同余
- 格式:pdf
- 大小:202.25 KB
- 文档页数:7
同余法解题集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]五年级奥数培训资料第六讲同余法解题一、同余这个概念最初是由德国数学家高斯发明的。
同余的定义是这样的:两个整数,a,b,如果他们同时除以一个自然数m,所得的余数相同,则称a,b对于模m同余。
记作a≡b(mod.m)。
读作:a同余于b模m。
同余的性质也比较多,主要有以下一些:1..对于同一个除数,两个数的乘积与它们余数的乘积同余。
例如201×95的乘积对于除数7,与201÷7的余数5和95÷7的余数4的乘积20对于7同余。
2..对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
例如519和399对于一个除数同余,那么这个除数一定是519与399的差的因数,即519与399的差一定能被这个除数整除。
3..对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。
例如20和29对于一个除数同余,那么20的任何次方都和29的相同次方对于这个除数同余,当然余数大小随次方变化。
4.对于同一个除数,若三个数a≡b(mod m),b≡c(mod m),那么a,b,c三个数对于除数m都同余(传递性)例如60和76同余于模8,76和204同余于模8,那么60,76,204都同余于模8。
5. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么a±c≡c±d (mod m),(可加减性)6. 对于同一个除数,若四个数a≡b(mod m),c≡d(mod m),那么ac≡cd(mod m),(可乘性)二、中国剩余定理解法一个数被3除余1,被4除余2,被5除余4,这个数最小是几?解法:求3个数:第一个:能同时被3和4整除,但除以5余4,即12X2=24第二个:能同时被4和5整除,但除以3余1,即20X2=40第三个:能同时被3和5整除,但除以4余2,即15x2=30这3个数的最小公倍数为60,所以满足条件的最小数字为24+40+30-60=3412X2=24 20X2=40 15x2=30中2的来历。
同余问题解析所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
一、“差同减差,和同加和,余同取余,最小公倍加倍”这是解较简单同余问题的口诀。
首先要对这几个不同的数的最小公倍数心中有数。
下面以4、5、6为例,请记住[4,5,6]=60。
1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:一个数除以4余1,除以5余2,除以6余3,求这个数。
因为4-1=5-2=6-3=3,所以取-3,表示为60k-3,k为非零自然数。
即:当k=1、2、3、4、5…时都满足60k-3≡1(mod 4),60k-3≡2(mod,5),60k-3≡3(mod 6)。
2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:一个数除以4余3,除以5余2,除以6余1,求这个数。
因为4+3=5+2=6+1=7,所以取+7,表示为60k+7,k为非零自然数。
即:当k=1、2、3、4、5…时都满足60k+7≡3(mod 4),60k+7≡2(mod 5),60k+7≡1(mod 6)。
3、余同取余:用一个数除以几个不同的数,得到的余数相同,此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:一个数除以4余1,除以5余1,除以6余1,求这个数。
因为余数都是1,所以取+1,表示为60k+1,k为非零自然数。
60k+1≡1(mod 4),60k+1≡1(mod 5),60k+1≡1(mod 6)。
4、最小公倍加倍:用一个数除以几个不同的数,得到的余数为0,此时反求的这个数,可以选这几个不同的数的最小公倍数的倍数,称为:“最小公倍加”,也称为:“公倍数作周期”例:一个数被4、5、6整除,求这个数。
同余的概念与性质同余:设m 是大于1的正整数,若用m 去除整数b a ,,所得余数相同,则称a 与b 关于模m 同余,记作)(mod m b a ≡,读作a 同余b 模m ;否则称a 与b 关于模m 不同余记作)(mod m b a ≠。
性质1:)(mod m b a ≡的充要条件是Z t mt b a ∈+=,,也即)(|b a m -。
性质2:同余关系满足下列规律:(1)自反律:对任何模m 都有)(mod m a a ≡;(2)对称律:若)(mod m b a ≡,则)(mod m a b ≡;(3)传递律:若)(mod m b a ≡,)(mod m c b ≡,则若)(mod m c a ≡。
性质 3:若,,,2,1),(mod s i m b a i i =≡则).(mod ),(mod 21212121m b b b a a a m b b b a a a s s s s ≡+++≡++推论: 设k 是整数,n 是正整数,(1)若)(mod m c b a ≡+,则)(mod m b c a -≡。
(2)若)(mod m b a ≡,则)(mod m a mk a ≡+;)(mod m bk ak ≡;)(mod m b a n n ≡。
性质4:设)(x f 是系数全为整数的多项式,若)(mod m b a ≡,则 ))(mod ()(m b f a f ≡。
性质5:若)(mod m bd ad ≡,且1),(=m d ,则)(mod m b a ≡。
性质6:若)(mod m b a ≡,且m d b d a d |,|,|,则)(mod d m d b d a ≡。
性质7:若)(mod m b a ≡,且m m |1,则)(mod 1m b a ≡。
性质8:若)(mod i m b a ≡,s i ,,2,1 =,则]),,,(mod[21s m m m b a ≡这里],,,[21s m m m 表示s m m m ,,,21 的最小公倍数。
数论中的整除与同余概念整除和同余是数论中的重要概念。
整除指的是一个数被另一个数整除,也就是能够整除有余数为零的关系。
同余则是指两个数除以同一个数所得的余数相等。
这两个概念在数论中有着广泛的应用和深入的研究。
首先,我们来讨论整除的概念。
设a和b是两个整数,如果存在一个整数c,使得b=c*a,我们就说a整除b,记作a|b。
即b能够被 a 整除而没有余数。
整除是一个基本的数学运算,我们通过它可以判断两个数的倍数关系。
例如,如果a|b且a|c,那么我们可以得到a|(b+c)和a|(b-c)。
这是因为有整数d和e,使得b=d*a,c=e*a。
那么b+c=(d+e)*a,b-c=(d-e)*a,它们都可以被a整除。
正是因为整除的这些性质,我们能够通过对整数的整除关系进行研究,揭示整数之间的规律。
整除在数论中扮演着重要的角色,例如在质数的研究中,整除是一个关键概念。
质数指的是除了1和自身外没有其他因数的数,也就是只能被1和自身整除的数。
例如,2、3、5、7等都是质数。
对于一个数n,我们可以通过判断是否有除了1和n外的其他因数来判断n是否为质数。
这个思想就是质数检验的基础。
接下来,我们来深入讨论同余的概念。
给定两个整数a和b,如果它们除以一个正整数m所得的余数相等,即(a-b)能被m整除,我们就说a与b对模m同余,记作a≡b(mod m)。
同余关系是模m下的一种等价关系,也就是说它满足以下性质:1. 自反性:对于任意的整数a,a≡a(mod m)。
2. 对称性:对于任意的整数a和b,如果a≡b(mod m),那么b≡a(mod m)。
3. 传递性:对于任意的整数a、b和c,如果a≡b(mod m)且b≡c(mod m),那么a≡c(mod m)。
同余关系的一个重要应用是在时钟和日历的计算中。
例如,我们常使用12小时制的时钟,它的小时数是以0到11表示的。
那么如果现在是下午8点,过了6个小时后是几点呢?我们可以通过同余的概念来解决这个问题。
第 17 讲 同 余同余是数论中的重要概念,同余理论是研究整数问题的重要工具之一。
设m 是一个给定的正整数,如果两个整数a 与b 用m 除所得的余数相同,则称a 与b 对模同余,记作)(mod m b a ≡,否则,就说a 与b 对模m 不 同余,记作)(mod m b a ≡,显然,)(|)(,)(mod b a m Z k b km a m b a -⇔∈+=⇔≡;1、 同余是一种等价关系,即有自反性、对称性、传递性1).反身性:)(mod m a a ≡;2).对称性:)(mod )(mod m a b m b a ≡⇔≡;3). 传递性:若)(mod m b a ≡,)(mod m c b ≡则)(mod m c a ≡;2、加、减、乘、乘方运算若 a b ≡(mod m ) c d ≡(mod m )则 a c b d ±≡±(mod m ),ac bd ≡(mod m ),n na b ≡(mod m ) 3、除法 设 ac bd ≡(mod m )则 a b ≡(mod (,)m c m )。
A 类例题例1.证明: 一个数的各位数字的和被9除的余数等于这个数被9除的余数。
分析 20≡2(mod9),500≡5(mod9),7000≡7(mod9),……,由于10n-1=9M ,则10n ≡1(mod9),故a n ×10n ≡a n (mod9)。
可以考虑把此数变为多项式表示a n ×10n + a n-1×10n-1+…+ a 1×10+a 0后处理。
证明 设a=110n n a a a a =a n ×10n + a n-1×10n-1+…+ a 1×10+a 0,∵10≡1(mod9),∴10n ≡1(mod9),∴a n ×10n + a n-1×10n-1+…+ a 1×10+a 0≡a n + a n-1+…+ a 1+a 0。
同余的运算法则全文共四篇示例,供读者参考第一篇示例:同余的概念最早出现在数论领域,是一种描述整数间的模运算关系的数学概念。
同余的运算法则涉及到模运算的一系列性质和规律,对于解决一些数论问题和密码学中的加密算法起着至关重要的作用。
本文将介绍同余的概念及其运算法则,并讨论其在数学和应用方面的重要性。
1. 同余的定义在数论中,我们通常使用符号“≡”表示同余关系。
如果两个整数a和b除以一个正整数m的余数相等,即a除以m和b除以m的余数相等,我们就说a与b关于模m同余,记为a≡b(mod m)。
简单来说,同余就是指两个数除以同一个数的余数相等。
12和22关于模5同余,因为12除以5的余数为2,22除以5的余数也为2,即12≡22(mod 5)。
2. 同余的运算法则在模运算中,同余有着一系列的运算法则。
我们可以根据这些法则来简化模运算的计算,并处理一些复杂的数论问题。
(1)同余的传递性如果a≡b(mod m)且b≡c(mod m),那么可以推出a≡c(mod m)。
这就是同余关系的传递性,即如果两个数与同一个模同余,那么它们之间也是同余的。
举例来说,如果5≡15(mod 10)且15≡25(mod 10),那么可以推出5≡25(mod 10)。
(2)同余的对称性和反对称性(3)同余的加法和乘法性质对于同余关系来说,加法和乘法都具有良好的性质。
(4)同余的幂运算性质如果a≡b(mod m),那么对于任意正整数n,有a^n≡b^n(mod m)。
即同余数的幂运算后依然同余。
(5)同余的逆元如果a在模m下存在逆元,即存在整数b使得ab≡1(mod m),那么我们称b是a的逆元。
对于素数模m来说,任意整数a在模m下都有逆元。
同余的概念在数论和密码学领域有着广泛的应用。
(1)同余在数论中的应用在数论中,同余可以用来证明一些整数性质和解决一些数论问题。
在证明费马小定理和欧拉定理等定理时就会用到同余的性质。
在密码学中,同余的概念有着重要的应用。