七年级上册期中考试数学试卷(A卷)
- 格式:doc
- 大小:109.50 KB
- 文档页数:4
2022-2023年七年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018七上·沧州期末) 数轴上点A表示﹣4,点B表示2,则表示A,B两点间的距离的算式是)A . ﹣4+2B . ﹣4﹣2C . 2﹣(﹣4)D . 2﹣42. (2分) (2020七上·德惠月考) 下列计算正确的是().A .B .C .D .3. (2分) 2的相反数是()A . -2B . 2C .D .4. (2分)解方程2(y-2)-3(y+1)=4(2-y)时,下列去括号正确的是()A . 2y-2-3y-1=8-yB . 2y-4-3y-3=8-yC . 2y-4-3y+3=8-4yD . 2y-4-3y-3=8-4y5. (2分) (2020七上·沈北新期中) 用一个平面去截一个圆锥,截面图形不可能是()A .B .C .D .6. (2分) (2018七上·云梦月考) 一种零件的直径尺寸在图纸上是30 (单位:mm),它表示这种零件的标准尺寸是30mm,加工要求该零件最大尺寸为()mm.A . 0.03B . 0.02C . 30.03D . 29.987. (2分) (2020七上·内乡期末) 下列运算正确的是()A . ﹣7﹣2×5=﹣9×5=﹣45B . 3C . ﹣(﹣2)3=6D . 12÷()=﹣728. (2分)若, 则的值为()A .B . 8C . 9D .二、填空题 (共9题;共14分)9. (1分) (2020七上·象山期中) 某天杭州市天气预报显示:我市的最高气温是零上5℃,最低气温是零下2℃我们把零上5℃记为+5℃,那么零下2℃可记为℃.10. (2分) (2018七上·桐乡期中) 规定收入为正,则“支出600元”应该表示为元.11. (2分) (2021七上·柯桥期末) -2的相反数为;9的算术平方根为;4的倒数为.12. (1分) (2020七上·大丰月考) 2019年7月盐城黄海湿地申遗成功,它的面积约为400000万平方米.将数据400000用科学记数法表示应为.13. (1分) (2017七上·天门期中) ﹣(+5)的绝对值是,﹣2 的倒数是.14. (2分) (-2)6中指数为,底数为;4的底数是,指数是;5 的底数是,指数是,结果是;15. (1分)把式子(﹣3)+(﹣6)﹣(+4)﹣(﹣5)改写成省略括号的和的形式:.16. (2分)在0,-2,1, 这四个数中,最大数与最小数的和是.17. (2分) (2019七上·南通月考) 计算: =.三、解答题 (共6题;共65分)18. (5分) (2019七上·兴平月考) 请分别从正面、左面和上面画出你看到的几何体的形状图.19. (5分) (2019七上·兴平月考) 将-2.5,,2,-,-(-3),0在数轴上表示出来,并用“<”号把它们连接起来.20. (20分) (2019七下·泰兴期中) 计算.(1)(2)21. (10分) (2019七上·台安月考) 有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的纪录如下:回答下列问题:(1)这8筐白菜中最接近标准重量的这筐白菜重千克;(2)与标准重量比较,8筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?22. (15分) (2016七上·连州期末) 连州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问:(1)若设乙旅行社的人数为x,请用含x的代数式表示甲旅行社的人数;(2)甲、乙两个旅游团各有多少人?23. (10分) (2020七上·如皋期中) 一名快递员骑电动车从饭店出发送外卖,向东走了2千米到达小红家,继续向东走了4千米到达小明家,然后又向西走了8千米到达小刚家,最后回到饭店.现以饭店为原点,以向东的方向为正方向,用一个单位长度表示千米画数轴,并以点,,,分别表示饭店,小红家,小明家,小刚家.(1)请画出数轴,并在数轴上标出点,,,的位置;(2)小刚家距小红家多远?(3)若小红步行到小明家每小时走千米;小刚骑自行车到小明家每小时骑千米,若两个人同时分别从自己家出发,问两个人能否同时到达小明家,若不能同时,谁先到达?参考答案一、单选题 (共8题;共16分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:二、填空题 (共9题;共14分)答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:三、解答题 (共6题;共65分)答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:第11 页共11 页。
江苏省徐州市2024-2025学年苏科版数学七年级上册期中猜测卷A(满分140分,时间90分钟)一、选择题(本题共8小题,每题3分,共24分)1.下列计算中,正确的是()A.()527-++=- B.1313⎛⎫-⨯-=- ⎪⎝⎭C.()328--=- D.1393⎛⎫-÷-= ⎪⎝⎭2.单项式3492a b c -的系数和次数分别为()A.92,8 B.92-,8 C.92,7 D.92-,73.下列添括号正确的是()A.()x y x y +=--B.()x y x y -=-+ C.()x y x y -+=-- D.()x y x y --=--4.下列说法正确的是()A.21x +是二次单项式B.数字0是单项式C.23πab -的系数是23-D.2a -的次数是2,系数是15.若22x y -=,则421x y -+的值是()A.3B.4C.5D.66.如图,某同学用直尺画数轴,数轴上点A,B 分别在直尺的1cm ,9cm 处,若点A 对应4-,直尺的0刻度位置对应6-,则线段AB 中点对应的数为()A.4B.5C.8D.07.如图所示,a b 、是有理数,则式子a b a b a b ++++-化简的结果为()A.3a b+B.3a b-C.3b a+D.3b a-8.如图,表中给出的是本月的月历,任意选取“”型框中的6个数(譬如阴影部分所示),则这6个数的和不可能是()A.87B.99C.129D.135二、填空题(本题共8小题,每题3分,共24分)9.比较大小:25-_______13-.(请在横线上填入“>”、“=”或“<”)10.列式表示“x 的2倍与y 的和”为______.11.若24m x y 与33n x y -是同类项,则m n +=___________.12.当k=__________时,多项式x-1与2-kx 的乘积中不含x 的一次项.13.若a 是最大的负整数,b 是绝对值最小的数,c 与2a 互为相反数,则()32025a b c -+=.14.已知225a ab +=-,223ab b -=-,则2293332a ab b +++的值等于______.15.找出下列各图形中数的规律,依此,a 的值为_______.16.七巧板(如图1)是中国古代人民发明的一种传统智力玩具,它由五块等腰直角三角形一块正方形和一块平行四边形共七块板组成(已知线段长度如图所示).现将它拼成一个“房子”造型(如图2),恰好..放入长方形...ACD 容器中,则长方形...容器的周长为________(用含m ,n 的代数式表示).三、解答题(本题共8小题,共82分)17.(本题12分)计算:(1)()()121033⎛⎫-÷-⨯- ⎪⎝⎭;(2)()2021231210.25⎡⎤⎛⎫---+-⨯ ⎪⎢⎥⎝⎭⎣⎦18.(本题12分)化简:(1)68ab ab ab -++;(2)()()3333384a b b b a b +--.19.(本题10分)先化简,再求值:()()222233233a b ab ab a a b a ⎡⎤-+-+-+⎣⎦,其中a,b 满足()2210a b -++=.20.(本题12分)已知整式A 和B 满足:22243,333B A a ab B a ab -=+=-+-.(1)求整式A (用所含,a b 的代数式表示);(2)比较A 与B 的大小.21.(本题10分)老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当3a =,2b =时,求被捂住的多项式的值.22.(本题12分)定义:若6a b +=,则称a 与b 是关于6的实验数.(1)4与______是关于6的实验数;代数式______与52x -是关于6的实验数.(2)若242a x x =-+,()22222b x x x =---,判断a 与b 是否是关于6的实验数,说明理由.(3)若c 与d 是关于6的实验数,且()22341c x x =---,求d 的值.23.(本题12分)地自2022年1月起,居民生活用水开始试行阶梯式计量水价,该阶梯式计量水价分为三级(如下表所示):月用水量(吨)水价(元/吨)第一级20吨以下(含20吨) 1.6第二级20吨—30吨(含30吨) 2.4第三级30吨以上 3.2例:某用户的月用水量为32吨,按三级计量应缴交水费为:1.620 2.410 3.2262.4⨯+⨯+⨯=(元).(1)如果甲用户某月用水量为10吨,则甲当月需缴交的水费为______元;(2)如果乙用户某月缴交的水费为39.2元,则乙该月用水量为______吨;(3)如果丙用户某月用水量为a吨,则丙该月应缴交水费多少元?(用含a的式子表示,并化简)24.(本题12分)数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是5-,那么点B所表示的数是____________;②在图1中标出原点O的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小慧提供的信息,标出隐藏的原点O的位置,写出此时点C所表示的数是_______;(3)如图3,数轴上标出若干个点,其中点A,B,C,D所表示的数分别为a,b,c,d.①用a,c表示线段AC的长为____________;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如1BC=),且210d a-=.判断此时数轴上的原点是A,B,C,D中的哪一点,并说明理由.。
湘教版七年级上册数学期中考试试卷一、单选题1.下列说法正确的是()A .整数和小数统称为有理数B .a 是正数,a -是负数C .最大的负整数是-1D .相反数等于它本身的数是0,±12.|5|-的相反数是()A .5-B .5C .15D .15-3.下列各对单项式中,属于同类项的是()A .ab -与4abcB .213x y 与212xy C .0与3-D .3与a4.数据690000000用科学记数法表示为()A .6.9×107B .6.9×108C .6.9×109D .6.9×10105.下列各组有理数的大小比较中,正确的是()A .()()12--<-+B .()32-->--C . 3.14π-<-D .()10.33--<--6.如果a+b <0,并且ab >0,那么()A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <07.下列去括号正确的是()A .221135135122x y x x y y ⎛⎫--+=-++ ⎪⎝⎭B .()8347831221a ab b a ab b --+=---C .()()222353261063x y x x y x +--=+-+D .()()223423422x y x x y x --+=--+8.在2x 2,1-2x =0,ab ,a >0,0,1a ,π中,是代数式的有()A .5个B .4个C .3个D .2个9.单项式63225x y -的系数和次数分别是()A .2,55-B .3,115-C .62,115-D .62,55-10.下列化简正确的是()A .2325a a a +=B .33a a -=C .325a b ab+=D .2222a a a -+=11.若A 与B 均是三次多项式,则A+B 一定是()A .六次多项式B .次数低于三次的多项式C .三次多项式D .次数不高于三次的多项式或单项式12.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=.用你发现的规律得出2020202122+的末位数字是()A .2B .4C .8D .6二、填空题13.如果整式352n x x --+是关于x 的二次三项式,那么n 等于______.14.已知23x y =+,则代数式489x y -+的值是_____.15.若单项式-x 6y 3m 与2x 2ny 3是同类项,则常数m+n 的值是______.16.一个两位数的十位上的数字为x ,个位上的数字为y ,则这个两位数表示为__________.17.下列各式:-(-2)、-|-2|、-22、-(-2)2、2(1)3-,则计算结果为负数的有____个.18.观察如图所示图形构成的规律,根据此规律,第42个图中小圆点的个数为_____.三、解答题19.计算下列各式:(1)()11124364⎛⎫-+⨯- ⎪⎝⎭(2)22128(2)2-⨯+÷-20.先化简,再求值:()()22225333a b ab ab a b ---+,其中()21102a b ++-=.21.在数轴上表示下列各数:0,–4.2,132,–2,+7,113,并用“<”号连接22.老师在黑板上写了一个正确的演算过程,然后用手掌捂住了一个多项式,形式如下:(1)求被捂住的多项式;(2)当1,1a b ==-时,求被捂住的多项式的值.23.阅读材料:对于任何数,我们规定符号a b c d 的意义是a b ad bc c d=-.例如:121423234=⨯-⨯=-.(1)按照这个规定,请你计算1231--的值;(2)按照这个规定,请你计算()221205x y ⎛⎫-++= ⎪⎝⎭时,22332x y x y -+-+值.24.已知多项式()22133212x mx y x y nx +-+--+-的值与字母x 的取值无关.(1)求,m n 的值;(2)求多项式()()233m n m n +--的值.25.某学校准备组织部分教师到杭州旅游,现联系了甲、乙两家旅行社,两家旅行社报价均为500元/人,同时两家旅行社都对10人以上的团体推出了优惠举措:甲旅行社对每位游客八折优惠;而乙旅行社是免去一位带队老师的费用,其余老师八五折优惠.(1)如果设参加旅游的老师共有()10x x >人,则甲旅行社的费用为___________元,乙旅行社的费用为___________元;(要求用含x 的代数式表示,并化简.)(2)假如某校组织18名教师到杭州旅游,该校选择哪一家旅行社比较优惠?请说明理由.26.如图,在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,其中b 是最小的正整数,且多项式()323492a x x x ++++是关于x 的二次多项式,一次项系数为c .(1)=a ______,b =______,c =______;(2)若将数轴折叠,使得点A 与点C 重合,则点B 与某数表示的点重合,求出此数;(3)若点A 、点B 和点C 分别以每秒2个单位长度、1个单位长度和4个单位长度的速度在数轴上同时向左运动时,小明同学发现:当点C 在点B 右侧时,3m BC AB ⋅+的值是个定值,求此时m 的值.参考答案1.C【解析】【分析】根据有理数的性质即可依次判断.【详解】A.整数和分数统称为有理数,故A 错误;B.a 是非负数,a -是可以是正数、零或负数,故B 错误;C.最大的负整数是-1,正确;D.相反数等于它本身的数是0,故D 错误;故选C .【点睛】此题主要考查有理数的性质判断,解题的关键是熟知绝对值、相反数的性质特点.2.A【解析】【分析】先化简|5|=5-,再求5的相反数即可.【详解】解:|5|=5---故选:A .【点睛】此题主要考查求一个式子的相反数,关键是化简式子.3.C【解析】【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项;C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:690000000=6.9×108,故选:B .【点睛】本题考查了科学记数法表示较大的数,正确移动小数点位数是解题的关键.5.C【解析】【分析】先将多重符号和绝对值化简,然后根据有理数的比较大小方法逐一判断即可.【详解】解:A .()()1=12=2---+-,,而1>-2,所以()()12-->-+,故错误;B .()33,22--=---=,而-3<2,所以()32--<--,故错误;C ., 3.14 3.14ππ-=-=,而 3.14π>,所以 3.14π-<-,故正确;D .()110.30.3,33--=--=-,而10.33>-,所以()10.33-->--,故错误.故选C .【点睛】此题考查的是有理数的比较大小,解题关键是先将多重符号和绝对值化简.6.A【解析】【分析】根据0ab >,利用同号得正,异号得负可得a 与b 同号,再根据0a b +<即可得.【详解】∵0ab >,∴a 与b 同号,又∵0a b +<,0,0a b ∴<<,故选:A .【点睛】本题考查了有理数的乘法与加法,熟练掌握运算法则是解题关键.7.C【解析】【分析】依据去括号法则计算即可判断正误.【详解】A.221135135122x y x x y x ⎛⎫--+=-+- ⎪⎝⎭,故此选项错误;B.()8347831221a ab b a ab b --+=-+-,故此选项错误;C.()()222353261063x y x x y x +--=+-+,此选项正确;D.()()223423422x y x x y x --+=---,故此选项错误;故选:C.【点睛】此题考查整式的化简,注意去括号法则.8.A【解析】【分析】代数式是有数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、<、>、≤、≥、≈、≠等符号.【详解】∵1-2x=0,a >0,含有=和>,所以不是代数式,∴代数式的有2x 2,ab ,0,1a,π,共5个.故选A .【点睛】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、<、>、≤、≥、≈、≠等符号的不是代数式.9.D【解析】【详解】单项式63225x y -的系数和次数分别是625-,5.故选D.【点睛】本题主要考查单项式与多项式的基本概念.根据定义,表示数或字母的积的式子叫做单项式.单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数.10.D【解析】【分析】根据整式的加减运算法则即可求解.【详解】A.325a a a +=,故错误;B.32a a a -=,故错误;C.32a b +不能合并,故错误;D.2222a a a -+=,正确故选D.【点睛】此题主要考查整式的加减,解题的关键是熟知合并同类项的方法.11.D【解析】【分析】根据多项式的次数和合并同类项法则进行判断即可.【详解】∵A ,B 都是三次多项式,∴A +B 一定是3次或比次数3小的多项式或单项式,故选D .本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.12.C【解析】【分析】观察发现此列数的末尾数是2,4,8,6的循环,据此规律可推断2020202122+的尾数.【详解】解:观察122=,224=,328=,4216=,5232=,6264=,72128=,82256=,⋯发现尾数是2,4,8,6的循环,20204505,20214505...1÷=÷= ,20202∴是循环中的最后一个,20212∴是循环中的第一个,20202∴的尾数是6,20212∴的尾数是2,2020202122∴+的末位数字是:628+=,故选:C .【点睛】本题主要考查数字找规律,解题的关键是要能发现尾数是2,4,8,6的循环.13.5【解析】【分析】根据多项式的特点即可求解.【详解】∵整式352n x x --+是关于x 的二次三项式,∴n-3=2∴n=5故答案为:5.【点睛】此题主要考查多项式的次数与项数,解题的关键是熟知多项式的次数的判断方法.14.21【分析】由已知可得x-2y=3,继而对所求的式子进行变形后,利用整体代入思想即可求得答案.【详解】∵x=2y+3,∴x-2y=3,∴4x-8y+9=4(x-2y)+9=4×3+9=21,故答案为21.【点睛】本题考查了代数式求值,正确的进行变形是解题的关键.15.4【解析】【分析】直接利用同类项的定义分析得出答案.【详解】解:∵单项式-x6y3m与2x2ny3是同类项,∴6=2n,3m=3,解得:n=3,m=1则常数m+n的值是4.故答案为4【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.16.10x y【解析】【分析】十位上的数字表示几个十,十位上的数字是x,就是x个十,即10x,个位上的数字表示几个一,个位上的数字是y,把十位和个位加起来就是这个两位数.【详解】解:十位上的数字是x ,就是x 个十,即x ×10=10x ,个位上的数字是y ,这两位数是10x y +.故答案为:10x y +.【点睛】本题考查列代数式,属于基础题型.17.3【解析】【分析】分别把各数进行化简,判断即可求解.【详解】解:-(-2)=2,是正数;-|-2|=-2,是负数;-22=-4,是负数;-(-2)2=-4,是负数;2(1)1=33-,是正数.所以计算结果为负数的有3个.故答案为:3【点睛】本题考查了正负数、相反数、绝对值、乘方等知识,理解正负数、相反数、绝对值、乘方的意义是解题关键.18.1805.【解析】【分析】观察图形的变化并寻找规律,最后按规律解答即可.【详解】解:观察图形可知:第1个图中小圆点的个数为1个,即1=0+12;第2个图中小圆点的个数为5个,即5=1+22;第3个图中小圆点的个数为11个,即11=2+32;第4个图中小圆点的个数为19个,即19=3+42;…第n 个图中小圆点的个数为(n ﹣1)+n 2;所以第42个图中小圆点的个数为41+422=1805.故答案为1805.【点睛】本题考查了图形的规律问题,解答的关键在于根据图形找到排布规律.19.(1)-10;(2)0【解析】【分析】(1)根据乘法分配律简便计算;(2)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算.【详解】解:(1)111()(24)364-+⨯-,111(24)(24)(24)364=⨯--⨯-+⨯-,846=-+-,10=-;(2)22128(2)2-⨯+÷-,22=-+0=.【点睛】考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.20.2262a b ab -,132【解析】【分析】去括号,合并同类项得2262a b ab -,根据21(1)02a b ++-=得1a =-,12b =,将1a =-,12b =代入2262a b ab -中,进行计算即可得.【详解】原式=2222222215539(159)(35)62a b ab ab a b a b ab a b ab -+-=-+-=-∵21(1)02a b ++-=,∴10a +=,102b -=解得:1a =-,12b =当1a =-,12b =时,原式=221116(1)2(1)(3222⨯-⨯-⨯-⨯=【点睛】本题考查了整式的化简求值,绝对值的非负性,解题的关键是掌握整式加减的运算法则,绝对值的非负性.21.-4.2<-2<0<113<312<+7【解析】【分析】首先在数轴上确定表示各数的点的位置,再根据在数轴上表示的两个有理数,右边的数总比左边的数大用“<”连接.【详解】如图所示,-4.2<-2<0<113<312<+722.(1)8b 2+4ab ;(2)4【解析】【分析】(1)根据减式=被减式-差的关系进行解答即可;(2)将1,1a b ==-代入(1)求出的多项式即可.【详解】(1)所捂的多项式为:(a 2+4ab +4b 2)-(a 2-4b 2)=a 2+4ab +4b 2-a 2+4b 2=8b 2+4ab.(2)当a =1,b =-1时,原式=8×(-1)2+4×1×(-1)=8-4=4【点睛】本题考查了整式的加减,解答的关键在于理解减式、被减式和差之间的关系以及精确的计算能力.23.(1)5;(2)13【解析】【分析】(1)根据定义即可求出答案.(2)首先根据非负数的和为0得到x y ,的值,然后根据定义以及整式的运算法则进行化简求值,即可求出答案.【详解】解:(1)由题意可知:121(1)(2)316531-=⨯---⨯=-+=-;(2)∵()221205x y ⎛⎫-++= ⎪⎝⎭,∴2x =,15y =-,∴()()2222323332x y x y x y x y -++=--+-+-226233x y x y=---235x y=-13455⎛⎫=⨯-⨯- ⎪⎝⎭12113=+=.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.24.(1)3m =,1n =-;(2)-10.【解析】【分析】(1)先化简代数式,再根据多项式的值与字母x 的取值无关,即可得到含x 项的系数等于0,即可得出m ,n 的值;(2)化简多项式,再把3m =,1n =-代入计算即可.【详解】解:(1)()22133212x mx y x y nx +-+--+-22133212x mx y x y nx =+-+-+-+()()233122n x m x y =++-++,∴当多项式的值与字母x 的取值无关时,10n +=,30m -=,∴3m =,1n =-;(2)()()233m n m n +--263m n m n=+-+7m n=-+当3m =,1n =-时,原式()371=-+⨯-10=-【点睛】本题主要考查了整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.25.(1)400x ,(425x -425);(2)甲旅行社比较优惠,理由见解析.【解析】【分析】(1)根据题意可得甲旅行社的费用=500×80%×人数,乙旅行社的费用=500×85%×(总人数-1),列出代数式化简即可;(2)将x=18分别代入两个代数式求出代数式的值,然后比较大小进行选择即可.【详解】解:(1)由题意得,甲旅行社的费用=500×80%x=400x元;乙旅行社的费用=500×85%(x-1)=(425x-425)元;故答案为:400x;(425x-425);(2)甲旅行社比较优惠,理由如下:将x=18代入得,甲旅行社的费用=400×18=7200(元);乙旅行社的费用=425×18-425=7225(元);∵7200<7225,∴甲旅行社比较优惠.【点睛】本题考查了整式的实际应用,弄清题意,正确列出代数式是解题的关键.26.(1)-3,1,9;(2)此数为5;(3)m=1.【解析】【分析】(1)根据多项式与单项式的概念即可求出答案;(2)求出AC的中点对应的数值,由于点B关于这个中点对称,利用这一性质即可得出结论;(3)设三点运动的时间为t秒,依据图形分别表示出线段BC,AB的长度,代入m•BC+3AB 中,整理后利用m•BC+3AB的值是个定值可令t的系数为0即可求出答案.【详解】解:(1)∵b是最小的正整数,∴b=1.∵多项式(a+3)x3+4x2+9x+2是关于x的二次多项式,∴a+3=0,∴a=-3.∴多项式为:4x2+9x+2.∵它的一次项系数为c,∴c=9.∴a=-3,b=1,c=9,故答案为:-3,1,9;(2)线段AC的中点对应的数为:392-+=3,∵点B到3的距离为2,∴与点B重合的数是:3+2=5;(3)当点C在点B右侧时:设三点运动的时间为t秒,则m•BC+3AB=m(9-4t-1+t)+3(1-t+3+2t)=8m+12+3t(1-m),∵m•BC+3AB的值是个定值,∴1-m=0,∴m=1.即当m=1时,m•BC+3AB为定值20.。
2024年版七年级上学期期中数学模拟考试测试卷(测试范围:七年级上册第一章——第四章)一、单选题(每题3分,共30分)1.如果微信账单中收入100元记作100+元,那么20-元表示( )A .支出80元B .收入80元C .支出20元D .收入20元2.我国的陆地面积约为29600000km ,将9600000用科学记数法表示应为( )A .59.610´B .69.610´C .79.610´D .89.610´3.如果单项式3a x y +与5b xy -是同类项,那么()2024a b +=( )A .1B .1-C .0D .无法确定4.设a 是最小的正整数,b 是最大的负整数,c 既不是正数也不是负数,则a b c ++等于( )A . 1-B .0C .1D .25.计算-22的结果为( )A .2-B .4-C .2D .46.实数a ,b 在数轴上的位置如图所示,则( )A .a b >B .a =bC .a b >D .0b >7.若关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,则x y +的值是( )A .6B .7C .8D .98.下面计算正确的是( )A .651a a -=B .2223a a a +=C .()a b a b-+=-+D .()222a b a b+=+9.下列说法中正确的个数是( )(1)﹣a表示负数;(2)多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是3;(3)单项式229xy -的系数为﹣2;(4)若|x |=﹣x ,则x <0;(5)一个有理数不是整数就是分数.A .0个B .1个C .2个D .3个10.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形……如此下去,则第2024个图中共有正方形的个数为( )A .6070B .6067C .2023D .2024二、填空题(每题3分,共18分)11.12024-相反数是 ;绝对值是 ;倒数是 .12.如果单项式23m x y +与21n x y -的差是单项式,那么m n +=.13.现规定一种新运算“*”:()*a b a b b a =---.则()2*3-的值为 .14.已知m 、n 互为相反数,c 、d 互为倒数,则310m n cd ++-的值为.15.在3-、4、5、6-这四个数中,任取两个数相乘,所得的积最大是 ,所得的积最小是 .16.某出租车的收费标准是:起步价5元(即行驶距离不超过3千米都需要付5元车费),超过3千米后,每增加1千米,加收1.5元.某人乘这种出租车从甲地到乙地共支付车费29元,设此人从甲地到乙地的路程为x 千米,则x 的最大值是 .三、解答题17.计算(1)()()()3524---+-+(2)221232éùæöæö-+-+-ç÷ç÷êúèøèøëû18.先化简,再求值()()22342223a b a b ---+,其中21a b ==-,19.请画出数轴,将下列各数:0, 3.5-,3-,4,113,4.5,表示在数轴上,并用“<”连接起来.20.小明从家A 出发,向西走了300米到超市B ,继续向西走了150米到文具店C ,又向东走了700米到达快递超市D ,最后回到家.(1)用一个单位长度表示100米,以东为正方向,家A 为原点,画出数轴并在数轴上标明A B C D ,,,的位置;(2)小明家A 到快递超市D 多远?(3)小明一共行走了多少米?21.某果园老板从果园里随机摘取了取部分水果样品,检测抽取样品每个的质量是否符合标准,超过的部分用正数来表示,不足的部分用负数来表示,准确记录如下表:与标准质量的差值/克4-―20135个数235453(1)这批水果样品的总质量比按标准质量计算的总质量多还是少?多或少几克?(2)若每个水果的标准质量为50克,成本为0.5元/克,则抽取样品的总成本是多少元?(3)在(2)的条件下,该水果正常情况下按每克加价50%后,按克称重出售.但这批水果是抽检过的样品,所以在出售时打八折,并且在售出过程中还会有10%的质量损耗,求这批抽检的水果的总利润是多少元?22.已知:b 是最小的正整数,且a 、b 满足()230c a b -++=,请回答问题(1)请直接写出a ,b ,c 的值:a =________;b =________;c =________;(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即02x ££时),请化简式子:1123x x x +--++(请写出化简过程)23.如图是某种窗户的形状(实线为窗框),其上部是半圆形,下部是边长相同的四个小正方形,已知下部的小正方形的边长为m a .(结果用p 表示)(1)求窗户的面积;(2)求窗框的总长;(3)若1a =,窗户上安装的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不计,求制作这种窗户需要的费用.24.把四张形状大小完全相同的小长方形卡片(如图1),分两种不同形式不重叠的放在一个底面长为m ,宽为n 的长方形盒子底部(如图2,3),盒子底面未被卡片覆盖的部分用阴影表示.设图2中阴影部分图形的周长为1l ,图3中两个阴影部分图形的周长的和为2l ,(1)用含m ,n 的式子表示图2阴影部分的周长1l (2)若1254l l =,求m ,n 满足的关系?1.C【分析】本题考查了正数和负数的应用.用正数和负数可以表示一对相反的量,如果收入记作正,则支出则记作负.【详解】解:若收入100元记作100+元,则20-元可表示为支出20元,故选:C .2.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中1||10a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将9600000用科学记数法表示应为69.610´.故选:B .3.A【分析】本题考查了同类项的定义:所含字母相同,相同字母的指数也相同的项叫同类项.根据同类项的定义列出方程,再求解即可.【详解】解:∵单项式3a x y +与5b xy -是同类项,∴311a b +==,,解得2a =-,1b =,∴()()()2024202420242111a b +=-+=-=.故选:A .4.B【分析】本题考查了正整数、负整数、有理数的加减法.先分别根据正整数、负整数的定义求出a 、b 、c 的值,再代入计算有理数的加减法即可.【详解】解:由题意得:1a =,1b =-,0c =,则1(1)00a b c ++=+-+=,故选:B .5.B【分析】根据有理数乘方法则计算即可得答案.【详解】-22=-4,故选:B .【点睛】本题考查有理数乘方,熟练掌握运算法则是解题关键.6.A【分析】观察数轴得:0,b a b a <<>,即可求解.【详解】解:观察数轴得:0,b a b a <<>,故B ,C ,D 选项错误,不符合题意;A 选项正确,符合题意.故选:A【点睛】本题主要考查了有理数与数轴,绝对值的意义,有理数的大小比较,观察数轴得到0,b a b a <<>是解题的关键.7.A【分析】本题考查了同类项,单项式522x a b +与36y a b --的和仍是单项式,说明两个单项式是同类项,相同字母的指数相等,所以得到53x +=,62y -=,解出2x =-,8y =,最后得到x y +的值.理解两个单项式的和仍是单项式,说明这两个单项式是同类项是解答本题的关键.【详解】解:∵关于a ,b 的单项式522x a b +与36y a b --的和仍是单项式,∴53x +=,62y -=,∴2x =-,8y =,∴286x y +=-+=,故选:A .8.D【分析】根据合并同类项的法则判断A 、B ;根据乘法分配律判断C 、D .【详解】解:A 、65-=a a a ,故错误,不符合题意;B 、a 与2a 不是同类项,不能合并,故错误,不符合题意;C 、()a b a b -+=--,故错误,不符合题意;D 、()222a b a b +=+,故正确,符合题意;故选:D .【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.9.B【分析】根据小于0的数为负数判断①,根据多项式的次数是最高次项的次数可判断②,根据单项式的系数是单项式中的数字因数可判断③,根据0的绝对值等于0可判断④,根据有理数包含整数和分数可判断⑤.【详解】解:①当a <0时,-a 是正数,故说法错误;②多项式﹣3a 2b +7a 2b 2﹣2ab +1的次数是4,故说法错误;③单项式229xy -的系数为29-,故说法错误;④若|x |=﹣x ,则x ≤0,故说法错误;⑤一个有理数不是整数就是分数,故说法正确,综上,正确的说法有一个,故选:B .【点睛】本题考查负数、多项式的次数、单项式的系数、绝对值以及有理数的分类,理解各自的概念是解答的关键.10.A【分析】本题考查了图形的变化类.根据图形的变化,后一个图形的正方形的个数都比前一个图形的正方形的个数多3个,第n 个图形的正方形的个数为()324n -+即可求解.【详解】解:观察图形可知:图②中共有4个正方形,即304´+;图③中共有7个正方形,即314´+;图④中共有10个正方形,即324´+;……图n 中共有正方形的个数为()324n -+;所以第2024个图中共有正方形的个数为:()32024246070-+=.故选:A .11.12024 120242024-【分析】本题主要考查相反数,倒数和绝对值的定义.相反数:只有符号不同的两个数互为相反数, 倒数:如果两个数的乘积等于1,那么这两个数就叫做互为倒数,绝对值:在数轴上,表示一个数的点到原点的距离叫做这个数的绝对值,根据定义解题即可.【详解】解:12024-的相反数是12024,12024-的绝对值是:1120242024-=,12024-的倒数是2024-,故答案为:12024,12024,2024-.12.2【分析】本题考查了合并同类项,同类项的定义;所含字母相同,且相同字母的指数也相同的两个单项式是同类项,求出m n ,的值,代入计算即可.【详解】解:∵23m x y +与21n x y -的差是单项式,∴23m x y +与21n x y -是同类项,∴22m +=,11n -=,解得:0m =,2n =,∴022m n +=+=,故答案为:2.13.10-【分析】本题主要考查了有理数的加减运算和化简绝对值,根据已知()*a b a b b a =---,代入数值运算求出即可.【详解】解:∵()*a b a b b a =---,∴()()()2*323325510-=-----=--=-.故答案为:10-.14.7-【分析】根据相反数的定义得出0m n +=,根据倒数的定义得出1cd =,即可求解.【详解】解:∵m 、n 互为相反数,c 、d 互为倒数,∴0m n +=,1cd =,∴310031107m n cd ++-=+´-=-,故答案为:7-.【点睛】本题主要考查了相反数和倒数的定义,解题的关键是掌握相反数相加的0,乘积为1的两个数互为倒数.15. 20 30-【分析】本题考查有理数的乘法法则和有理数的大小比较.根据两数相乘,同号得正、异号得负求两数的积,再由正数大于负数,即可求解.【详解】解:∵()36=184520-´-<´=,∴积最大是20,∵()()()()56465343´-<´-<´-<´-,∴积最小是()5630´-=-,故答案为:20,30-.16.19【分析】本题考查了一元一次不等式的应用.已知从甲地到乙地共需支付车费29元,从甲地到乙地经过的路程为x 千米,从而根据题意列出不等式,从而得出答案.【详解】解:因支付车费为29元,所以x 肯定大于3千米,故有()1.53529x -+£,解得:19x £.可求出x 的最大值为19千米.故答案为:19.17.(1)0(2)156-【分析】本题主要考查了有理数的混合运算,按照混合运算法则计算即可.(1)有理数加减运算,从左向右计算即可;(2)先算乘方,再算乘除,最后再算加减.【详解】(1)解:()()()3524---+-+3524=-++-0=;(2)解:221232éùæöæö-+-+-ç÷ç÷êúèøèøëû43466æö=--+ç÷èø674=--156=-.18.21612a b -,76【分析】本题考查了整式的加减-化简求值.先将多项式去括号,再合并同类项,然后将a 和b 的值代入计算即可得出答案.【详解】解:()()22342223a b a b ---+2212646a b a b =-+-21612a b =-,当2a =,1b =-时,原式()2162121=´-´-6412=+76=.19.数轴见解析,13.530144.53-<-<<<<.【分析】本题考查了有理数的大小比较,在数轴上表示有理数.先在数轴上标记各个数,根据数轴上的点表示的数:右边的数总比左边的数大,可得答案.【详解】解:如图,在数轴上表示各数如下:∴13.530144.53-<-<<<<.20.(1)见解析(2)小明家A 到快递超市D 距离为250米;(3)小明一共行走了1400米.【分析】本题主要考查有理数加减法在实际中的运用,掌握数轴表示有理数的方法,数轴上求两点之间距离的方法,有理数加减法的运算等知识是解题的关键.(1)根据数轴表示有理数的方法即可求解;(2)运用数轴求两点之间的距离的方法即可求解;(3)运用有理数的加减法运算即可求解.【详解】(1)解:小明从家A 出发,用一个单位长度表示100米,以东为正方向,∴以小明家A 为原点,根据题意,小明到各点的位置如图所示,;(2)解:由(1)中数轴图示可知,小明家A 到快递超市D 距离为250米;(3)解:小明行走的路程为3001507502501400+++=米.答:小明一共行走了1400米.21.(1)这批样品的总质量比按标准质量计算的总质量多,多22克(2)抽取样品的总成本是560元(3)全部销售完这批抽检的袋装商品的总利润是44.8元【分析】本题考查正负数的意义,有理数混合运算的实际应用.理解题意和正负数的意义,正确列出算式是解题关键.(1)计算出超过和不足的质量和,如果是正数,即多,如果是负数,即少;(2)先求出抽取样品的总质量,再乘以0.5元/克即可;(3)求出售出的总质量和售价,再根据总利润=售价×总质量求解即可.【详解】(1)解:()()24325041533520´-+´-+´+´+´+´=,答:这批样品的总质量比按标准质量计算的总质量多,多22克.(2)解:()23545350201120+++++´+=克,11200.5560´=元,答:抽取样品的总成本是560元.(3)解:()1120110%1008´-=克,()0.50.550%0.80.6+´´=元,10080.656044.8´-=元,答:全部销售完这批抽检的袋装商品的总利润是44.8元.22.(1)1a =-,1b =,3c =;(2)46x +或28x +.【分析】本题考查了数轴与绝对值:①当a 是正有理数时,a 的绝对值是它本身a ;②当a 是负有理数时,a 的绝对值是它的相反数a -;③当a 是零时,a 的绝对值是零.(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定1x +,1x -,3x +的符号,然后根据绝对值的意义即可化简.【详解】(1)解:∵b 是最小的正整数,∴1b =.∵()230c a b -++=∴300c a b -=ìí+=î,∴1a =-,1b =,3c =;(2)解:∵02x ££,∴10x +>,30x +>,当01x ££时,10x -£,当12x <£时,10x ->,∴当01x ££时,1123x x x +--++()1123x x x =++-++1126x x x =++-++46x =+;当12x <£时,1123x x x +--++()()1123x x x =+--++1126x x x =+-+++28x =+.综上所述,1125x x x +--+-的值为46x +或28x +.23.(1)()2214m 2a p æö+ç÷èø(2)()()15m a p +(3)制作这种窗户需要的费用是654002p æö+ç÷èø元【分析】本题考查了列代数式表示实际问题,解题的关键是分清数量关系,抓住关键词语,正确的列出代数式.(1)窗户的面积4=个小正方形的面积+半圆的面积;(2)窗框用料的总长度为所有小正方形的边长之和+半个圆的弧长3+条半径;(3)总费用为:玻璃的费用+窗框的费用.【详解】(1)解:窗户的面积21222a a a p =+´,22142a a p æö=+ç÷èø2m ;(2)窗框的总长123842a a a a p =´+++,15a a p =+,(15)(m)a p =+;(3)21425(15)202a a p p æö+´++´ç÷èø214125(15)1202p p æö=+´´++´´ç÷èø25100(20300)2p p æö=+++ç÷èø654002p =+(元).\制作这种窗户需要的费用是654002p +元.24.(1)22m n+(2)23m n =【分析】本题考查整式加减的应用:(1)观察图形,可知,阴影部分的周长等于长方形ABCD 的周长,计算即可;(2)设小卡片的宽为x ,长为y ,则有2y x m +=,再将两阴影部分的周长相加,通过合并同类项即可求解2l ,根据1254l l =,即可求m 、n 的关系式.【详解】(1)解:由图可知,阴影部分的周长等于长方形ABCD 的周长,故()1222m n m n l =+=+;(2)设小长形卡片的宽为x ,长为y ,则2y x m +=,∴2y m x =-,所以两个阴影部分图形的周长的和为:()()2222m n y n x +-+-()()22222m n m x n x =+-++-222424m n m x n x =+-++-4n =,即2l 为4n ∵1254l l =,∴52244m n n+=´整理得:23m n =.。
四川省成都石室中学2024-2025学年上学期七年级期期中考试数学试卷一、单选题1.在一条东西方向的跑道上,小亮先向西走了20米,记作“20-米”,接着又向东走了8米,此时小亮的位置可记作()A .12+米B .12-米C . 8+米D .28-米2.老师在黑板上用粉笔写字,可用下面()的数学知识点来解释.A .点动成线B .线动成面C .面动成体D .线线相交3.“世界陶瓷看中国,中国陶瓷看佛山”,中国陶瓷官方协会的官方数据,仅佛山产区的瓷砖2018年就高达1090000000平方米,将1090000000平方米用科学记数法表示应为()A .100.10910⨯平方米B .91.0910⨯平方米C .810.910⨯平方米D .710910⨯平方米4.下列计算正确的是()A .2222m n mn mn -=-B .22523y y -=C .277a a a +=D .325ab ab ab+=5.下列说法中正确的是()A .单项式2x 的系数是2B .21xy x +-是三次二项式C .23π2x y -的系数是12-D .322xy 的次数是66.如图,数轴上点P ,Q ,M ,N 表示的数绝对值最小的是()A .点PB .点QC .点MD .点N7.某几何体从三个不同方向看到的形状图如图所示,则该几何体的体积是()A .2πB .3πC .6πD .12π8.按照如图所示的操作步骤,若输入的值为4,则输出的值为()A .30B .20-C .90D .28二、填空题9.比较大小:34-45-,415⎛⎫-- ⎪⎝⎭1.86--(填“<”,“>”或“=”).10.十棱柱有条棱,有个面.11.如果单项式167m x y -与335n x y +-是同类项,那mn =.12.若()2530m n -++=,则m n +=.13.在数轴上与表示数7的点距离3个单位长度的点表示的数是.三、解答题14.把下列各数的对应序号填在相应的横线上:①3.14,②10%,③219-,④0,⑤0.27,⑥()2--,⑦3π,⑧ 3.5--正分数集合:_________________;负有理数集合:_________________;自然数集合:_________________;非负数集合:___________________.15.计算(1)()()17278242-++-+;(2)()()()5.57.1 4.57---+--;(3)()215126326⎛⎫⎛⎫-⨯+-÷ ⎪ ⎪⎝⎭⎝⎭;(4)()()202414326-+⨯-÷-.16.先化简,再求值:2x 2+(x 2-2xy +2y 2)-3(x 2-xy +2y 2),其中x =2,y =12-.17.在平整的地面上,有一个由7个完全相同的小立方块搭成的几何体,每个小正方体的棱长均为10cm ,如图所示.(1)请画出这个几何体的主视图和左视图;(2)如果在这个几何体上再摆放一个相同的小正方体,并保持这个几何体从正面看和从上面看到的形状图不变,最多添加_______小正方体;(3)将原几何体露出的表面部分(不含底面)涂成红色,那么红色部分的面积为多少?18.“日啖荔枝三百颗,不辞长作岭南人”.每年六月正是荔枝集中上市的时间,下表是六月某周内水果批发市场每天的荔枝批发价格与前一天价格相比的涨跌情况.(前一个周日的批发价是6元/kg )星期一二三四五六日与前一天价格相比的涨跌情况/元0.2+0.15-0.25+0.1+0.3-0.2+0.1-注:正号表示价格比前一天上升,负号表示价格比前一天下降.(1)本周内荔枝的批发价格最高是__________元/kg .批发价格最低是__________元/kg .(2)对比前一个周日,本周日的荔枝批发价格是上升了还是下降了?上升或下降了多少元?(3)某水果商店周一从批发市场购进荔枝100kg ,以8元/kg 的售价销售,很快脱销,于是周三再次从批发市场购进荔枝100kg ,按原售价销售了40kg 后,剩下的按七折出售,全部售完,问水果商店销售这200kg 荔枝共盈利了多少元?四、填空题19.若23x y -=,则代数式249x y --的值等于.20.如图是一个正方体的表面展开图,则在原正方体中,相对两个面上的数字之和的最小值是.21.将如图的直角三角形分别绕两条直角边所在的直线旋转一周,得到不同的立体图形,其中体积最大的立体图形的体积是立方厘米.(结果保留π)22.已知有理数a ,b ,c 的位置如图所示,化简式子:b c b a c a ++--+=.23.规定:符号[x ]叫做取整符号,它表示不超过x 的最大整数.例如:[]55=,[]2.62=,[]0.20=.现在有一列非负数123,,,a a a ⋯,已知110a =,当2n ≥时,1121555n n n n a a -⎛--⎫⎡⎤⎡⎤=+-- ⎪⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭,则2024a 的值为.五、解答题24.我们在分析解决某些数学问题时经常要比较两个数或整式的大小.而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形、并利用差的符号来确定它们的大小,即要比较代数式a 、b 的大小,只要求出它们的差a b -,若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.请你用“作差法”解决以下问题:(1)制作某产品有两种用料方案:方案一:用3块A 型钢板,用7块B 型钢板;方案二:用2块A 型钢板,用8块B 型钢板;A 型钢板的面积比B 型钢板的面积大,设每块A 型钢板的面积为x ,每块B 型钢板的面积为y ,从省料角度考虑,应选哪种方案?(2)试比较图1和图2中两个矩形周长的大小.25.定义:已知M ,N 为关于x 的多项式,若M N k -=,其中k 为大于0的常数,则称M 是N 的“友好式”,k 叫做M 关于N 的“友好值”.例如:223M x x =++,222N x x =+-,22(23)(22)5M N x x x x -=++-+-=,则称M 是N 的“友好式”,M 关于N 的“友好值”为5.又如,233M x x =++,223N x x =++,()()223323M N x x x x x -=++-++=,x 不是大于0的常数,则称M 不是N 的“友好式”.(1)已知223M x x =+-,221N x x =++,则M 是N 的“友好式”吗?若是,请证明并求出M 关于N 的“友好值”;若不是,请说明理由;(2)已知2244M x m xm =+-,246N x x n =-+,若M 是N 的“友好式”,且“友好值”为14,求m ,n 的值.26.如图,将等边ABC V 放在数轴上,点B 与数轴上表示6-的点重合,点C 与数轴上表示2的点重合,将数轴上表示2以后的正半轴沿C A B →→进行折叠.经过折叠后,(1)点A 、点B 分别与正半轴上表示哪个数的点重合?(2)若点D 为AC 的中点,点E 表示5-.折叠数轴上,记___EA 为数轴拉直后点E 到点A 的距离,即___A EA EC C =+,其中,EC CA 代表线段长度.若动点P 从点D 出发,沿D CB →→方向运动,动点Q 从点E 出发,沿EC →方向运动,当动点Q 运动到点C 时,P 、Q 同时停止运动.已知动点P 在DC 上运动速度为1单位秒,在CB 上运动速度为2单位/秒;动点Q的运动速度为1单位/秒,设运动时间为t(秒).①当t为何值时,动点P、Q表示同一个数.②当t为何值时,______1 PQ QC-=.。
甘肃省天水市成纪中学等多校2024-2025学年七年级上学期期中考试数学试卷一、单选题1.在﹣4,0,﹣1,3这四个数中,最大的数是()A .﹣4B .0C .﹣1D .32.跳远测验合格标准是4.00m ,夏雪跳出了4.12m ,记为0.12m +,小芬跳出了3.95m ,记作()A .0.05m+B .0.05mm-C . 3.95m+D . 3.95m-3.计算()23---的果是()A .1B .4C .4-D .5-4.将()()()4372-+--+-写略号和式为()A .4372-++B .4372---C . 4372-+-D .4372+--5.下列说法正确的是()A .分数都是有理数B .a -是负数C .有理数不是正数就是负数D .绝对值等于本身的数是正数6.下列各数是负数的是()A .13⎛⎫-- ⎪⎝⎭B .41-C .()23-D .2-7.一种纪念邮票,其发行量为12050000枚,用科学记数法表示正确的是()A .71.20510⨯B .81.2010⨯C .71.2110⨯D .61.20510⨯8.下列结论正确的是()A .近似数1.230和1.23表示的意义相同B .近似数79.0是精确到个位的数C .3.850×104是精确到十位的近似数D .近似数5千与近似数5000的精确度相同9.10a -<<,则a ,1a,2a 的大小关系是()A .21 a a a<<B .21a a a <<C .21 a aa<<D .21a a a<<10.有理数a ,b 在数轴上的位置如图所示,则下列各式:①0a b +>,②0a b ->,③b a >,④0ab <,一定成立的是()A .①②③B .③④C .②③④D .①③④二、填空题11.2023-的相反数是,绝对值是12.比较大小:78-89-.13.在数轴上与表示4的点距离5个单位长度的点表示的数是14.已知:3x =,2y =,且0xy >.则x y +的值为15.若()2320x y -++=,则2x y +的值为.16.根据如图所示的程序计算,若输的数x 为1,则输出的结果三、解答题17.把下的有理数填在相应的大括号里:12-,0,0.15-,14,20+, 2.6-,50%,0.2020020002⋯⋯负数集合:{……}分数集合:{……}非负整数集合:{……}18.先画数轴,再把下列各数分别表示在数轴上,并用“<”把它们连起来.23-,()4--,()1+-,1,132+.19.计算(1)3223515-+-+(2)()316.142 5.8644⎛⎫⎛⎫-----+ ⎪ ⎪⎝⎭⎝⎭20.计算(1)12(1.6)43⎛⎫-÷-⨯- ⎪⎝⎭(2)23108(2)32⎛⎫-+÷--÷- ⎪⎝⎭21.如图,在轴上有三个点A ,B ,C ,回答下列问题:(1)将点B 向右移动5个单位长度后,三个点表示的数中最小的数是(2)在轴上找一点D ,使点D 到A 、C 两点的距离相等,则点D 表示的是(3)在轴上点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,则点E 表示的数是22.花牛苹果是甘肃天水市的特产,为中国国家地理标志产品,花牛苹果肉质细,致密,松脆,汁液多,风味独特,香气浓郁,口感好,品质佳.被许多中外专家和营销上认可为世界三大著名苹果之一,是中国市场上第一个获得正是商标的苹果品牌.现有7箱花牛苹果,以每15千克为标准质量,超过的千克数计为正数,不足的千克数记作负数.称重后的记录如下:0.50.81 1.200.51.3---,,,,,,回答下列问题:(1)与标准质量比较,这7箱花牛苹果总计超过多少千克或不足多少千克?(2)若花牛苹果每千克售价10元,则出售这7箱花牛苹果可收入多少钱?23.计算:()3221322334⎛⎫⎡⎤-+⨯+--÷- ⎪⎣⎦⎝⎭.24.知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是2,求252a bcd m +++的值25.规定一种新的运算:2a b ab b =-★,例如2323222=⨯-=★.请利用上述规律计算下列各式:(1)15★;(2)()()524-★★.26.我们在讨论a 的结果时.就会对a 进行分类讨论.当0a >时,a a =;当0a <时,a a =-;现在请利用这一思想解决下列问题:(1)a =(2)ab a b+=(3)a b ab a b ab++=27.我们规定:求若干个相同的不为零的有理数的除法运算叫做除方,如222÷÷,(3)(3)(3)(3)-÷-÷-÷-等.类比有理数的乘方,我们把222÷÷记作 2③,读作“2的圈3次方",(3)(3)(3)(3)-÷-÷-÷-记作()3-④,读作“-3的圈4次方”.一般地,把(0)n aa a a a a ÷÷⋅⋅⋅÷≠ 个记作a ⓝ,读作“a 的圈n 次方”.(1)直接写出计算结果: 2③=___________,()3-④=___________,13⎛⎫- ⎪⎝⎭⑤=___________.(2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,请尝试把有理数的除方运算转化为乘方运算,归纳如下:一个非零有理数的圈n 次方等于___________.(3)计算()1273(48)2⎛⎫⨯-+-÷ ⎪⎝⎭④⑤.。
2023-2024学年度第一学期期中监测灌云高级中学七年级数学试题考试时间:100分钟;总分:150分1.答题前填写好自己的姓名、班级、考号等信息.2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题(每题3分,共计24分)1. 计算的结果为()A. 1B.C. 3D.【答案】B解析:解:,故选B.2. 在下列各数,π,0,,,,(每两个2之间依次增加一个数6)中,无理数的个数有()A4个 B. 3个 C. 2个 D. 1个【答案】C解析:是循环小数,是有理数;π是无限不循环小数,是无理数;0是有理数;是分数,是有理数;是小数,是有理数;是小数,是有理数;(每两个2之间依次增加一个数6)是无限不循环小数,是无理数,无理数的个数有2个,故选:C.3. 下列各式运用等式的性质变形,正确的是().A. 若,则B. 若,则C. 若,则D. 若,则【答案】C解析:解:A、若,则,原变形错误,不符合题意;B、若,,则,原变形错误,不符合题意;C、若,则,原变形正确,符合题意;D、若,,则,原变形错误,不符合题意,故选:C.4. 下列运算中,正确的是()A. B.C. D.【答案】D解析:A、,故A错误;B、,故B错误;C、,故C错误;D、,故D正确.故选:D.5. 2023年歌曲《罗刹海市》席卷全球,据统计截止八月中旬,播放量突破惊人的亿,数字用科学记数法表示为( )A. B. C. D.【答案】C解析:解:.故选:C.6. 若,则的值()A. 1B. 或1C. 0D. 或3【答案】D解析:解:当时,,;当时,,;当时,,;当时,,;综上所述,的值为或3.故选:D.7. 如图,将,,,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在分别表示其中的一个数,则的值为()A. B. C. 0 D. 5【答案】A解析:解:根据题意得:,,,,故选:A.8. 如图,一枚棋子放在七角棋盘的第0号角,现依逆时针方向移动这枚棋子,其各步依次移动1,2,3,…,n个角,如第一步从0号角移动到第1号角,第二步从第1号角移动到第3号角,第三步从第3号角移动到第6号角,….若这枚棋子不停地移动下去,则这枚棋子永远不能到达的角的个数是( )A. 0B. 1C. 2D. 3【答案】D解析:因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)-7p格,这时P是整数,且使0≤k(k+1)-7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)-7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤10,设k=7+t(t=1,2,3)代入可得,k(k+1)-7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即这枚棋子永远不能到达的角的个数是3.故选D.第Ⅱ卷(非选择题)二、填空题(每题3分,共计30分)9. 若数在数轴上所对应的点在原点的右边且到原点的距离等于5,那么这个数等于__________.【答案】5解析:解:数在数轴上所对应的点在原点的右边且到原点的距离等于5,这个数,故答案为:5.10. 若单项式和是同类项,则的值为_________.【答案】4解析:解:∵单项式和是同类项,∴,,解得:,∴.故答案为:4.11. 若是关于x的一元一次方程,则m的值是________.【答案】解析:解:∵是关于x的一元一次方程,∴,,解得:或,,∴.故答案是:.12. 已知在如图数值转换机中的输出值,则输入值________.【答案】解析:解:根据题意得,∴解得.故答案为:.13. 已知有理数a,b,c,d,e,且互为倒数,c,d互为相反数,e的绝对值为2,则式子___________.【答案】或解析:解:∵互为倒数,c,d互为相反数,e的绝对值为2,∴,,,∴当时,;当时,;故答案为:或.14. 现定义一种新运算,对于任意有理数,,,满足,若对于含未知数式子满足,则________.【答案】2解析:∵∴,去括号,可得:,移项,合并同类项,可得:,系数化为1,可得:.故答案为:.15. 如图,将直径为1个单位长度的圆形纸片上的点A放在数轴的处,纸片沿着数轴向左滚动一周,点A到达了点的位置,则此时点表示的数是________.【答案】##解析:解:由题意得,点表示的数是,故答案为:.16. 如果,为定值,关于的一次方程,无论为何值时,它的解总是1,则______.【答案】1解析:解:将代入方程,,,,,由题意可知,,,,,,故答案为:1.17. 若,则________.【答案】解析:解:当时,∵,∴,即,当时,∵,∴,∴,∴,故答案为:.18. 如图,将一个边长为1的正方形纸片分割成7个图形,图形①面积是正方形纸片面积的,图形②面积是图形①面积的2倍的,图形③面积是图形②面积的2倍的,…,图形⑥面积是图形⑤面积的2倍的,图形⑦面积是图形⑥面积的2倍.计算的值为________【答案】解析:解:根据题意得:图形①的面积是,图形②的面积是,图形③的面积是,…,图形⑥的面积是,图形⑦的面积是,∴.故答案为:三、解答题19. 计算题①②③④【答案】①5,②26,③9,④4详解】①原式;②原式;③原式;④原式20. 解方程:(1);(2).【答案】(1)(2)【小问1详解】解:去括号得:,移项合并同类项得:,解得:;【小问2详解】解:,去分母得:,去括号得:,移项合并同类项得:,解得:.21. (1)先化简再求值:,其中.(2)先化简,再求值:,其中,.【答案】(1),;(2),4解析:解:(1),当,时,原式;(2),,,当,时,原式,,.22. 出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米),,,,,,(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为升/千米,油价为元/升,这天下午共需支付多少油钱?【答案】(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费元【小问1详解】解:(千米),答:将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米.【小问2详解】解:(元),答:这天下午共需支付油费元.23. 已知,.(1)若m为最小的正整数,且,求;(2)若的结果中不含一次项和常数项,求的值.【答案】(1)(2)1【小问1详解】解:∵m为最小的正整数,且,∴,故,则;【小问2详解】解:.∵的结果中不含一次项和常数项,∴,解得:,∴.24. 列方程解应用题:某中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)该中学库存多少套桌椅?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天20元生活补助费,现有三种修理方案:、由甲单独修理;、由乙单独修理;、甲、乙合作同时修理.你认为哪种方案省时又省钱?为什么?【答案】(1)该中学库存960套桌椅(2)方案c省时省钱【小问1详解】解:(设该中学库存x套桌椅,则,解得.答:该中学库存960套桌椅.【小问2详解】解:设a、b、c三种修理方案的费用分别为元,则,,,综上可知,选择方案c更省时省钱.答:方案c省时省钱.25. 关于x的整式,当x取任意一组相反数m与时,若整式的值相等,则该整式叫做“偶整式”;若整式的值互为相反数,则该整式叫做“奇整式”.例如:是“偶整式”,是“奇整式”.(1)若整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,则________;(2)对于整式,可以看作一个“偶整式”与“奇整式”的和.①这个“偶整式”是________,“奇整式”是________;②当x分别取,,,0,1,2,3时,这七个整式的值之和是________.【答案】(1)0 (2)①,;②35【小问1详解】解:∵整式A是关于x的“奇整式”,当x取1与时,对应的整式值分别为,,∴,∴,故答案为:0;【小问2详解】解:①,∵,,∴“偶整式”,是奇整式”,故答案为:,;②由于是偶整式,是奇整式,∴当x分别取,,,0,1,2,3时,的值分别为10,5,2,1,2,5,10;当x取互为相反数的值时的值也互为相反数,即和为0,∴当x分别取,,,0,1,2,3时,的所有值的和为0,,∴这七个整式的值之和是;故答案为:35.26. 将整数1,2,3……2009按下列方式排列成数表,用斜十字框“×”框出任意的5个数,如果用a,b,c,d,m表示类似“×”形框中的5个数.其中.(1)记,若S最小,那么m=__________,若S最大,那么m=__________.(2)用等式表示a,b,c,d,m这5个数之间的关系并说明理由.(3)若.求m的值.(4)框出的五个数中,a,b,c,d的和能否等于588吗?若能,求出m的值,若不能,请说明理由.【答案】(1)17,2009(2)(3)(4)能,【小问1详解】(1)由题意可得,∴∵∴当时S最小,此时,∵,∴,∴,∵,∴当时,S最大,故答案为:17,2009;【小问2详解】解:∵,∴,,∴;【小问3详解】解:∵,∴,,∵,∴,∴∴;【小问4详解】解:若,则,解得,∵,∴是第三列的数,∴框出的五个数中,a,b,c,d的和能等于588,且.27. 已知a,b满足,a,b分别对应数轴上的A,B两点.(1)直接写出__________,__________;(2)若点P从点A出发,以每秒3个单位长度的速度向数轴正方向运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的2倍?(3)数轴上还有一点C对应的数为30.若点P和点Q同时从点A和点B出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C点运动.P点到达C点后,再立刻以同样的速度返回,运动到终点A,点Q 达到点C后继续向前运动.求点P和点Q运动多少秒时,P,Q两点之间的距离为4?【答案】(1)4,16(2)或8(3)点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4【小问1详解】解:∵,∴,,∴,,故答案为:4,16;【小问2详解】解:设运动时间为,由题意得,或,解得或8,∴运动时间为或8秒时,点P到点A的距离是点P到点B的距离的2倍;【小问3详解】解:设点P和点Q运动t秒时,P、Q两点之间的距离为4,如图,当点Q在点P右侧,,解得,如图,当点P在点Q的右侧,,解得,如图,当点P从点C返回时,且点P在Q的右侧,,解得,如图,当点P返回时,点Q在点P的右侧,,解得,即点P和点Q运动4或8或9或11秒时,P、Q两点之间的距离为4,此时点Q表示的数为20、24、25、27.。
2024—2025学年人教版七年级上册期中模拟考试数学试卷一、单选题1.2024-的相反数是()A .2024B .2024-C .12024D .12024-2.中国空间站位于距离地面约400km 的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A .100+℃B .100-℃C .50+℃D .50-℃3.在0,2,﹣2,23这四个数中,最大的数是()A .2B .0C .﹣2D .234.(湖州中考)某花店的玫瑰每枝4元,兰花每枝8元,小丽买了a 枝玫瑰,b 枝兰花,一共花了()A .12a 元B .12b 元C .(4a +8b)元D .12(a +b)元5.冬天的脚步近了,白天和夜晚的温差很大,白天的最高气温能达到10℃左右,夜晚的最低气温为1-℃左右,则白天最高气温与夜晚最低气温的温差是()A .9-℃B .11-℃C .9℃D .11℃6.质检员抽查某种零件的质量,超过规定长度记为正数,短于规定长度记为负数,检查结果如下:第一个为0.13毫米,第二个为0.12-毫米,第三个为0.15-毫米,第四个为0.16毫米,则质量最差的零件是()A .第一个B .第二个C .第三个D .第四个7.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是()A .0a b +>B .0a b ⋅>C .a b >D .b a b+>8.下列说法正确..的是()A .单项式227xy 的系数是2B .单项式227xy 的次数是2C .232x y x y -是四次多项式D .232x y x y -有两项,分别是232x y x y和9.如图,做一个试管架,在cm a 长的木条上钻4个圆孔,每个孔直径为4cm ,则x =()A .8cm 5a +B .16cm 5a -C .4cm 5a -D .8cm 5a -10.当1x =时,代数式551ax bx +-的值等于1000,那么当1x =-时,代数式551ax bx +-的值().A .1002B .1002-C .1001D .1001-二、填空题11.比较大小:-45-911.12.近似数42.37010⨯,精确到位.13.若关于a ,b 的代数式23x a b -与9y a b 是同类项,则y x 的值是.14.若x 为有理数,则式子22023x -+的最小值为.15.若有理数m ,n 满足220190m n -+-=,则m n +=.16.用黑白两种正六边形地面瓷砖按如图所示规律拼成若干图案,则第n 个图案中有白色地面瓷砖块.三、解答题17.计算(1)()528522514⎛⎫-+÷-⨯- ⎪⎝⎭;(2)()()221113232⎫⎛⎡⎤---+⨯-- ⎪⎣⎦⎝⎭.18.已知234A x x =-,222B x x y =+-(1)当2x =-时,试求出A 的值;(2)当12x =,13y =时,请求出3A B -的值.19.粮库3天内发生粮食进出库的吨数如下(“+”表示进库,“-”表示出库):26+32-15-34+38-20-(1)经过这三天,粮库里的粮食是增多了还是减少了?增多或减少了多少吨?(2)经过这3天,粮库管理员结算时发现粮库里还存480吨粮食,那么3天前粮库里的存粮有多少吨?(3)如果进库出库的装卸费都是每吨10元,那么这3天要付出多少装卸费?20.已知:2A ab a =-,2B ab a b =-++.(1)计算:52A B -;(2)若52A B -的值与字母b 的取值无关,求a 的值.21.如图,用三种大小不等的正方形①②③和一个缺角的正方形拼成一个长方形ABCD (不重叠且没有缝隙),若BF a =,GH a =,1GK a =+.(1)求正方形②和正方形③的边长(用含a 的代数式表示);(2)求长方形ABCD 的周长(用含a 的代数式表示),并求出当3a =时,长方形ABCD 的周长.22.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:b c a b c a -++--.23.已知,有7个完全相同的边长为m 、n 的小长方形(如图1)和两个阴影部分的长方形拼成1个宽为10的大长方形(如图2),小明把这7个小长方形按如图所示放置在大长方形中.(1)当52m n ==,时,大长方形的面积为__________;(2)请用含m ,n 的代数式表示下面的问题:大长方形的长:__________;阴影A 的面积:__________;阴影B 的周长__________;(3)请说明阴影A 与阴影B 的周长的和与m 的取值无关.24.我们把按一定规律排列的一列数,称为数列,若对于一个数列中依次排列的相邻的三个数m 、n 、p ,总满足2p m n =-,则称这个数列为理想数列.(1)若数列2,1-,a ,4-,b ,…,是理想数列,则a =,b =;(2)若数列x ,3x ,4,…,是理想数列,求代数式22233x x -+的值.(3)若数列…,m ,n ,p ,q …,是理想数列,且122p q -=,求代数式()()2223492022n n m m n -++-+的值.25.如图,数轴上有A 、B 、C 、D 四个点,分别对应a ,b ,c ,d 四个数,其中10a =-,8b =-,()214c -与20d -互为相反数,(1)求c ,d 的值;(2)若线段AB 以每秒3个单位的速度,向右匀速运动,当t =时,点A 与点C 重合,当t =时,点B 与点D 重合;(3)若线段AB 以每秒3个单位的速度向右匀速运动的同时,线段CD 以每秒2个单位的速度向左匀速运动,则线段AB 从开始运动到完全通过CD 所需时间多少秒?(4)在(3)的条件下,当点B 运动到点D 的右侧时,是否存在时间t ,使点B 与点C 的距离是点A 与点D 的距离的4倍?若存在,请求出t 值,若不存在,请说明理由.。
2024--2025学年河南省郑州市北师大版七年级上册数学期中试卷(A )1.在-(-2)、|-1|、-|0|,-22,(-3)2,-(-4)5中正数有()A .1个B .2个C .3个D .4个2.下列各组数中,结果相等的是()A.与B.与C.与D.与3.人类已知最大的恒星是盾牌座UY,它的规模十分巨大,如果将盾牌座UY 放在太阳系的中心,它的表面将接近土星轨道,半径约等于1.43344937×109km.那么这个数的原数是()A .143344937kmB .1433449370kmC .14334493700kmD .1.43344937km4.下列选项中,两个单项式属于同类项的是()A .a 3与b 3B .-2a 2b与ba2C .x2y 与-xy2D .3x 2y 与-4x2yz5.已知整式的值为6,则整式的值为()A .0B .12C .14D .186.如图是一个正方体的表面展开图,则这个正方体是()A.B.C.D .7.如图,从边长为的正方形纸片中剪去一个边长为3的正方形,剩余部分沿虚线又剪拼成一个如图所示的长方形(不重叠,无缝隙),则拼成的长方形的另一边长是()A.B .C .D .68.若,则多项式的值为()A .B .5C.D .9.如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为,,,,,则下列正确的是()A.B.C.D.10.如图,一个立方体的六个面上分别标着连续的自然数,若相对两个面上所标之数的和相等,则这六个数的和为()A.69B.75C.78D.8111.在体育课的跳远比赛中,以4.00米为标准,若小东跳出了4.22米,可记作+0.22,那么小东跳出了3.85米,记作______.12.一个棱柱有12个顶点,所有的侧棱长的和是48cm,则每条侧棱长是____cm.13.已知多项式x|m|+(m﹣2)x﹣10是二次三项式,m为常数,则m的值为_____.14.将一个边长为a的正方形纸片[如图(1)]剪去两个小长方形,得到一个如图(2)所示的“”形图案,则这个“”形图案的周长为____.15.如果关于的多项式与多项式的次数相同,则=_________.16.计算(1)(2).17.化简,求值:,其中,.18.一个几何体由几个完全相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小正方体的个数.(1)请画出从正面看、从左面看到的这个几何体的形状图;(2)若小正方体的棱长为1,求这个几何体的表面积.19.某种箱装水果的标准质量为每箱10千克,现抽取8箱样品进行检测,称重如下(单位:千克):10.2,9.9,9.8,10.1,9.6,10.1,9.7,10.2.为了求得这8箱样品的总质量,我们可以选取一个基准质量进行简化运算.(1)你认为选取的这个恰当的基准质量为______千克;(2)根据你选取的基准质量,用正、负数填写下表;(超过基准质量的部分记为正数,不足基准质量的部分记为负数)原质量(千克)10.29.99.810.19.610.19.710.2与基准质量的差距(千克)(3)这8箱样品的总质量是多少?20.如图,两摞完全相同的课本整齐地叠放在讲台上,请根据图中所给出的信息,回答下列问题:(1)每本课本的厚度为cm.(2)若有一摞上述规格的课本x本整齐地叠放在讲台上,请用含x的代数式表示出这摞课本的顶部距离地面的高度.(3)当时,求课本的顶部距离地面的高度.21.【问题情境】某综合实践小组计划进行废物再利用的环保小卫士活动.他们准备用废弃的宣传单制作成装垃圾的无盖纸盒.【操作探究】(1)若准备制作一个无盖的正方体纸盒,如图(1),图形经过折叠能围成一个无盖正方体纸盒.(填A,B,C,或D)(2)如图(2)是小明的设计图,把它折成一个无盖正方体纸盒后与“保”字所在面相对的面上的文字是.(3)如图(3),有一张边长为20cm的正方形废弃宣传单,小华将其四个角各剪去一个边长为4cm小正方形后,折成无盖长方体纸盒.求这个无盖长方体纸盒的底面积和容积.22.某中学准备在网上订购一批篮球和跳绳,查阅后发现篮球每个售价为120元,跳绳每根售价为25元.现有甲、乙两家网店均提供包邮服务,并提出了各自的优惠方案.甲网店:买一个篮球送一根跳绳;乙网店:篮球和跳绳都按定价的付款.已知要购买篮球40个,跳绳x根.(1)若在甲网店购买,则需付款元;若在乙网店购买,则需付款元;(用含x的代数式表示)(2)当时,在哪家网店购买较为合算?(3)当时,你认为还有更为省钱的购买方案吗?如果没有,请说明理由;如果有,请写出你的购买方案,并计算需要付款的金额.23.已知点A,B在数轴上分别表示a,b.任务要求(1)对照数轴填写下表:a 83b 404A ,B 两点间的距离48124问题探究(2)若A ,B 两点间的距离记为d ,试问d 和a ,b 有何数量关系.问题拓展(3)当x 等于多少时,的值最小,最小值是多少?(4)若点C 表示的数为x ,当点C 在什么位置时,|x-1|+|x-5|的值最小,最小值是多少?。
七年级上册数学期中考试试题一、单选题1.下面四个数中比﹣5小的数是()A .1B .0C .﹣4D .﹣62.如果a 与2020-互为倒数,那么a 的值是()A .2020B .2020-C .12020D .12020-3.下列各式计算结果为负数的是()A .﹣(﹣1)B .|﹣(+1)|C .﹣|﹣1|D .|1﹣2|4.由中国南车制造的CTT500型高铁,它的实验速度高达605公里/小时,打破了法国高速列车574.8公里/小时的世界纪录.若保持这样的速度,用科学记数法写出行驶10小时的路程为()A .46.0510⨯公里B .36.0510⨯公里C .56.0510⨯公里D .30.60510⨯公里5.下列去括号正确的是()A .﹣(a+b ﹣c )=a+b ﹣cB .﹣2(a+b ﹣3c )=﹣2a ﹣2b+6cC .﹣(﹣a ﹣b ﹣c )=﹣a+b+cD .﹣(a ﹣b ﹣c )=﹣a+b ﹣c 6.下列判断中正确的是()A .23a bc 与2b ca 是同类项B .25m n 不是整式C .单项式32x y -的系数是1-D .2235x y xy -+是二次三项式7.有理数a ,b ,c 在数轴上的位置如图所示,则a b b c +--的值为()A .2a b c --B .a c +C .2a b c--+D .a c--8.已知21a b -+的值是1-,则()3224a b a b --+的值是()A .4-B .10-C .0D .2-9.如图,A 、B 、C 、D 是数轴上的四个整数所对应的点,且1B A C B D C -=-=-=,而数m 在A 与B 之间,数n 在C 与D 之间,若3m n +-=,且A 、B 、C 、D 中有一个是原点,则此原点可能是()A .A 点或D 点B .B 点或D 点C .A 点D .D 点10.已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,求422a bx cdx ++-的值是()A .10B .-10C .20D .-20二、填空题11.用四舍五入法按照要求对0.43295取近似值,精确到千分位是________.12.若25-m x y 与n x y 是同类项,则m n +=__________.13.某超市销售的一种水果原价为m 元,因为销量不好,降价10%进行销售,一段时间后销量良好,决定提价20%,提价20%后这种水果的价格为________.14.若式子()333394mx x x nx -+--的值与x 无关,则mn 的值是________.15.对于有理数a ,b 定义一种新运算:*24a b a b =-+-.则()3*4*2-⎡⎤⎣⎦的值是________.16.如图是用大小相等的小正方形拼成的一组图案:…(1)(2)(3)(4)…观察并探索:第(100)个图案中有小正方形的个数是________.17.如果水库水位上升2m 记作+2m ,那么水库水位下降6m 记作_____.三、解答题18.计算:(1)()()1536---+.(2)()948149-÷⨯.(3)()157362612⎛⎫--⨯- ⎪⎝⎭.(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭.19.化简:(1)()()223222a a a a ++-+.(2)()2243324y y y y ⎡⎤---+⎣⎦.20.先化简,再求值:()()225214382a a a a+---+,其中3a =-.21.已知a 、b 互为相反数,x 、y 互为倒数,m 到原点距离2个单位.(1)根据题意,m =________.(2)求()202022a b mxy +++-的值.22.某公园中一块草坪的形状如图中的阴影部分.()1用整式表示草坪的面积;()2若2a =米,5b =米,求草坪的面积.23.已知一个三角形的第一条边长为3a b +,第二条边比第一条边短2a b -,第三条边比第二条边长2a b +.(1)则第二边的边长为________,第三条的边长为________.(2)用含a ,b 的式子表示这个三角形的周长,并化简.(3)若a ,b 满足()2870a b -+-=,求这个三角形的周长.24.小丽暑假期间参加社会实践活动,从某批发市场以每个a 元的价格购进50个手机充电宝,然后每个加价b 元到市场出售.(以下结果用含a ,b 的式子表示)(1)全部售出50个手机充电宝的总销售额为多少元?(2)由于开学临近,小丽在成功售出30充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②如果不采取降价销售,并且全部售出这50个充电宝,小丽将比实际销售多盈利多少元?25.“幸福是奋斗出来的”,在数轴上,若C 到A 的距离刚好是3,则C 点叫做A 的“幸福点”;若C 到A 、B 的距离之和为6,则C 叫做A 和B 的“幸福中心”.(1)如图1,点A 表示的数为1-,则A 的幸福点C 所表示的数应该是________.(2)如图2,M 、N 为数轴上两点,点M 所表示的数为4,点N 所表示的数为2-,若点C 就是M 和N 的幸福中心,则C 所表示的所有数中,整数之和为________.(3)如图3,A 、B 、C 为数轴上三点,点A 所表示的数为1-,点B 所表示的数为4,点C 所表示的数为8,点P 从点C 出发,以每秒2个单位的速度向左运动,同时,点M ,N 分别从点A ,B 以每秒1个单位的速度向右运动,经过多少秒时,点P 是M 和N 的幸福中心?26.已知A 点的初始位置位于数轴上表示1的点,现对点A 做如下移动:第1次向左移动3个单位长度至1A 点,第2次从1A 点向右移动6个单位长度至2A 点,第3次从2A 点向左移动9个单位长度至3A 点,第4次从3A 点向右移动12个单位长度至4A 点,…,依此类推.设点i A (1,2,3,i =⋅⋅⋅)对应的数为i a (1,2,3,i =⋅⋅⋅).(1)点5A 对应的数5a =________,点6A 对应的数6a =________.(2)第n 次移动到点n A ,求n a 的表达式(用含n 的式子表示).(3)是否存在第m 次移动到的点m A 到原点的距离为2020?如果存在,请求出m 的值,若不存在,请说明理由.参考答案1.D【解析】【详解】解:根据有理数比较大小的方法,可得﹣5<1,﹣5<0,﹣5<﹣4,﹣5>﹣6,∴四个数中比﹣5小的数是﹣6.故选:D.2.D【解析】【分析】根据倒数的概念求解可得.【详解】解:∵1()(2020)1 2020-⨯-=,∴-2020的倒数是1 2020 -,故选:D.【点睛】本题主要考查了倒数,解题的关键是掌握乘积是1的两数互为倒数.3.C【解析】【分析】将各式的结果计算出来,再根据小于零的数是负数,可得答案.【详解】A.﹣(﹣1)=1,1是正数,故A错误;B.|﹣(+1)|=1,1是正数,故B错误;C.﹣|﹣1|=﹣1,﹣1是负数,故C正确;D.|1﹣2|=|-1|=1,1是正数,故D错误.故选:C.【点睛】本题考查了正数和负数.掌握正数和负数的分辨,明确小于零的数是负数,能够正确化简各数是解题的关键.4.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:605×10=6.05×103(公里),故选:B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B【解析】【分析】若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变,“﹣”遇“+”变“﹣”号,“﹣”遇“﹣”变“+”;据此判断.【详解】解:A、﹣(a+b﹣c)=﹣a﹣b+c,所以A不符合题意;B、﹣2(a+b﹣3c)=﹣2a﹣2b+6c,正确;C、﹣(﹣a﹣b﹣c)=a+b+c,所以C不符合题意;D、﹣(a﹣b﹣c)=﹣a+b+c,所以D不符合题意;故选:B.【点睛】本题考查去括号的知识,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项符号发生改变.6.C【解析】【分析】分别根据同类项的定义,整式的定义,单项式的定义以及多项式的定义逐一判断即可.【详解】解:A 、23a bc 与2b ca ,所含字母相同,但是相同字母的指数不相同,故本选项不合题意;B 、25m n 属于整式,故本选项不合题意;C 、单项式32x y -的系数是1-,故本选项符合题意;D 、2235x y xy -+是三次三项式,故本选项不合题意;故选:C .【点睛】本题主要考查了同类项,整式,单项式与多项式的定义,熟记相关定义是解答本题的关键.7.D 【解析】【分析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出a+b ,b-c 的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.【详解】解:根据图形可知,b <c <0<a ,且|b|>|a|>|c|,∴a+b <0,b-c <0,∴|a+b|−|b−c|=-(a+b )+(b-c )=-a-b+b-c =-a-c .故选:D .【点睛】本题考查了整式的加减,数轴与绝对值的性质,根据数轴判断出a 、b 、c 的大小关系以及a+b ,b-c 的正负情况是解题的关键,也是难点.8.D 【解析】【分析】先化简多项式,再变形已知条件,最后整体代入求值.【详解】解:3(2)24a b a b --+3624a b a b=--+2a b =-,21a b -+ 的值是1-,211a b ∴-+=-.即22a b -=-.∴原式2=-.故选:D .【点睛】本题考查了整式的加减,掌握整式加减的运算法则是解决本题的关键.9.A 【解析】【分析】先根据图形和已知条件找出各线段长度,然后由3m n +-=推测原点位置.【详解】解:由“B-A=C-B=D-C=1且数m 在A 与B 之间,数n 在C 与D 之间”可以得出:1AB BC CD ===3AD ∴=①当原点是B 点或C 点时,3m n +-<与已知3m n +-=相矛盾,故原点不可能是B 点或C 点;②当原点在A 点或D 点且A m D n -=-时,3m n m n +-=+=,综上可知:数轴原点可能是A 点或D 点.故选A .【点睛】本题主要考查了数轴和绝对值,解决本题的关键在于理解绝对值的几何意义.10.C 【解析】【分析】根据相反数的定义,倒数的定义,绝对值的定义求出a+b=0,cd=1,2x =±,分两种情况代入数值计算即可.【详解】解:∵a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,∴a+b=0,cd=1,2x =±,当x=2时,422a bx cdx ++-=16+4-0=20,当x=-2时,422a b x cdx ++-=16+4-0=20,故选:C .【点睛】此题考查已知式子的值求代数式的值,正确掌握相反数的定义,倒数的定义,绝对值的定义是解题的关键.11.0.433【解析】【分析】把万分位上的数字9进行四舍五入即可.【详解】解:0.43295≈0.433(精确到千分位).故答案是:0.433.【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有精确到哪一位,保留几个有效数字等说法.12.3.【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程等式,求出n ,m 的值,再相加即可.【详解】∵-5x 2y m 和x n y 是同类项,∴n=2,m=1,∴m+n=2+1=3.13.1.08m 【解析】【分析】直接利用降价与提价的变化得出变化后实际价格.【详解】解:由题意可得:m (1-10%)(1+20%)=1.08m (元).故答案为:1.08m .【点睛】本题主要考查了列代数式,正确表示出变化后价格是解题关键.14.4【解析】【分析】先将原式化简为()()33439m x n x -+-+,,再根据多项式的值与x 无关,可得340m -=,30n -=,由此即可求得mn 的值.【详解】解:33339(4)mx x x nx -+--333394mx x x nx =-+-+()()33439m x n x =-+-+,式子33339(4)mx x x nx -+--的值与x 无关,340m ∴-=,30n -=,43m ∴=,3n =.4343mn ∴=⨯=.故答案为:4.【点睛】本题考查了整式的加减运算,重点是根据题中条件得到340m -=,30n -=,同学们应灵活掌握.15.-7【解析】【分析】先计算(-3)*4得出其结果,再代入[(-3)*4]*2列式计算即可.【详解】解:∵(-3)*4=-(-3)+2×4-4=3+8-4=7,∴[(-3)*4]*2=7*2=-7+2×2-4=-7+4-4=-7,故答案为:-7.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.16.397【解析】【分析】观察图形可知后面一个图形比前面一个图形多4个小正方形,所以可得规律为:第n 个图形中共有4(1)1n -+个小正方形.【详解】解:由图片可知:第(1)个图案中有4011⨯+=个小正方形,第(2)个图案中有4115⨯+=个小正方形,第(3)个图案中有4219⨯+=个小正方形,⋯∴规律为小正方形的个数4(1)143n n =-+=-.当100n =时,小正方形的个数41003397=⨯-=.故答案为:397.【点睛】此题考查了规律型:图形的变化,是找规律题,目的是培养同学们观察、分析问题的能力.注意由特殊到一般的分析方法,此题的规律为:第n 个图形中共有4(1)1n -+个小正方形.17.﹣6m .【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:∵“正”和“负”相对,水位上升2m ,记作+2m ,∴水位下降6m ,记作﹣6m .故答案为﹣6m .【点睛】本题主要考查了理解“正”和“负”的相对性,确定一对具有相反意义的量,比较简单.18.(1)6-;(2)16-;(3)33;(4)13【解析】【分析】(1)根据有理数的加减运算法则计算即可;(2)根据有理数的乘除运算法则计算即可;(3)根据乘法的分配律计算即可;(4)根据有理数的乘方以及混合运算,计算即可;【详解】解:(1)()()()153615366---+=-++=-(2)()94448181164999-÷⨯=-⨯⨯=-(3)()15715736(36)(36)(36)1830213326122612⎛⎫--⨯-=⨯--⨯--⨯-=-++= ⎪⎝⎭(4)()2411133162⎛⎫⎡⎤--⨯+-÷- ⎪⎣⎦⎝⎭121(39)(63=--⨯+⨯-12112(63=--⨯⨯-413=-+13=【点睛】此题考查了有理数的运算,涉及了加减、乘除以及乘方,熟练掌握有理数的运算法则是解题的关键.19.(1)254a +;(2)35y -.【解析】【分析】(1)先去括号,然后合并同类项即可求出答案;(2)先去小括号,再去中括号,然后合并同类项即可求出答案.【详解】解:(1)原式2232224a a a a =++-+254a =+;(2)原式224(3324)y y y y =--++2243324y y y y =-+--35y =-.【点睛】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.20.233413a a -+-,142-【解析】【分析】先将原式去括号合并同类项得到最简结果,再将a 的值代入计算即可求出值.【详解】解:原式2252112328a a a a =+--+-,233413a a =-+-,当3a =-时,原式23(3)34(3)13=-⨯-+⨯--2710213=---142=-.【点睛】此题考查了整式的加减-化简求值,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.21.(1)2或-2;(2)5.【解析】【分析】(1)根据绝对值的定义可得答案;(2)先根据相反数的性质、倒数的定义得出a+b=0,xy=1,再结合m 的值分别代入计算即可.【详解】解:(1)∵m 到原点距离2个单位,∴m=2或-2,故答案为:2或-2;(2)根据题意知a+b=0,xy=1,m=2或-2,当m=2时,()202022a b m xy +++-=22+0+(-1)2020=4+1=5;当m=-2时,()202022a b m xy +++-=(-2)2+0+(-1)2020=4+1=5;综上,()202022a b m xy +++-的值为5.【点睛】本题主要考查了有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.22.(1)草坪的面积为18ab 平方米;()2草坪的面积是180平方米.【解析】【分析】(1)草坪的面积=大长方形的面积-两个空白长方形的面积,应该根据图中数据逐一进行计算,然后求差;(2)将a 2=米,b 5=米代入求值即可.【详解】(1)(1.5b+2.5b )(a+2a+a+2a+a )-2.5b×2a×2=18ab ,即草坪的面积为18ab 平方米;(2)当a 2=米,b 5=米时,18ab 1825180=⨯⨯=(平方米),答:草坪的面积是180平方米.【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.23.(1)23a b +,44a b +;(2)98a b +;(3)128【解析】【分析】(1)根据题意列出算式即可求出答案;(2)列出算式后,根据整式的运算法则即可求出答案;(3)先求出a 与b 的值,然后代入原式即可求出答案.【详解】解:(1)第二条边为(3)(2)3223a b a b a b a b a b +--=+-+=+,第三条边为:(23)(2)23244a b a b a b a b a b +++=+++=+,故答案为:23a b +,44a b +;(2)该三角形的周长为:(3)(23)(44)a b a b a b +++++32344a b a b a b=+++++98a b =+;(3)∵()2870a b -+-=,且80a -≥,()270b -≥,∴80a -=,70b -=,∴8a =,7b =,∴该三角形的周长为:9887128⨯+⨯=.【点睛】本题考查整式加减的应用,解题的关键是熟练运用整式加减的运算法则,本题属于基础题型,也考查了绝对值和平方的非负性.24.(1)全部售出50个手机充电宝的总销售额为50(a+b )元(2)①她的总销售额是(46a+46b )元;②小丽将比实际销售多盈利(4a+4b )元.【解析】【分析】(1)根据总销售额=销售单价×数量列出式子即可.(2)①总销售额等于未打折的30个充电宝的销售额+(50-30)个打8折的充电宝的销售额,列出算式并化简即可;②用(1)中的销售额减去(2)①中的销售额,计算即可.【详解】解:(1)由题意可知,每个手机充电宝的售价为(a+b )元,∴全部售出50个手机充电宝的总销售额为:50(a+b )元.(2)①由题意得:30(a+b )+(50-30)(a+b )×0.8=30a+30b+16a+16b=(46a+46b )元,∴她的总销售额是(46a+46b )元;②由题意得:50(a+b )-46(a+b )=(4a+4b )元,∴小丽将比实际销售多盈利(4a+4b )元.【点睛】本题考查了列代数式在成本利润问题中的应用,明确成本利润问题的基本数量关系是解题的关键.25.(1)2或4-;(2)7;(3)76秒或196秒【解析】【分析】(1)根据幸福点的定义即可求解,注意分类讨论;(2)先根据题意可求得6MN =,由此再结合幸福中心的定义即可求解;(3)分两种情况讨论:①P 在N 的右边;②P 在M 的左边,由此可以得出结论.【详解】解:(1)132-+= ,134--=-,A ∴的幸福点C 所表示的数应该是2或4-,故答案为:2或4-;(2)4(2)6MN =--= ,M ∴,N 之间的所有数都是M ,N 的幸福中心,故C 所表示的整数可以是2-或1-或0或1或2或3或4,21012347∴--+++++=,故答案为:7;(3)设经过x 秒时,点P 是M 和N 的幸福中心,由题意可得:点P 表示的数为82x -,点M 表示的数为1x -+,点N 表示的数为4x +,∴4(1)56MN x x =+--+=<,又∵点P 是M 和N 的幸福中心,∴点P 在点M 的左边或者在点N 的右边,①当点P 在N 的右边时,有82(4)82(1)6x x x x --++---+=,解得:76x =;②当点P 在M 的左边时,有4(82)(1)(82)6x x x x +--+-+--=,解得:196x =.答:当经过76秒或196秒时,点P 是M 和N 的幸福中心.【点睛】本题考查了一元一次方程的应用、数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间⨯速度,认真理解新定义,学会运用分类讨论思想是解决本题的关键.该类题型主要考查学生对新知识的接受和应用能力.26.(1)8-;10;(2)()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)1346【解析】【分析】(1)按照题目,找出已知规律,推算即可;(2)根据数轴上点所对应的数的变化和平移规律(左减右加),分别求出点所对应的数,进而求出点到原点的距离;然后对第奇数个以及第偶数个分别探究,找出其中的规律(相邻两数都相差3),进而写出表达式就可解决问题;(3)利用(2)中的结论,代入求值.【详解】解:(1)第1次点A 向左移动3个单位长度至点1A ,则1A 表示的数,132-=-;第2次从点1A 向右移动6个单位长度至点2A ,则2A 表示的数为264-+=;第3次从点2A 向左移动9个单位长度至点3A ,则3A 表示的数为495-=-;第4次从点3A 向右移动12个单位长度至点4A ,则4A 表示的数为5127-+=;第5次从点4A 向左移动15个单位长度至点5A ,则5A 表示的数为7158-=-;第6次从点5A 向右移动18个单位长度至点6A ,则6A 表示的数为81810-+=;故答案是:8-;10;(2)由(1)可知,当移动次数n 为奇数时,点n A 在原点的左侧,1369123n a n-+-+--=…1(36)(912)[3(2)3(1)]3n n n=+-++-+++--+--…11332n n-=+⨯-312n +=-,当移动次数n 为偶数时,点n A 在原点的右侧,1369123(1)3n a n n-+-+---+=...1(36)(912)[3(1)3]n n =+-++-+++--+ (13)2n=+⨯322n +=,综上所述,()()312322n n n a n n +⎧-⎪⎪=⎨+⎪⎪⎩为奇数时为偶数时;(3)根据题意,得当移动次数n 为奇数时,3120202m +-=-,解得:40393m =(不符合题意,舍去),当移动次数n 为偶数时,3220202m +=,解得:1346m =,∴存在第m 次移动到的点m A 到原点的距离为2020,此时m 的值为1346.。
七年级上册期中考试数学试卷(A 卷)
满分:120分 时量:120分钟 一、选择题(每小题3分,共30分)。
1、下列说法中,错误的有 ( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数。
A 、1个 B 、2个 C 、3个 D 、4个 2、下列说法正确的是 ( ) A 、符号不同的两个数互为相反数 B 、一个有理数的相反数一定是负有理数 C 、432与2.75都是411-的相反数 D 、0没有相反数 3、已知a -=a ,则a 是 ( ) A 、正数 B 、负数 C 、负数或0 D 、正数或0 4、用“>”连接032,,---正确的是 ( ) A 、032>-->- B 、302-->>- C 、023<-<-- D 、203-<<-- 5、下列说法正确的是 ( ) A 、两个有理数相加,和一定大于每一个加数 B 、异号两数相加,取较大数的符号 C 、同号两数相加,取相同的符号,并把绝对值相加 D 、异号两数相加,用绝对值较大的数减去绝对值较小的数 6、两个互为相反数的数之积 ( ) A 、符号必为负 B 、一定为非正数 C 、一定为非负数 D 、符号必为正 7、()52-表示 ( ) A 、5与-2相乘的积 B 、-2与5相乘的积 C 、2个5相乘的积的相反数 D 、5个2相乘的积 8、下列写法正确的是 ( )
A 、x5
B 、n m ⨯4
C 、43
)1(+x x D 、ab 21
-
9、下列各式中,是二次三项式的是 ( )
A 、31
a 22-+a B 、1332++ C 、a
b a ++23 D 、y
x y x -++22
装订
线
内
不
要
答
题
、
装
订
线
外
不
要
写
姓
名
等
,
违
者
试
卷
记
零
分 …………⊙…
…⊙
……
……
…………………
…⊙…
…⊙……
………
…………
………
⊙……⊙
………
………
…
…
……
…
⊙
……⊙…………
姓名___
___
____
班级____
___
学号__
___
__
10、将代数式2
5252
22xy y x xy -+合并同类项,结果是( ) A 、y x 221 B 、22521xy y x + C 、y x 2211 D 、22252
1xy y x y x ++-
二、填空题(每小题3分,共30分)
11、小明、小芳同时从A 处出发,如果小明向东走50米记作+50米,则小芳向西走70米记作_________米。
12、数轴上距离原点2.4个单位长度的点有 个,它们分别是 。
13、37
-的相反数是_______,它的倒数是_________。
14、绝对值小于2的非负整数有__________________。
15、27ºC 比-5ºC 高_______ºC ,比5ºC 低9ºC 的温度 是_______ºC 。
16、比较大小:|5.2|--______2)5(-。
17、用代数式表示:买一个球拍需要a 元,买一根跳绳需要b 元,则分别购买50个球拍和50根跳绳,共需 元。
18、用科学记数法表示39万千米是____________千米。
19、代数式2x -4y -3中,y 的系数是______,常数项是__________。
20、如果n
y x 23与y x m 21-是同类项,那么m=_________,n=__________。
三、解答题(共60分)
21、计算题(每小题4分,共16分)
(1)、23-37+3-52 (2)、)5
1(30)2132(
-÷⨯-
(3)、])3(2[141223--⨯- (4)、232)2
12(|18.0|)4(2⨯-+-÷-
22、(6分)画一根数轴,用数轴上的点把如下的有理数-2,-0.5,0,-4表示 出来,并用“<”把它们连接起来。
23、(8分)用简便方法计算: (1)34.075)13(31
72
34.032
13⨯--⨯+⨯-⨯- (2))
60()125
157514131(-⨯+-+--
24、合并同类项(每小题4分,共8分)
(1)、2235213x x x x -+--- (2)、22243
21
32
b ab a ab a -++-
25、(6分)已知a 、b 互为相反数,m 、n 互为倒数,求mn m n
b a -+)(的值。
26、(8分)某校大礼堂第一排有a个座位,后面每一排都比前一排多2个座位,求第n排的座位数。
若该礼堂一共有20排座位,且第一排的座位数也是20,请你计算一下该礼堂能容纳多少人?
27、(8分)振子从一点A开始左右来回振动8次,如果规定向右为正,向左为负,这8次振动记录为(单位:毫米):+10,-9,+8,-6,+7.5,-6,+8,-7.
(1)求振子停止时所在位置距A点有多远?
(2)如果每毫米需时间0.02秒,则共用时间多少秒?。