8.2.3 单项式与多项式相乘
- 格式:pptx
- 大小:12.25 MB
- 文档页数:30
单项式与多项式的乘法法则
单项式与多项式的乘法法则
在代数中,单项式是指一个只含有一个字母表达式的项,如x、y、z、
3x、5y等,而多项式则是由多个单项式按照加法运算组合而成的表达式。
那么,当我们进行单项式与多项式的乘法运算时,需要遵循以下
法则:
1. 单项式和单项式相乘
当两个单项式相乘时,只需将它们的系数相乘,字母部分的指数相加,即可得到结果。
例如:
2x * 3x^2 = 6x^3
4a^3 * 5a^4 = 20a^7
2. 单项式和多项式相乘
当一个单项式和一个多项式相乘时,只需将单项式的系数分别乘以多
项式中每个单项式的系数,字母部分的指数相加,即可得到结果。
例如:
3x(2x^2 + 4xy + 3y^2) = 6x^3 + 12x^2y + 9xy^2
4a^2b(2ab^2 + 3a^2b + 5ab) = 38a^3b^3
3. 多项式和多项式相乘
当两个多项式相乘时,需要将每个单项式分别乘以另一个多项式的所有单项式,然后将结果进行合并并进行简化。
可以使用分配律和结合律来简化计算。
例如:
(2x^2 + 4xy + 3y^2)(3x^3 + 5xy + 7y^2) = 6x^5 + 26x^4y + 43x^3y^2 + 35x^2y^3 + 21xy^4
(5a^2 + 3b)(a^3 + 2ab^2 + 4b^3) = 5a^5 + 13a^3b^2 + 27ab^4 + 3a^4b + 6a^2b^3 + 12b^4
以上就是单项式与多项式的乘法法则。
在学习代数时,掌握这些基本规则可以帮助我们更好地理解和解决各种代数问题。
可编辑修改精选全文完整版第八章整式乘法与因式分解8.2.2 单项式与多项式相乘第1课时单项式乘以多项式一、教学目标1.能根据乘法分配律和单项式与单项式相乘的法则探究单项式与多项式相乘的法则;2.掌握单项式与多项式相乘的法则并会运用.二、教学重点及难点重点:认识单项式与多项式相乘的法则难点:掌握单项式与多项式相乘的法则并会运用三、教学用具多媒体课件.四、相关资源图片五、教学过程【课堂导入】教师提出问题:计算:(-1)×(4-1)时.我们可以根据有理数乘法的分配律进行计算,那么怎样计算x·(x2-x)呢?提示:根据乘法分配律,乘以它的每一项.解:x·(x2-x)=x3−x2设计意图:创设情境,通过学生熟知的有理数乘法的分配律进行导入,介绍单项式乘以多项式的运算法则.【新知讲解】1.单项式与多项式相乘的运算法则教师展示ppt上习题:2(x+y2z+xy2z3)·xyz;解:原式=(2x+2y2z+2xy2z3)·xyz=2x2yz+2xy3z2+2x2y3z4.总结规律:1.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2. 单项式与多项式相乘的运算实质上是转化为单项式乘单项式设计意图:通过做题,带领学生认识单项式乘以多项式,先去括号,然后计算乘法,再合并同类项即可.2.单项式与多项式乘法的实际应用.教师讲解习题:一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab (平方米).故防洪堤坝的横断面积为(12a 2+12ab )平方米; (2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab (立方米).故这段防洪堤坝的体积是(50a 2+50ab )立方米.总结规律:通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解题的关键.设计意图:通过习题,使学生掌握单项式与多项式乘法的实际应用3.利用单项式乘以多项式化简求值.方法总结:在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项设计意图:通过习题,学会整式的化简求值.在计算时要注意先化简然后再代值计算.整式的加减运算实际上就是去括号与合并同类项..【典型例题】例1 计算下列各式:(1)3x (2x -y 2)=____________.(2)(2x -5y +6z )(-3x )=________________.(3)(-2a 2)2(-a -2b +c )=_________________.解:(1)6x 2-3xy 2(2)-6x2+15xy-18xz(3)-4a5-8a4b+4a4c设计意图:掌握单项式乘以多项式的计算.例2先化简,再求值:5a(2a2-5a+3)-2a2(5a+5)+7a2,其中a=2.解:5a(2a2-5a+3)-2a2(5a+5)+7a2=10a3-25a2+15a-10a3-10a2+7a2=-28a2+15a,当a=2时,原式=-82.设计意图:通过练习,巩固化简规律.【随堂练习】1.计算:(-4x)·(2x2+3x-1);解:原式=(-4x)·(2x2)+(-4x)·3x+(-4x)·(-1)=-8x3-12x2+4x;2.计算:-2x2·(xy+y2)-5x(x2y-xy2).解:原式=( -2x2) ·xy+(-2x2) ·y2+(-5x) ·x2y+(-5x) ·(-xy2)=-2x3y+(-2x2y2)+(-5x3y)+5x2y2=-7x3y+3x2y2.3.先化简,再求值3a(2a2-4a+3)-2a2(3a+4),其中a=-2.解:3a(2a2-4a+3)-2a2(3a+4)=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×(-2)2+9×(-2)=-98.4.如图,一块长方形地用来建造住宅、广场、商厦,求这块地的面积.解:4a[(3a+2b)+(2a-b)]=4a(5a+b)=4a·5a+4a·b=20a2+4ab.答:这块地的面积为20a2+4ab.设计意图:通过学生的练习,使教师及时了解学生对知识的理解情况,以便教师及时对学生进行矫正.【课堂小结】1.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘的运算实质上是转化为单项式乘单项式3.注意:(1)计算时,要注意符号问题,多项式中每一项都包括它前面的符号,单项式分别与多项式的每一项相乘时,同号相乘得正,异号相乘得负(2)不要出现漏乘现象(3)运算要有顺序:先乘方,再乘除,最后加减(4)对于混合运算,注意最后应合并同类项设计意图:通过小结,回顾本节课所学新知,加深印象.【板书设计】第1课时单项式乘以多项式1.单项式与多项式相乘的运算法则2.单项式与多项式乘法的实际应用3.利用单项式乘以多项式化简求值。
《单项式与多项式相乘》教案第一章:单项式与多项式的概念回顾1.1 回顾单项式的定义:一个数或字母的乘积称为单项式,如2x, 3y^2等。
1.2 回顾多项式的定义:由多个单项式通过加减运算组成的表达式,如ax^2 + bx + c等。
第二章:单项式与多项式的相乘规则2.1 介绍单项式与多项式相乘的规则:将单项式分别与多项式中的每一项相乘,将结果相加。
2.2 示例:假设要计算单项式3x与多项式2x^2 + 4x + 1相乘,则将3x分别与2x^2, 4x, 1相乘,将结果相加。
第三章:单项式与多项式相乘的计算步骤3.1 步骤1:将单项式与多项式中的每一项相乘。
3.2 步骤2:将乘积相加。
3.3 步骤3:简化结果,合并同类项。
3.4 示例:计算单项式-2x与多项式3x^2 + 5x 2相乘,按照步骤1、步骤2、步骤3进行计算。
第四章:单项式与多项式相乘的练习题4.1 设计一些练习题,让学生独立完成,加深对单项式与多项式相乘的理解。
4.2 练习题可以包括不同类型的单项式和多项式,以及不同难度的问题。
第五章:单项式与多项式相乘的应用题5.1 设计一些应用题,让学生将所学知识应用于实际问题中。
5.2 应用题可以涉及不同领域的实际问题,如面积、体积计算等。
第六章:单项式与多项式相乘的拓展概念6.1 介绍单项式与多项式相乘的拓展概念,如分配律的应用。
6.2 解释分配律:单项式乘以多项式中的每一项,将结果相加。
6.3 示例:使用分配律计算单项式4x与多项式(2x + 3)相乘。
第七章:单项式与多项式相乘的技巧与策略7.1 提供一些技巧与策略,帮助学生更高效地解决单项式与多项式相乘的问题。
7.2 技巧1:先乘除后加减,按照运算顺序进行计算。
7.3 技巧2:先简化多项式,再进行相乘。
7.4 示例:运用技巧解决复杂的单项式与多项式相乘问题。
第八章:单项式与多项式相乘的错误分析8.1 分析学生在单项式与多项式相乘中常见的错误。
课题:8.2 整式乘法(3)第三课时 多项式与多项式相乘主备人:王刚喜 审核人: 杨明 使用时间:2011年4月 日年级 班 姓名:学习目标:1. 探索多项式乘法的法则过程,理解多项式乘法的法则,并会进行多项式乘法的运算;2. 进一步体会乘法分配律的作用和转化的思想,发展有条理的思考和语言表达能力.学习重点:掌握多项式与多项式相乘的法则.学习难点:通过探究理解多项式乘以多项式的运算法则一、学前准备【回顾】1.单项式与单项式乘法法则:单项式与多项式乘法法则: 2.计算:(1) ab ab ab 212322⋅⎪⎭⎫ ⎝⎛- (2) ()()()121325x x x x x x -++--【自学】1.研读教材P59-60问题3.2.小组讨论:计算此长方形的面积有几种方法?3.想一想:你从计算中发现了什么?(m+n)(a+b)=ma+mb+na+nb.4.归纳:多项式与多项式乘法法则5.注意:(1)注意符号(2)不要漏乘(3)结果要化到最简形式【自学检测】1.计算:(1)(a+4)(a+3) (2)(3x+1)( x-2)(3)(2x-5y)(3x-y)二、探究活动【例题分析】例1.计算(1)(x-8y)( x-y) (2)(x-1)(2x-3)(3)(m-2n)(3m+n) (4)(x-2)(x2+4)(5)(x-y) (x2+xy+y2) (6)n(n+1)(n+2) 【填一填、想一想】(x+2)(x+3)=;(y+4)(y+6)=.(x-2)(x+3)=;(y+4)(y-6)=.(x-2)(x-3)=;(y-4)(y-6)=.①根据上面的计算结果,同学们有什么发现?②观察右图,填空(x+m)(x+n)=( )2+( )x+( )结论:.【课堂自测】1.填空:(1)(m+5)(m-1)=;(2)(x-5)(x-1) =.(3)(x-2y)(x+4y)=;(4)(ab+7)(ab-3) =.2.计算(1)(1-3x)(1+2x)-3x(2x-1) (2)2(x-8)(x-5)-(2x-1)(x+2)3.解方程(1)(3x-2)(2x-3)=(6x+5)(x-1)-1 (2)(x-2)(x+3) =(x+2)(x-5)三、自我测试1. 计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22. 若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3. (3x-1)(4x+5)=_________ _;(-4x-y)(-5x+2y)=_______ __.4. (x+3)(x+4)-(x-1)(x-2)=__________;5. (x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.计算下列各式(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)四、应用与拓展1.若a2+a+1=2,则(5-a)(6+a)=__________.2.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_____,b=______.。
沪科版《8.2.3多项式与多项式相乘》教学设计
2.学法
课前进行预习,明确学习目标,了解所需掌握的知识,课上在教师的组织、引导、点拨下探究多项式与多项式相乘的法则。
本节课主要采用自主探究法、分析归纳法、总结反思法进行学习。
五、教学重点及难点
【教学重点】多项式与多项式相乘的法则及应用;
【教学难点】对多项式与多项式的运算法则的理解。
六、课时设计
1课时
七、教学过程
教师活动预设学生活动设计意图
(一)复习单项式与单、多项式相乘有关知识
1. (出示PPT)复习提问:单项式与单项式相乘的法则是什么?
2. (出示PPT)复习提问:单项式与多项式相乘的法则是什么?1.学生集体回答老师展示
的问题,一边回答一边回
顾乘法法则知识。
2.学生回忆,集体回答。
1.检测学生对已
学过的单项式与
单项式相乘的乘
法法则的理解。
2. 检测学生对单
项式与多项式相
乘的法则的理解.
(二)探究与思考
教师展示PPT情境问题,让学生思考、交流、解答。
问题:一块长方形的菜地,长为a,宽为m. 现将它的长增加b,宽增加n,求扩大后的菜地面积。
算法一:扩大后菜地的长是a+b,宽是m+n,所以它的面积是
算法二:先算4块小矩形的面积,再求总面积。
扩大后菜地的面积是
学生看图思考、交流、用
不同的方法列出式子。
以学生身边的实
际问题展开讨
论,突出数学与
现实的联系,同
时让学生进一步
经历实际问题解
答中感受多项式
与多项式相乘。