xy>0,∴x=3,y=2或x=﹣3,y=﹣2.∴x﹣y=±1.故选:B.【点评】本题考查绝对值的性质:互为相反数的绝对值相等.能够根据两个数的乘积的符号判断两个数的符号的关系.12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是()A.73cm B.74cm C.75cm D.76cm【分析】设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,建立关于h,x,y的方程组求解.【解答】解:设桌子的高度为hcm,第一个长方体的长为xcm,第二个长方体的宽为ycm,由第一个图形可知桌子的高度为:h﹣y+x=80,由第二个图形可知桌子的高度为:h﹣x+y=70,两个方程相加得:(h﹣y+x)+(h﹣x+y)=150,解得:h=75cm.故选:C.【点评】本题是一道能力题,考查方程思想、整体思想的应用及观察图形的能力.二、填空题(每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.若向东走5米记作+5米,则向西走5米应记作﹣5米.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以向东走5米,记作+5米,则向西走5米,记作﹣5米.故为﹣5.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.比较大小:﹣π<﹣3.14(选填“>”、“=”、“<”).【分析】先比较π和3.14的大小,再根据“两个负数,绝对值大的反而小”即可比较﹣π<﹣3.14的大小.【解答】解:因为π是无理数所以π>3.14,故﹣π<﹣3.14.故填空答案:<.【点评】此题主要考查了实数的大小的比较,实数大小比较法则:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小.15.用四舍五入法把0.07902精确到万分位为0.0790.【分析】根据四舍五法和题意,可以写出相应的数据,本题得以解决.【解答】解:0.07902≈0.0790(精确到万分位),故答案为:0.0790.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.16.数轴上到原点的距离是3的点表示的数是±3.【分析】先设出这个数为x,再根据数轴上各点到原点的距离进行解答即可.【解答】解:设这个数是x,则|x|=3,解得x=±3.故答案为:±3.【点评】本题考查的是数轴的特点,熟知数轴上各点到原点的距离的定义是解答此题的关键.17.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则:+3cd+m的值为5或1.【分析】根据a、b互为相反数,c、d互为倒数,m的绝对值为2,从而可以求得a+b、cd、m的值,进而求得题目中所求式子的值.【解答】解:∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2,∴当m=2时,+3cd+m=0+3+2=5,当m=﹣2时,+3cd+m=0+3﹣2=1.故答案为:5或1.【点评】本题考查代数式求值、相反数、倒数、绝对值,解答本题的关键是明确题意,运用相关知识求出代数式的值.18.任何一个正整数n都可以进行这样的分解:n=s×t(s,t是正整数,且s≤t),如果p ×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:、例如18可以分解成1×18,2×9,3×6这三种,这时就有.给出下列关于F(n)的说法:(1);(2);(3)F(27)=3;(4)若n是一个整数的平方,则F(n)=1.其中正确说法的有(1)(4).【分析】根据所给出定义和示例,对四种结论逐一判断即可.【解答】解:(1)2可以分解成1×2,所以;故正确.(2)24可以分解成1×24,2×12,3×8,4×6这四种,所以;故(2)错误.(3)27可以分解成1×27,3×9这两种,所以;故(3)错误.(4)n是一个整数的平方,则F(n)==1,故(4)正确.所以正确的说法是(1)(4).【点评】本题新概念题,是中考的热点,解题的关键是读懂题意,弄清所给示例展示的规律.三、(本大题6个大题,共54分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.(8分)计算:(1)8+(﹣10)+(﹣2)﹣(﹣5)(2 )﹣7+13﹣6+20.【分析】(1)将减法转化为加法后,利用加法交换律和结合律,依据加法的运算法则计算可得;(2)利用加法交换律和结合律,依据加法的运算法则计算可得.【解答】解:(1)原式=8+5+(﹣10)+(﹣2)=13﹣12=1;(2)原式=(﹣7﹣6)+(13+20)=﹣13+33=20.【点评】本题主要考查有理数的加减混合运算,解题的关键是熟练掌握有理数加、减运算法则和加法的运算律.20.(8分)计算(1)(﹣2)÷×(﹣3)(2)(+﹣)×(﹣12).【分析】(1)从左往右依此计算即可求解;(2)根据乘法分配律简便计算.【解答】解:(1)(﹣2)÷×(﹣3)=﹣6×(﹣3)=18;(2)(+﹣)×(﹣12)=×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.(8分)把下列各数填在相应的集合里:1,﹣1,﹣2013,0.5,,﹣,﹣0.75,0,2014,20%,π.正数集合:{1,0.5,,2014,20%,π…}负数集合:{﹣1,﹣2013,﹣,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,,20%…}.【分析】根据有理数的分类,可得答案.【解答】解:正数集合:{ 1,0.5,,2014,20%,π…}负数集合:{﹣1,﹣2013,﹣,﹣0.75…}整数集合:{1,﹣1,﹣2013,0,2014…}正分数集合:{0.5,,20%…},故答案为:1,0.5,,2014,20%,π;﹣1,﹣2013,﹣,﹣0.75;1,﹣1,﹣2013,0,2014;0.5,,20%.【点评】本题考查了有理数,利用有理数的分类是解题关键.22.(12分)计算(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|(2)﹣12﹣(﹣10)÷×2+(﹣4)2(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3).【分析】(1)先算同分母分数,再相加即可求解;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;(3)根据乘法分配律简便计算.【解答】解:(1)(﹣0.6)﹣(﹣3)﹣(+7)+2﹣|﹣2|=(﹣0.6﹣7)+(3+2)﹣2=﹣8+6﹣2=﹣4;(2)﹣12﹣(﹣10)÷×2+(﹣4)2=﹣1+40+16=55(3)﹣5×(﹣3)+(﹣9)×(+3)+17×(﹣3)=(5﹣9﹣17)×(+3)=(﹣21)×(+3)=﹣75.【点评】考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.23.(6分)点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.利用数形结合思想回答下列问题:(1)数轴上表示1和3两点之间的距离2.(2)数轴上表示﹣12和﹣6的两点之间的距离是6.(3)数轴上表示x和1的两点之间的距离表示为|x﹣1|.(4)若x表示一个有理数,且﹣4<x<2,则|x﹣2|+|x+4|=6.【分析】(1)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(2)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(3)依据在数轴上A、B两点之间的距离AB=|a﹣b|,即可得到结果.(4)依据﹣4<x<2,可得表示x的点在表示﹣4和2的两点之间,即可得到|x﹣2|+|x+4|的值即为|﹣4﹣2|的值.【解答】解:(1)数轴上表示1和3两点之间的距离为|3﹣1|=2;(2)数轴上表示﹣12和﹣6的两点之间的距离是|﹣6﹣(﹣12)|=6;(3)数轴上表示x和1的两点之间的距离表示为|x﹣1|;(4)∵﹣4<x<2,∴|x﹣2|+|x+4|=|﹣4﹣2|=6,故答案为:2,6,|x﹣1|,6.【点评】本题考查的是绝对值的几何意义,两点间的距离,理解绝对值的几何意义是解决问题的关键.24.(12分)出租车司机李师傅某日上午8:00﹣9:20一直在某市区一条东西方向的公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,李师傅营运八批乘客里程如下:(单位:千米)+8,﹣6,+3,﹣4,+8,﹣4,+4,﹣3(1)将最后一批乘客送到目的地时,李师傅位于第一批乘客出发地的什么方向?距离多少千米?(2)这时间段李师傅开车的平均速度是多少?(3)若出租车的收费标准为:起步价10元(不超过5千米),超过5千米,超过部分每千米2元.则李师傅在这期间一共收入多少元?【分析】(1)把记录的数字相加即可得到结果;(2)把记录数字绝对值之和除以80,再乘以60即可得到结果;(3)根据收费标准确定出收入即可.【解答】解:(1)+8﹣6+3﹣4+8﹣4+4﹣3=6,答:在出发地东边,距离6千米;(2)(|+8|+|﹣6|+|+3|+|﹣4|+|+8|+|﹣4|+|+4|+|﹣3|)÷80×60=30,答:平均速度为30千米/每小时;(3)10×8+(8﹣5)×2×2+(6﹣5)×2=94,答:李师傅在这期间一共收入94元.【点评】此题考查了正数与负数,弄清题意是解本题的关键.四、(本大题2个大题,共24分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.25.(12分)如图,半径为1个单位的圆片上有一点A与数轴上的原点重合,AB是圆片的直径.(注:结果保留π)(1)把圆片沿数轴向右滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数(填“无理”或“有理”),这个数是π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;(3)圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3.①第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远.②当圆片结束运动时,A点运动的路程共有26π,此时点A所表示的数是﹣6π.【分析】(1)利用圆的半径以及滚动周数即可得出滚动距离;(2)利用圆的半径以及滚动周数即可得出滚动距离;(3)①利用滚动的方向以及滚动的周数即可得出A点移动距离变化;②利用绝对值的性质以及有理数的加减运算得出移动距离和A表示的数即可.【解答】解:(1)把圆片沿数轴向左滚动半周,点B到达数轴上点C的位置,点C表示的数是无理数,这个数是π;故答案为:无理,π;(2)把圆片沿数轴滚动2周,点A到达数轴上点D的位置,点D表示的数是4π或﹣4π;故答案为:4π或﹣4π;(3)①∵圆片在数轴上向右滚动的周数记为正数,圆片在数轴上向左滚动的周数记为负数,依次运动情况记录如下:+2,﹣1,+3,﹣4,﹣3,∴第4次滚动后,A点距离原点最近,第3次滚动后,A点距离原点最远,故答案为:4,3;②∵|+2|+|﹣1|+|+3|+|﹣4|+|﹣3|=13,∴13×2π×1=26π,∴A点运动的路程共有26π;∵(+2)+(﹣1)+(+3)+(﹣4)+(﹣3)=﹣3,(﹣3)×2π=﹣6π,∴此时点A所表示的数是:﹣6π,故答案为:26π,﹣6π.【点评】此题主要考查了数轴的应用以及绝对值的性质和圆的周长公式应用,利用数轴得出对应数是解题关键.26.(12分)已知:|a+1|+(5﹣b)2+|c+2|=0且a、b、c分别是点A、B、C在数轴上对应的数.(1)求a、b、c的值,并在数轴上标出A、B、C.(2)若甲、乙、丙三个动点分别从A、B、C三点同时出发沿数轴负方向运动,它们的速度分别是、2、(单位长度/秒),当乙追上丙时,乙是否追上了甲?为什么?(3)在数轴上是否存在一点P,使P到A、B、C的距离和等于10?若存在,请直接指出点P对应的数;若不存在,请说明理由.【分析】(1)根据非负数的性质即可求出a、b、c的值,在数轴上画出点A、B、C即可;(2)设乙用x秒追上丙,根据追击问题的相等关系列出方程,求出x的值,再求出x秒时甲与乙在数轴上的位置,即可解决问题;(3)分四种情形讨论:①当点P在点C左边时;②当点P在A、C之间时,PA+PB+PC <10,不存在;③当点P在A、B之间时;④当点P在点B右侧时,分别根据PA+PB+PC =10列出方程,即可解决问题.【解答】解:(1)∵|a+1|+(5﹣b)2+|c+2|=0,∴a+1=0,5﹣b=0,c+2=0,∴a=﹣1,b=5,c=﹣2.A、B、C三点在数轴上表示如下:(2)当乙追上丙时,乙也刚好追上了甲.由题意知道:AB=6,AC=1,BC=7.设乙用x秒追上丙,则2x﹣x=7,解得:x=4.则当乙追上丙时,甲运动了×4=2个单位长度,乙运动了2×4=8个单位长度,此时恰好有AB+2=8,故乙同时追上甲和丙;(3)设点P 对应的数为m ,①当点P 在点C 左边时,由题意,(5﹣m )+(﹣1﹣m )+(﹣2﹣m )=10,解得m =﹣; ②当点P 在A 、C 之间时,PA +PB +PC <10,不存在;③当点P 在A 、B 之间时,(5﹣m )+(m +1)+(m +2)=10,解得m =2,④当点P 在点B 右侧时,(m ﹣5)+(m +1)+(m +2)=10,解得m =4(不合题意舍去), 综上所述,当P 对应的数是﹣或2时,P 到A 、B 、C 的距离和等于10.【点评】本题考查一元一次方程的应用,两点间的距离,非负数的性质,行程问题关系的应用,解题的关键是学会利用方程解决问题,属于中考常考题型.七年级(上)期中考试数学试题及答案一、选择题(每小题2分,共20分)1.2018年国庆节期间,我市接待旅游总人数总人数达到918600人次,比去年同期增长1.9%,将918600用科学计数法表示应为( )A. 2918610⨯B. 491.8610⨯C. 59.18610⨯D. 60.918610⨯2.若a b =,那么下列等式不一定成立的是( )A.55a b +=+B.55b a -=-C.m a m b -=-D.a b x x= 3.若a ,b 两数之积为负数,且a b >,则A.a 为正数,b 为正数 B .a 为正数,b 为负数C.a 为负数,b 为正数D.a 为负数,b 为负数4.下列结论中正确的是( ) A.27-比大13- B.132-的倒数是27 C.最小的负整数是-1 D.10.5||2>- 5.以下说法正确的是( )A.单项式ab π-的系数为-1B.2213x y -+-多项式的常数项为-1 C.多项式2324x y x +-是四次三项式 D.43.1410⨯精确到百位6.一个两位数,个位数字为x ,十位数字是个位数字的平方的2倍,则这两个位数表示为( )A.22x x +B.220x x +C.210x x +D.240x x +7.如图所示,数轴上点A 、B 对应的有理数分别为a 、b ,下列说法正确的是( )A.0ab >B. 0a b +>C.0a b -<D.0a b -<8.当1x =时,代数式31ax bx ++的值为5,当1x =-时,代数式31ax bx ++的值等于( )A.0B.-3C.-4D.39.如图①、②是两个形状、大小完全相同的两个大长方形,在每个大长方形内放入如图的小长方形,大长方形的长为a ,宽为b ,则图①阴影部分的周长与图②阴影部分的周长的差的绝对值是( )A.a b -B.2()a b -C.2aD.2b10.若0a b c ++=,且a b c >>,以下结论:①0a >,0c >;②22()a b c =+;③关于x 的方程0ax b c ++=的解为1x =;④a b c abc a b c abc+++的值为0或2;⑤在数轴上点A 、B 、C 表示数a 、b 、c ,0b ≤,则线段AB 与线段BC 的大小关系是AB BC >.其中正确的结论有( )个.A.2个B.3个C.4个D.5个二、填空题(每小题2分,共12分)11.若单项式53m a b 与22n a b -人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是( )A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.。
2017-2018学年天津市红桥区七年级(上)期中数学试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣5的绝对值是()A.5 B.C.﹣ D.﹣52.(2分)下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)3.(2分)在﹣2,+3.5,0,,﹣0.7中,负分数有()A.1个 B.2个 C.3个 D.4个4.(2分)我市现有人口数约为356.91万人,用科学记数法表示该数是()A.3.5691×102人B.3.5691×106人C.3.5691×101人D.3.5691×10﹣6人5.(2分)下列说法正确的是()A.﹣5,a不是单项式B.﹣的系数是﹣2C.﹣的系数是﹣,次数是4D.x2y的系数为0,次数为26.(2分)下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y7.(2分)下列选项不是同类项的是()A.﹣1和0 B.﹣4xy2z和﹣4x2yz2C.﹣x2y和2yx2D.﹣a3和4a38.(2分)﹣(﹣x﹣6)+(x﹣1)去括号正确的是()A.﹣x﹣6+x﹣1 B.x+6+x﹣1 C.x﹣6+x﹣1 D.﹣x+6x+x﹣19.(2分)有理数a,b满足a>0,b<0,a+b<0,那么a,b,﹣a,﹣b的大小关系是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a10.(2分)已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b二、填空题(共8小题,每小题3分,满分24分)11.(3分)计算:的倒数是;﹣24=;1﹣(﹣2)=.12.(3分)比较大小:(填“<”或“>”)13.(3分)由四舍五入得到的近似数0.69精确到位.14.(3分)数轴上的点A到原点的距离是6,则点A表示的数为.15.(3分)若使多项式5x3﹣8x2+x与多项式4x3+2mx2﹣10x﹣1相加后不含二次项,则m的值是.16.(3分)若(a﹣1)2+|b+2|=0,那么a+b=.17.(3分)一个长方形的宽为a,长比宽的2倍少3,则这个长方形的周长是(用含a的式子表示)18.(3分)已知a和b互为相反数,m与n互为倒数,|﹣c|=2,则2a+2b+=.三、解答题(共6小题,满分56分)19.(16分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(3)﹣24×(4).20.(8分)化简:(1)5x4+3x2y﹣10﹣3x2y+x4﹣1(2)2(x2+3)﹣(5﹣x2).21.(10分)先化简,再求值.(1)﹣5a2+(3a﹣2)﹣(3a﹣7),其中a=﹣2(2),其中x=3,y=.22.(6分)若x的相反数是3,|y|=8,且xy>0,求y﹣x的值.23.(8分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中小轿车每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)求第三天行驶了多少千米.(2)这七天中行驶路程最多的一天比行驶路程最少的一天多行驶了多少千米?(3)求出这7天中平均每天行驶多少千米?24.(8分)某工厂生产一种茶几和茶具,茶几每套定价400元,茶具每套定价90元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套茶几送一套茶具;②茶几和茶具都按定价的90%付款.现某客户要到该厂购买茶几10套,茶具x套(x>10).(1)若该客户按方案①购买,需付款元.;(用含x的代数式表示)若该客户按方案②购买,需付款;(用含x的代数式表示)(2)若x=20,通过计算说明此时按方案①和方案②,用哪种方案买较为合算?(3)当x=20时,你能工具厂方提供的两种优惠方式给出一种更为省钱的购买方案吗?如果有,请写出你的购买方案.2017-2018学年天津市红桥区七年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)﹣5的绝对值是()A.5 B.C.﹣ D.﹣5【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选:A.2.(2分)下列两个数互为相反数的是()A.﹣和0.2 B.﹣和0.333 C.﹣2.25和2D.5和﹣(﹣5)【解答】解:A、﹣的相反数是,错误;B、﹣的相反数的是,错误;C、﹣2.25和2互为相反数,正确;D、5的相反数是﹣5,5=﹣(﹣5),错误.故选:C.3.(2分)在﹣2,+3.5,0,,﹣0.7中,负分数有()A.1个 B.2个 C.3个 D.4个【解答】解:∵3.5,﹣,﹣0.7是分母不为1的数,∴3.5,﹣,﹣0.7是分数,∵﹣<0,﹣0.7<0,∴﹣,﹣0.7是负分数,故选:B.4.(2分)我市现有人口数约为356.91万人,用科学记数法表示该数是()A.3.5691×102人B.3.5691×106人C.3.5691×101人D.3.5691×10﹣6人【解答】解:356.91万=3 569 100=3.5691×106人.故选:B.5.(2分)下列说法正确的是()A.﹣5,a不是单项式B.﹣的系数是﹣2C.﹣的系数是﹣,次数是4D.x2y的系数为0,次数为2【解答】解:A、﹣5,a是单项式,故此选项错误;B、﹣的系数是﹣,故此选项错误;C、﹣的系数是﹣,次数是4,故此选项正确;D、x2y的系数为1,次数为3,故此选项错误.故选:C.6.(2分)下列各式中,是二次三项式的是()A.3+a+ab B.32+3x+1 C.a3+a2﹣3 D.x2+y2+x﹣y【解答】解:A、单项式的最高次数是2,整个式子由3个单项式组成,符合题意;B、单项式的最高次数是1,整个式子由3个单项式组成,不符合题意;C、单项式的最高次数是3,整个式子由3个单项式组成,不符合题意;D、单项式的最高次数是2,整个式子由4个单项式组成,不符合题意.故选:A.7.(2分)下列选项不是同类项的是()A.﹣1和0 B.﹣4xy2z和﹣4x2yz2C.﹣x2y和2yx2D.﹣a3和4a3【解答】解:A、两个常数项是同类项;B、相同字母的次数不同,故不是同类项;C、是同类项;D、是同类项.故选:B.8.(2分)﹣(﹣x﹣6)+(x﹣1)去括号正确的是()A.﹣x﹣6+x﹣1 B.x+6+x﹣1 C.x﹣6+x﹣1 D.﹣x+6x+x﹣1【解答】解:﹣(﹣x﹣6)+(x﹣1)=x+6+x﹣1.故选:B.9.(2分)有理数a,b满足a>0,b<0,a+b<0,那么a,b,﹣a,﹣b的大小关系是()A.﹣a<b<a<﹣b B.b<﹣a<a<﹣b C.﹣a<﹣b<b<a D.b<﹣a<﹣b<a 【解答】解:∵a+b<0,∴a<﹣b,b<﹣a.又∵a>0,b<0,∴b<﹣a<0<a<﹣b.故选:B.10.(2分)已知a<b,那么a﹣b和它的相反数的差的绝对值是()A.b﹣a B.2b﹣2a C.﹣2a D.2b【解答】解:依题意可得:|(a﹣b)﹣(b﹣a)|=2b﹣2a.故选B.二、填空题(共8小题,每小题3分,满分24分)11.(3分)计算:的倒数是;﹣24=﹣16;1﹣(﹣2)=3.【解答】解:的倒数是,﹣24=﹣16,1﹣(﹣2)=1+2=3,故答案为:,﹣16,3.12.(3分)比较大小:<(填“<”或“>”)【解答】解:根据有理数比较大小的方法,可得<.故答案为:<.13.(3分)由四舍五入得到的近似数0.69精确到百分位.【解答】解:近似数0.69精确到百分位.故答案为百分.14.(3分)数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6.【解答】解:数轴上的点A到原点的距离是6,则点A表示的数为6或﹣6,故答案为:6或﹣6.15.(3分)若使多项式5x3﹣8x2+x与多项式4x3+2mx2﹣10x﹣1相加后不含二次项,则m的值是4.【解答】解:根据题意得:5x3﹣8x2+x+4x3+2mx2﹣10x﹣1=9x3+(2m﹣8)x2﹣9x ﹣1,由结果不含二次项,得到2m﹣8=0,解得:m=4,故答案为:416.(3分)若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.17.(3分)一个长方形的宽为a,长比宽的2倍少3,则这个长方形的周长是6a ﹣6(用含a的式子表示)【解答】解:∵长方形的宽为a,长比宽的2倍少3,∴长方形的长为2a﹣3,∴长方形的周长为2×(a+2a﹣3)=6a﹣6,故答案为:6a﹣618.(3分)已知a和b互为相反数,m与n互为倒数,|﹣c|=2,则2a+2b+=±.【解答】解:∵a和b互为相反数,m与n互为倒数,|﹣c|=2,∴a+b=0,mn=1,c=±2,∴2a+2b+=2(a+b)+=2×0±=0±=±.故答案为:±.三、解答题(共6小题,满分56分)19.(16分)计算:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(2)(3)﹣24×(4).【解答】解:(1)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49)+(﹣91)+5+(﹣9)=﹣144;(2)=2.5×=1;(3)﹣24×=﹣24×(﹣)﹣24×=12﹣18+8=2;(4)=﹣1+÷=﹣1+=﹣1+=﹣.20.(8分)化简:(1)5x4+3x2y﹣10﹣3x2y+x4﹣1(2)2(x2+3)﹣(5﹣x2).【解答】解:(1)原式=6x4﹣11;(2)原式=2x2+6﹣5+x2=3x2+1.21.(10分)先化简,再求值.(1)﹣5a2+(3a﹣2)﹣(3a﹣7),其中a=﹣2(2),其中x=3,y=.【解答】解:(1)原式=﹣5a2+3a﹣2﹣3a+7=﹣5a2+5,当a=﹣2时,原式=﹣20+5=﹣15;(2)原式=3x2y﹣2xy+2xy﹣3x2y﹣xy=﹣xy,当x=3,y=﹣时,原式=1.22.(6分)若x的相反数是3,|y|=8,且xy>0,求y﹣x的值.【解答】解:∵x的相反数是3,∴x=﹣3,∵|y|=8,∴y=±5,∵xy>0,∴x=﹣3,y=﹣8,∴y﹣x=﹣8﹣(﹣3)=﹣8+3=﹣5.23.(8分)随着人们生活水平的提高,家用轿车越来越多地进入家庭.小明家中买了一辆小轿车,他连续记录了7天中小轿车每天行驶的路程(如下表),以50km为标准,多于50km的记为“+”,不足50km的记为“﹣”,刚好50km的记为“0”.(1)求第三天行驶了多少千米.(2)这七天中行驶路程最多的一天比行驶路程最少的一天多行驶了多少千米?(3)求出这7天中平均每天行驶多少千米?【解答】解:(1)第三天行驶了(50﹣14)=36千米;(2)(50+41)﹣(50﹣14)=55千米;(3)平均每天行驶的路程为50+=50千米.24.(8分)某工厂生产一种茶几和茶具,茶几每套定价400元,茶具每套定价90元,厂方在开展促销活动期间,向客户提供两种优惠方案:①买一套茶几送一套茶具;②茶几和茶具都按定价的90%付款.现某客户要到该厂购买茶几10套,茶具x套(x>10).(1)若该客户按方案①购买,需付款90x+3100元.;(用含x的代数式表示)若该客户按方案②购买,需付款81x+3600;(用含x的代数式表示)(2)若x=20,通过计算说明此时按方案①和方案②,用哪种方案买较为合算?(3)当x=20时,你能工具厂方提供的两种优惠方式给出一种更为省钱的购买方案吗?如果有,请写出你的购买方案.【解答】解:(1)若该客户按方案①购买,需付款400×10+90(x﹣10)=90x+3100元,若该客户按方案②购买,需付款(400×10+90x)×0.9=81x+3600元;故答案为:90x+3100,81x+3600;(2)当x=20时,方案一:20×90+3100=4900(元)方案二:20×81+3600=5220(元)所以,按方案一购买较合算.(3)先按方案一购买10套茶几送10套茶具,再按方案二购买10套茶具.。